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Among individuals diagnosedwith schizophrenia, approximately 20%–33% are recognized as treatment-resistant
schizophrenia (TRS) patients. These TRS patients suffer more severely from the disease but struggle to benefit
from existing antipsychotic treatments. A few recent studies suggested that schizophreniamay be caused by im-
paired synaptic plasticity thatmanifests as functional dysconnectivity in the brain, however, few of those studies
focused on the functional connectivity changes in the brains of TRS groups. In this study, we compared thewhole
brain connectivity variations in TRS patients, their unaffected siblings, and healthy controls. Connectivity net-
work features between and within the 116 automated anatomical labeling (AAL) brain regions were calculated
and compared using maps created with three contrasts: patient vs. control, patient vs. sibling, and sibling vs.
control. To evaluate the predictive power of the selected features, we performed a multivariate classification
approach. We also evaluated the influence of six important clinical measures (e.g. age, education level) on the
connectivity features. This study identified abnormal significant connectivity changes of three patterns in TRS pa-
tients and their unaffected siblings: 1) 69 patient-specific connectivity (PCN); 2) 102 shared connectivity (SCN);
and 3) 457 unshared connectivity (UCN).While the first two patternswerewidely reported by previous non-TRS
specific studies, we were among the first to report widespread significant connectivity differences between TRS
patient groups and their healthy sibling groups. Observations of this study may provide new insights for the
understanding of the neurophysiological mechanisms of TRS.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Schizophrenia is one of the most chronically disabling psychiatric
illnesses with a global median lifetime morbid risk of 7.2/1000 persons
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(McGrath et al., 2008). In addition, around 20%–33% of all schizophrenia
patients are diagnosed as drug treatment resistant schizophrenia (TRS)
(Essock et al., 1996). TRS patients usually suffer a more severe form of
the disease with inadequate symptom control from existing treatment
antipsychotic (Kane et al., 1988; Kerwin and Bolonna, 2005). The atyp-
ical antipsychotic drug, Clozapine, remains the most effective medicine
for TRS patients (Kane and Correll, 2010). However, approximately 1/3
to 2/3 of TRS patients do not fully respond even to Clozapine treatment
(Cipriani et al., 2009). Despite the recent advances in pharmacotherapy,
TRS remains a major clinical challenge (Bilic et al., 2014).

Although etiology of schizophrenia remains unclear, recent studies
hypothesized that schizophrenia may be associated with altered multi-
dimensional brain connectivity (Kalkstein et al., 2010; Konrad and
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Table 1
Functional connectivity studies of schizophrenia patients and their healthy siblings through year 2009.

Studies Patient/sibling/control Study aims Shared CNs Patient-specific CNs Compensatory CNs in healthy siblings

Whitfield-Gabrieli
et al. (2009)

13/13/13
(Sibling age 22.0 ± 2.9)

To investigate brain functional
connectivity in TNN

Reduced task-related suppression
in medial prefrontal cortex
(MPFC)

Reduced anticorrelation between medial
prefrontal cortex and right dorsolateral
prefrontal cortex

None

Woodward et al. (2009) 25/12/32
(Sibling age 36.9 ± 13.3)

To investigate CRT in SCZ patients
and their healthy siblings

Overall connectivity between
right dlPFC and multiple brain
regions were reduced; changes
were mild in unaffected sibling

None None

Repovs et al. (2011) 40/31/15
+ 18 siblings of healthy control subjects
(Sibling age 24.3 ± 3.7)

To investigate brain functional
connectivity in TNN and three
cognitive control networks
(frontal-parietal,
cingulo-opercular, and cerebellar)

Reduced connections among brain
networks critical to cognitive
control

None None

Liu et al. (2012) 25/25/25
(Sibling age 25.6 ± 6.8)

To investigate brain functional
connectivity in TNN and TPN

Increased connectivity between
the bilateral inferior temporal
gyri.

Increased connectivity between:

1 Posterior cingulate cortex/precuneus
and left inferior temporal gyrus;

2 Ventral medial prefrontal cortex and
right lateral parietal

3 Left dorsolateral prefrontal cortex and
right inferior frontal gyrus.

None

Meda et al. (2012) 70/70/118 (Sibling age 40.8 ± 15.6) To investigate brain functional
connectivity in 16 fMRI resting
state networks.

None Abnormal connectivity between:

1 Fronto/occipital and anterior default
mode/ prefrontal

2 Meso/paralimbic, and sensory-motor.

Discussed as the limitations of the work

Yu et al. (2013) 24/25/22
(Sibling age 12.5 ± 2.5)

To investigate the heritable
characters of SCZ using multiclass
patterns

CNs within cerebellum and the
prefrontal lobe, the middle
temporal gyrus, the thalamus, and
the middle temporal poles.

