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SUMMARY

Since the first successful allogeneic transplants performed in Seattle 50 years ago, the field of trans-
plantation has evolved considerably, with improvements in human leukocyte antigen typing, patient
selection, reduced intensity regimens, and graft-versus-host disease prophylaxis. A major break-
through has been the availability of more donor options, first via the National Marrow Donor Pro-
gram—Be the Match [Biol Blood Marrow Transplant 2008;14:2–7]. Then, in the 1990s, unrelated
umbilical cord blood transplantation became available, first for children and then for adults [New
Engl J Med 1996;35:157–166]. More recently mismatched unrelated transplants and haploidentical
donor options became available [Blood 2011;118:282–288]. In 2017, there is a donor for almost every
patient who needs a transplant. In this review, we will discuss the state of the science (and art) of
cord blood transplant, focusing on successes, challenges, and future directions. STEM CELLS TRANSLA-

TIONAL MEDICINE 2017;6:1312–1315

SIGNIFICANCE STATEMENT

From the first UCBT in 1988, the field of UCBT has evolved considerably. UCBT is now a success-
ful treatment option for both pediatric and adult patients with a variety of hematologic dis-
eases, and transplant outcomes continue to improve with better HLA matching, UCB unit
selection, refinement of conditioning regimens, and expanded supportive and infection preven-
tion regimens.

UMBILICAL CORD BLOOD BANKING

An estimated 700,000 umbilical cord blood (UCB)
units have been donated for public use. Given the
association between cell dose and engraftment,
many centers are choosing larger units (based on
total nucleated cell count or CD341 dose) for
transplantation, even for pediatric patients [1, 2].
There are currently more than 100 UCB banks col-
lecting units for public use in North America