CNs within TNN, executive control
network, and cerebellum.

Connectivity among: right precuneus,
left middle temporal gyrus, left angular
and left rectus; between left rectus and
cingulate cortex

Note: CNs: connectivity features; TNN: task-negative network; TPN: task-positive network. SCZ: schizophrenia; dlPFC: dorsolateral prefrontal cortex; CRT: choice reaction time; fMRI: functional magnetic resonance imaging.
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Winterer, 2008; Liang et al., 2006; Venkataraman et al., 2012), possibly
caused by neural plasticity deficits in the brain (Daskalakis et al., 2008;
Friston, 1998; Stephan et al., 2006). Many recent studies have used rest-
ing state functional magnetic resonance imaging (fMRI) to examine the
functional dysregulations within and between different brain regions/
networks in schizophrenia. Despite an abundance of such studies, results
to date have been inconsistent (Bluhmet al., 2009; Camchong et al., 2011;
Jafri et al., 2008; Ma et al., 2012; Mannell et al., 2010; Rotarska-Jagiela
et al., 2010; Salvador et al., 2010; Venkataraman et al., 2012; Whitfield-
Gabrieli et al., 2009; Yu et al., 2011; Zhou et al., 2007). Indeed, both in-
creased and decreased connectivities have been observed in the
default-mode, as well as other resting state networks (RSNs) in individ-
uals with schizophrenia (Bluhm et al., 2009; Camchong et al., 2011; Jafri
et al., 2008; Liang et al., 2006; Mannell et al., 2010; Rotarska-Jagiela
et al., 2010; Salvador et al., 2010; Zhou et al., 2007).

In recent years, several studies have also compared changes in brain
structure and function in patients with schizophrenia, their unaffected
siblings and healthy controls. Some of these investigations focused on
the anatomical study of certain brain regions (Gogtay et al., 2012; Hao
et al., 2009; Harms et al., 2010), while others investigated the functional
connectivity of specific brain networks (Gogtay et al., 2012; Guo et al.,
2014; Guo et al., 2015; Liu et al., 2012; Meda et al., 2012; Repovs et al.,
2011; Whitfield-Gabrieli et al., 2009; Woodward et al., 2009; Yu et al.,
2011). Table 1 provides an overview of the functional connectivity stud-
ies conducted in the last 5 years. In an attempt to identify biological
markers for schizophrenia, most of those studies looked at shared
abnormalities between schizophrenia patients and their unaffected
siblings, and consistently reported similar – though usually milder –
alterations in individuals with schizophrenia and their unaffected sib-
lings (MacDonald, III et al., 2009; Sitskoorn et al., 2004; Snitz et al.,
2006; Toulopoulou et al., 2003). Their findings provided valuable infor-
mation to elucidate the SCZ endophenotypes and led to a better under-
standing of the pathophysiology of schizophrenia.

However, few previous function connectivity studies focused on TRS
patients let alone their unaffected siblings. In the present fMRI study,we
studied and compared thewhole brain connectivity features among TRS
patients, their unaffected siblings, and a group of physically and psychi-
atrically healthy controls.We sought to create a global distributionmap
of the connectivity changes in both TRS patients and their unaffected
siblings. To evaluate the influence of non-disease-symptom related
factors on our connectivity study, we tested the correlation between
six clinicalmeasures and the connectivity features: 1) age; 2) education;
3) disease duration (DD); 4) onset age; and 5) duration of untreated
psychosis (DUP), and 6) PANSS total score.

2. Materials and methods

2.1. Participants

Thirty-two individuals with schizophrenia participated in the study.
Patients were recruited from the KunmingMental Hospital and the First
Affiliated Hospital of Kunming Medical College in Kunming, China.
Table 2
Demographic and clinical profiles of the schizophrenic patients, their unaffected siblings, and h

Characteristics Schizophren
(n = 32)

Age (year) 35.0 ± 37.9
Education (year) 8.91 ± 2.63
Sex (male/female) 15/17
Duration of illness (month) 151.61 ± 9
PANSS scores

Total 97.0 ± 8.7
Positive symptoms 25.9 ± 2.6
Negative symptoms 24.4 ± 5.2
General psychopathology 46.4 ± 3.5

Medication dosage (mg/day chlorpromazine equivalents) 445.3 ± 61
All 32 patients met DSM-IV diagnostic criteria for schizophrenia, as
assessed using the DSM-IV-TR Structured Clinical Interview, Patient
Version (SCID-I/P). Patients had no history of neurological disorder, se-
vere medical disorder, substance abuse, or electroconvulsive therapy.

All patients met criteria for TRS according to International Psycho-
pharmacologyAlgorithmProject (IPAP, http://www.ipap.org/): (1) doc-
umented poor functioning for 5 years; (2) previous lack of response to
therapeutic trials of at least two antipsychotic drugs from two different
chemical classes; medications were administered for at least 4–6weeks
each at doses ≥ 400 mg equivalents (of chlorpromazine) or 5 mg/day
(of risperidone); (3) moderate to severe psychopathology, especially
positive symptoms, such as conceptual disorganization, suspiciousness,
delusions, or hallucinatory behavior. And in practice, we use PANSS
score to measure the symptom severity. All patients have a rating of at
least moderate severity on one or more items on the positive symptom
subscale of the Positive and Negative Syndrome Scale (PANSS), and
having a total PANSS score ≥ 75. We would like to clarify that all 32
patients were receiving antipsychotic medications at the time of
scanning (Clozapine [n = 10], Risperidone [n = 6], Olanzapine [n =
3], Clozapine + Risperidone [n = 3], Clozapine + Perphenazine [n =
4], or clozapine + quetiapine [n = 6]). It should be noted that TRS pa-
tients typically demonstrate a more severe form of the disease than
non-TRS patients, and are less impacted by thedrugs. Thus,we expected
that connectivity variations in TRS patients would have more pro-
nounced changes and thus are more detectable.

In addition, all but one of the TRS patients had an unaffected sibling.
All 31 siblings exhibited no psychotic symptoms, either presently or in
the past. The inclusion and exclusion criteria were the same as those
used for the TRS patients, except that the siblings did not meet DSM-IV
criteria for any Axis-I or Axis-II psychiatric disorder. Notably, most of
the unaffected siblings had also passed the age at which schizophrenia
typically manifests.

The control group comprised 44 physically and psychiatrically
healthy controls from Kunming City and its surrounds. Inclusion and
exclusion criteria were the same as for the sibling group, except that
controls had no first-degree relative with a history of psychiatric disor-
ders. Patients, siblings, and controls werewell matched for sex, age, and
education (see Table 2).

Risks and benefits of the study were presented in detail, and all par-
ticipants gavewritten informed consent. If participants were not able to
fill out the consent form, their guardians were contacted to fill out the
consent form on the patients3 behalf. The study was approved by the
ethics committee of the Second Xiangya Hospital of Central South Uni-
versity, the ethics committee of the First Affiliated Hospital of Kunming
Medical University (former name: the First Affiliated Hospital of kun-
ming Medical College) and by the Institutional Review Board (IRB) of
the National Institute of Mental Health (NIMH).

2.2. Imaging data acquisition

All brain scans were performed using a 1.5 T GE MRI scanner, with
foampadsused to limit headmotion and reduce scanner noise. Functional
ealthy controls.

ic patients Healthy siblings
(n = 31)

Healthy controls
(n = 44)

9 35.74 ± 7.49 32.27 ± 7.45
12.19 ± 3.33 8.82 ± 2.78
10/21 16/28

1.22

.7
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scanning was carried out in darkness, with participants explicitly
instructed to keep still, close their eyes, and relax during the scan.
Functional images were acquired with gradient-echo echo-planar imag-
ing with the following parameters: TR = 2.0 s, TE = 40 ms, field of
view = 24 cm, acquisition matrix = 64 × 64, flip angle = 90°, in-plane
resolution = 3.75 × 3.75 mm, slice thickness = 5 mm, gap = 1 mm, 24
slices, axial acquisition, and time points = 160.

2.3. Imaging data preprocessing

fMRI data were preprocessed using the Statistical Parametric Map-
ping (SPM5, http://www.fil.ion.ucl.ac.uk/spm/) and Resting-State fMRI
Data Analysis Toolkit (REST, http://resting-fmri.sourceforge.net) soft-
ware (Song et al., 2011). The first five time points from each functional
run were discarded to allow for equilibration of the magnetic field. Re-
maining data were realigned using INRIalign, a motion-correction algo-
rithm unbiased by local signal changes (Freire et al., 2002; Freire and
Mangin, 2001). All participants included in this analysis had less than
1.5mmmaximumdisplacement in x, y, or z and less than 1.5° of angular
rotation about each axis. In addition, we examined the peak displace-
ments (Lowe et al., 1998) in each participant in three groups and
found no significant difference (ANOVA, P-value N 0.05). Data were
then spatially normalized into standardMontreal Neurological Institute
(MNI) space (Friston et al., 1995), and the data (originally acquired at
3.75 × 3.75 × 6 mm3) were slightly subsampled to 3 × 3 × 3 mm3,
resulting in 61 × 73 × 61 voxels. A linear regression process was used
to reduce the effects of head motion and regress out constant elements
and linear drift. All data were band-pass filtered (0.01–0.08 Hz) and
were smoothed with a 3-dimensional (3D) Gaussian kernel of 6-mm
full width at half maximum (FWHM) to reduce spatial noise. The
WFU_PickAtlas toolbox (Maldjian et al., 2003; Maldjian et al., 2004)
was used to generate thewhole brainmask containing the 116 Anatom-
ical Automatic Labeling (AAL) brain regions (Tzourio-Mazoyer et al.,
2002) with 59,323 voxels.

2.4. Brain parcellation

For this study, whole brain was parcellated into 116 AAL brain re-
gions used in several earlier studies of whole-brain connectivity
(Konrad and Winterer, 2008; Liu et al., 2007; Salvador et al., 2010; Yu
et al., 2013).With a voxel volume of 3 × 3× 3mm3, thismethod divided
the cerebra into 90 regions (45 per hemisphere) and the cerebella into
26 regions (nine in each cerebellar hemisphere, eight in the vermis);
Supplementary Table 1 lists the 116 AAL brain regions.

2.5. Connectivity network feature map calculation

For each subject, connectivity network features (CNs) both within
and between each pair of 116 AAL brain regionswere calculated, gener-
ating a connectivity feature map (CFM) ∈ R116×116. We defined the CN
between two brain regions Ω1 and Ω2 as the mean of the Pearson cor-
relation coefficients calculated from each pair of voxels within the two
regions, as given by Eq. (1):

CN ¼

∑
i; j∈Ω1 ;i≠ j

corrðvi; vjÞ

n1ðn1−1Þ
∑

i∈Ω1 ; j∈Ω2

corrðvi; vjÞ

n1n2

8>>>>><
>>>>>:

ð1Þ

where n1 and n2 are the total number of vectors within Ω1 and Ω2,
respectively; corr(vi,vj) is the Pearson correlation coefficients of two
vectors after Fisher r-to-z transformation; and vi and vj are the time-
course vectors for the ith and the jth voxels.
2.6. P-value map calculation and analysis

After CFMs were acquired for each of the 107 subjects, one-way
ANOVA tests were conducted for each CN feature in three comparisons:
patient vs. control, patient vs. sibling, and sibling vs. control, generating
three P-value maps ∈R116×116. The CNs showing significant differences
in each contrast were selected and compared. The false discovery rate
(FDR) (Benjamini and Yekutieli, 2005) procedure was used to control
the expected proportion of false positives (q = 0.01). Brain regions
associated with the selected CNs were then investigated, and results
of the comparisons were presented in Venn diagrams.

2.7. Multivariate classification

Because statistical test P-values may not be the best measures
of connectivity relevance (Venkataraman et al., 2012), we used a
Euclidean distance-based multivariate classification method, followed
by a leave-one-out (LOO) cross validation, to evaluate the predictive
power of the selected CNs by ANOVA and further identify the most dis-
criminative subsets of CNs for each contrast. The classifier is given by
Eq. (2).

classID ¼ ming∑
ng
i¼1Euðvi; v0Þ=ng ð2Þ

where v0 is the feature vector of a subject s0 who is to be identified;
classID is the label of the group to which subject s0 belongs; vi (i =
1,…,ng) are the sample vectors in group g with ng samples (not includ-
ing s0); and Eu(*,*) is the Euclidean distance between two vectors of
the same dimension. Here g = 1,2,3 for patient, control, and sibling
groups, respectively.

The classifier inputs for this study included: 1) the selected CN
values (sorted by ascending P-value) of the subject to be classified;
and 2) the corresponding CN values of all other subjects in all three
groups: patients, unaffected siblings, and controls. Biomarker sets of
CNs that generated the highest classification ratio (CR) were chosen as
having the most significance for the corresponding contrasts. When
multiple sets of CNs exist corresponding to the highest CRs, we selected
the least numbered features set.

2.8. Correlation between clinical measures and CNs

To evaluate the influence of clinical measures on the connectivity
features, we calculated the Pearson correlation between each CN and
each of six important clinical measures for TRS patients including:
1) age; 2) education; 3) disease duration; 4) onset age; 5) duration of
untreated psychosis (DUP); and 6) PANSS total score. For healthy
siblings and healthy controls, the influence of age and education was
studied. For each clinical measure in each group, a clinical correlation
map (CCM) was generated.

3. Results

First, 6786 CNs were analyzed via three comparisons: patient
vs. control, patient vs. sibling, and sibling vs. control with one-way
ANOVA. At the same significance level (P-value b 3.95e−4; corrected
by FDR), we then selected and compared the top significant CNs for
each contrast. Consequently, we usedmultivariate classification follow-
ed by LOO cross validation to test the effectiveness of the selected CNs,
and studied the brain regions associated with the most effective CNs.
Finally, we evaluated the influence of six important clinical measures
on the CNs.

3.1. Significant CNs compared across three contrasts

The selected CNs can be categorized into three groups (see Fig. 1c
whichdiagrams the amplitude distribution of theCNs in each category):

http://www.fil.ion.ucl.ac.uk/spm/
http://resting-fmri.sourceforge.net


Fig. 1.Distribution of the selected connectivity features (includingboth intra- & inter- connectivities; P-value b 3.95E−4) for three contrasts: P–S, patient vs. sibling; P–C, patient vs. control;
S–C, sibling vs. control. (a) The automatic distribution of the selected CNs; (b) the statistical distribution of the selected CNs; (c) amplitude distribution diagram of the selected CNs.
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1) shared connectivity (SCN), where similar connectivity changes were
present in both TRS patients and their unaffected siblings; these CNs
were the ones only detected in the patient vs. control comparison.
2) Patient-specific connectivity (PCN), where only TRS patients showed
significant changes but their unaffected siblings showed either subtle
changes or no change compared to healthy controls; these CNs were
detected in both the patient vs. control and patient vs. sibling com-
parisons; and 3) unshared connectivity (UCN), where the CNs differed
significantly between patients and unaffected siblings but they were
Fig. 2.Multivariate classification validates CN selection and identifies CN sub-sets with the
most significance. The x-axis presents the number of features sorted in ascendant order
by P-value from ANOVA. The y-axis presents the classification ratio (CR) using different
numbers of CNs.
neither the SCN nor PCN, suggesting that they were absent in the
patient/control comparison. Those CNs were detected only in the pa-
tient vs. sibling comparison. The automatic (Fig. 1a) and statistical
(Fig. 1b) distribution of the selected CNs are given in Fig. 1.We also pro-
vided the statistical box plot of the connectivity amplitude and P-values
for those selected CNs in Supplementary Figs. 1 and 2.

In this study, a total of 116× (116+1)/2=6786 swere analyzed. At
P-value b 3.95e−3 (corrected by FDR), approximately 1.5% (102/6786)
of these CNs were identified as SCNs. As shown in Fig. 1a, those SCNs
were mainly intra-cerebellum connectivity and connectivity between
cerebellum and multiple cerebral cortexes including prefrontal lobe,
occipital lobe, paracentral lobule, and thalamus. Approximately 1%
(69/6786) CNs appeared to be PCNs, which were associated with cere-
bellum, default mode networks (e.g. rectus gyrus, parahippocampal
gyrus, middle temporal gyrus) and part of the prefrontal cortex (e.g.
medial orbital part of superior frontal gyrus, gyrus rectus) (Fig. 1a).
At the same significance level, we identified 6.7% (457/6786) UCNs in
unaffected siblings, where TRS patients showed moderate reduced
connectivity compared to healthy controls while their unaffected siblings
demonstrated increased connectivity (Fig. 1c). Noteworthy, those UCNs
were widespread, especially between the occipital and frontal lobes,
and between the parietal and temporal lobes (Fig. 1a). No significant
CNs were identified in the sibling vs. control comparison.

The identified CNs from both the patient vs. control and patient
vs. sibling comparisons were associated with large areas of the brain.
Indeed, approximately 50% of all brain regions were associated with
these selected CNs in the patient vs. control comparison— a percentage
that rises to 59.5% (with an overlap of 31.9%) in the patient vs. sibling
comparison.



Fig. 3. Brain regions associated with most significant connectivity features comparing results from two studies in three different contrast groups (P−S = patient vs. healthy sibling;
P−C = patient vs. control). Color coding represents number of significant connectivity features associated with each brain region.
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3.2. Multivariate classification

To evaluate the predictive power of ANOVA-selected features and
identify those CN subsets that were most discriminative, a multivariate
classification analysis, followed by a LOO cross validation, was also con-
ducted. Fig. 2 details the classification results differentiating each pair of
groups for the patient vs. sibling and patient vs. control comparisons,
respectively, using CNs selected from the corresponding contrasts (i.e.
using CNs selected from the patient vs. sibling comparison to differentiate
TRS patients from siblings, etc.). As shown in Fig. 2, the highest CRs were:
patient vs. control = 81.6% with 2 CNs (CN between Vermis_9 and Ver-
mis_4_5; between right Cerebelum_Crus2 and right Cerebelum_Crus1);
patient vs. sibling = 74.6% with 5 CNs (CN within middle occipital
gyrus; CN between middle occipital gyrus and both sides of the fusiform
gyrus; CN between superior parietal lobule and left gyrus rectus and left
inferior temporal gyrus).

The brain regions associatedwith themost discriminative CNs in the
patient vs. sibling and patient vs. control comparisons are presented in
Fig. 3.

3.3. Correlation between CNs and clinical measures

For each clinical measure in each group (patient, sibling, control and
all subject in one group), a clinical correlationmap (CCM) was generated
by recording the Pearson correlation coefficients between the specific
Table 3
Correlation between CNs and clinical measures in terms of CORR.

Age Education(year

Patient Range [−0.16,0.33] [−0.16,0.33]
Mean ± std 0.11 ± 0.16 0.11 ± 0.16
Abs b 0.2(%) 50.00% 50.01%
Negative (%) 33.33% 33.33%

Sibling Range [−0.29,0.27] [−0.33,0.32]
Mean ± std 0.07 ± 0.27 0.09 ± 0.32
Abs b 0.2(%) 98.31% 95.68%
Negative (%) 66.96% 59.88%

Control Range [−0.22,0.30] [−0.24,0.32]
Mean ± std 0.06 ± 0.30 0.07 ± 0.32
Abs b 0.2(%) 99.40% 98.14%
Negative (%) 35.01% 38.99%

Combined three groups Rang [−0.00,0.15] [−0.02,0.15]
Mean ± std 0.08 ± 0.05 0.08 ± 0.05
Abs b 0.2(%) 100.00% 100.00%
Negative (%) 0.04% 0.16%

Note: 1. CORR: Pearson correlation coefficients; 2. DD: disease duration; 3. DUP: duration of un
clinical measure and all the CNs in a specific group. Our study showed
that clinical measures had weak yet different effect on the CNs derived
from those groups, as shown in Table 3.
4. Discussion

This study compared global functional connectivity in the brains of
TRS patients, their unaffected siblings, and un-related healthy controls.
Three types of abnormal CNs detected were: SCNs, PCNs, and UCNs.

In the comparison between TRS patients and healthy controls, ap-
proximately 2.5% (171/6786) CNs were detected; these included both
SCNs and PCNs (Fig. 1b). Those CNs were widespread within cerebra
and between cerebellum and cerebra (58/116 AAL brain regions).
Among those selected CNs, approximately 1% (69/6786) were PCNs.
The PCNs involved the cerebellum, default mode network (e.g. rectus
gyrus, parahippocampal gyrus, middle temporal gyrus) and prefrontal
cortex (e.g. medial orbital part of superior frontal gyrus, gyrus rectus).
Our observations support the hypothesis put forth in earlier non-TRS
specific studies that schizophrenia is associated with widespread ab-
normal functional brain connectivity (Liang et al., 2006; Salvador et al.,
2010; Venkataraman et al., 2012).

The findings in the present study also demonstrated that, among
those 2.5% abnormal CNs detected in TRS patients, approximately 1.5%
(102/6786) were shared by their unaffected siblings, albeit in milder
) DD (month) Onset age DUP (year) PANSS-TS

[−0.16,0.33] [−0.16,0.33] [−0.16,0.33] [−0.17,0.34]
0.11 ± 0.15 0.11 ± 0.16 0.11 ± 0.15 0.11 ± 0.15
50.00% 50.02% 50.01% 50.13%
33.34% 33.33% 33.33% 33.35%

treated psychosis; 4. Abs: absolute value of the CORR.
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form (Fig. 1b, c). Those CNs were mainly within the cerebellum and
between the cerebellum and multiple cerebral cortices including the
prefrontal lobe, occipital lobe, paracentral lobule, and thalamus. Prior
non-TRS specific investigations had similarly found that unaffected
siblings shared a milder version of the same connectivity changes as
schizophrenia patients (Liu et al., 2012; Meda et al., 2012; Repovs
et al., 2011; Woodward et al., 2009; Yu et al., 2013). However, our
study did not detect any increase in shared CNs, which differed from
some of the prior non-TRS specific studies (Liang et al., 2006; Liu
et al., 2012). This may be due to subclinical features of the disorder
(Venkataraman et al., 2012).

In addition to the SCNs and PCNs detected, we identifiedmore UCNs
in unaffected siblings (6.7% = 457/6786). Most of previous studies of
general schizophrenia patients did not report UCNs as we observed in
this study (see Table 1). For theseUCNs, TRSpatients showedmoderate-
ly reduced connectivity compared to healthy controls while their unaf-
fected siblings demonstrated increased connectivity (Fig. 1c). The UCNs
were widespread, especially between the occipital and frontal lobes,
and between the parietal and temporal lobes (Fig. 1a). A few of those
connectivity changes occurred within the cerebellum or between the
cerebellum and the cerebrum. These findings support the results from
a recent whole brain connectivity study, although their study was not
focused on TRS patients (45; see Table 1).Wewere one of the first to re-
port widespread unshared functional connectivity changes in schizo-
phrenia and the first one to report such observation in TRS specific
groups.

It should be noted that no significant connectivity differences were
found between unaffected siblings and healthy controls. Moreover, in
unaffected siblings,manymore UCNs than SCNswere detected. This ob-
servation was different from most of the previous observations which
mainly detected SCNs (see Table 1) and was consistent with our exper-
imental design in the following two ways. 1) All the SCZ patients were
treatment resistant. TRS patients usually present more severe disease
symptoms compared to healthy controls or healthy sibling; 2) all unaf-
fected siblings recruited had no history of schizophrenia and, by the
mean age of 35.74 ± 7.49, had exhibited no symptoms of the disease.
Given that the age of onset for schizophrenia is typically 15–25 for
males and 25–30 for females, it is likely that unaffected siblings would
have developed compensatory mechanisms within their brains, which
may lead tomore functional difference from that of affected individuals.
The younger age of the unaffected siblings in previous studies (see
Table 1) may partially explain why few UCNs were identified.

Using the three types of abnormal CNs observed, we built a global
anatomic distribution map of connectivity changes in both schizophre-
nia patients and their unaffected siblings (Fig. 1a). Fig. 1b presents the
corresponding statistical distribution using a Venn diagram, and the
connectivity amplitude distribution diagram is provided in Fig. 1c.
Taken together, Fig. 1 helps illustrate the overall view of all identified
functional connectivity changes related to TRS and their healthy sibling,
including both SCNs and UCNs.

The multivariate classification method used to assess the predictive
power of the selected CNs found that the highest CRs were 81.6% and
74.6% for TRS patient vs. control and patient vs. sibling comparisons, re-
spectively (Fig. 3). Underscoring the validity of the selected variables,
the accuracy of those predictions was comparable to or better than
some recent 116 AAL brain region-basedwhole brain connectivity anal-
yses; for instance, Venkataraman et al. (2012) obtained a prediction ac-
curacy of 75%, and Yu et al. (2013) obtained a prediction accuracy of
62.0%. Interestingly, the strongest prediction accuracies were obtained
using subsets that contained a small number of CN features: two CNs
for patient/control identification (between Vermis_9 and Vermis_4_5;
between right Cerebellum_Crus2 and right Cerebellum_Crus1), and
five CNs for patient/sibling identification (CN within middle occipital
gyrus; between middle occipital gyrus and both sides of the fusiform
gyrus; between superior parietal lobule and left gyrus rectus and left in-
ferior temporal gyrus). Notably, the identified brain regions associated
with those CNs have all been previously implicated in non-TRS specific
schizophrenia. Specifically, the gyrus rectus has been implicated in
schizophrenia (Crespo-Facorro et al., 2000) and early depression
(Ballmaier et al., 2004). The superior parietal lobule has been reported
to show significant changes in schizophrenia patients (Yildiz et al.,
2011). More recently, Fukuta et al.3s work showed that the gray matter
in the left middle frontal gyrus presented significant change between
postmenopausal patients and premenopausal patients (Fukuta et al.,
2013). This consistency with earlier findings further confirms the valid-
ity of our results.

Although we speculated that the three patterns of different CNs de-
tected in this study were due to the disease status of the three groups,
these observations may be affected by other clinical factors such as
age and education and medication history. To test and evaluate the po-
tential influence of those clinical measures on the connectivity study
performed, here we calculated the CCMs for each clinical measure in
terms of Pearson correlation coefficients (CORR). As shown in Table 3,
although the correlation of education in three groupswas slightly differ-
ent (0.16± 0.33, 0.09 ± 0.32, and 0.07± 0.32 for patients, healthy sib-
lings and health controls, respectively), if tested as a whole group for all
the subjects involved in this study, education (in year) had weak (100%
CORR b 0.2) correlation with CN. This is consistent with previous
studies that education level was not a significant moderator of cor-
relations between schizophrenia neurological soft signs (NSS) and
symptom severity or neurocognitive performance (Chan et al.,
2010). Therefore, the higher education level in healthy siblings com-
pared to patients and controls should not have significant influence
on the CN analysis (see Table 2, the education year for patient, sibling
and control groups are 8.91 ± 2.63, 12.19 ± 3.33 and 8.82 ± 2.78,
respectively).

Boos et al. showed that the changes of fractional anisotropy (FA) of
SCZ are different compared to healthy siblings and controls (Boos
et al., 2013). In this study, the correlations between age and CNs were
similar to that of between education and CNs. However, the age in
three groups was well matched such that the influence of age on this
connectivity study was even milder.

In addition to age and education,we also looked into the correlations
between CNs and other four important clinical measures for the patient
group: disease duration (DD, in month), onset age, duration of untreat-
ed psychosis (DUP, in year), and PANSS total score. Results showed that
correlations between those parameters and CNs were similar to that of
age and education, ranging among [−0.16, 0.33] with around 50% be-
tween [−0.2, 0.2]. This indicated that multiple factors worked together
to affect the CNs for TRS patients, although each single factor contribut-
ed to a relatively small degree.

Among those clinical factors, DUP reflected the duration of med-
icine treatment. As similar to other factors that affect the CNs in TRS
patients, DUP, or medication history, have limited influence on the
CNs. Therefore, we had the reason to believe that the medicine his-
tory of TRS patients was not the main reason that caused the signif-
icant, widespread connectivity changes in the brain of TRS patients.
Consequently, if we assume TRS patients and their healthy siblings
sharing similarity in their brain connectivity, the widespread func-
tional connectivity differences observed in this study were highly
likely caused by the functional regulations in the brain of healthy
siblings rather than the medicine-introduced changes in TRS pa-
tients. Since healthy siblings were not affected by medical treatment
while sharing genomic burdens and partial environment conditions
with TRS patients, the unshared connectivity changes compared to
healthy controls observed in this group may reflect compensatory
mechanism to protect against becoming ill.

It should be noted that AAL brain regions differ greatly in size. For
large sized AAL brain regions, averaging the connectivity features for
all the voxels within the region may cause mild level of information
loss. Therefore, using finer grid for the brain parcellation may lead to
better observation that is worthy of further study.
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Despite the importance of these preliminary findings, this study also
has several limitations. First, although we test the relation between con-
nectivity features and duration of untreated psychosis (DUP), which re-
flects the medication history of the subjects and shows no significant
correlation, we cannot absolutely secure that the medication exposure
has no influence on our observations. Second, the sample size was
small. To our knowledge, this is the first study to investigate functional
whole brain connectivity changes in TRSpatient group and their unaffect-
ed siblings. Although the predictive power of the selected CNs has been
tested using amultivariate classification approach, itwas not an extra val-
idation step. The encouraging results suggest that further validation using
larger datasets and a similar experimental design are warranted. Third,
despite the fact that most of the unaffected siblings in this study had
passed the age of peak first-onset risk for schizophrenia, a possible mor-
bidity risk for the unaffected siblings remained. However, only 4 of 31 sib-
lingswere below the age of highest risk, whichminimizes this possibility.
Nevertheless, the unaffected siblings would still have a higher risk of de-
veloping schizophrenia in their later years than unrelated healthy con-
trols. This minimal morbidity risk may still have influenced the
reliability of the functional compensatory regulations detected. Forth,
the education of siblings was higher than that of patient and control
groups. Although the previous correlation studies and the current work
suggested that education level does not have a significant influence on
schizophrenia symptoms, matching the education level should further
mitigate against this possibility. Fifth, although we speculate in this
work that the significant CNs only detected in patient/sibling comparison
may represent compensatory regulation, our findings were only partially
consistentwith another recent study (Yu et al., 2013), thus further studies
are needed to confirm our findings. Finally, technical issues surrounding
the data analysismethods used could have affected the results. Specifical-
ly, we used band pass filter of 0.01–0.08 Hz in data preprocessing and a
Euclidean distance-based classifier to predict group differences. Other fre-
quency bands and different classifiers may influence the results.

In conclusion, this study for the first time presented an abnormal
connectivity change map in TRS patients and their unaffected siblings,
revealed three types of dysconnectivities: patient specific, shared and
unshared. This study is also one of the first to report widespread un-
shared significant functional connectivity in the unaffected siblings of
TRS patients. With further validation using larger data sets, the results
we obtainedmay provide valuable new insights into the understanding
of neurophysiological mechanisms of TRS and its treatment.
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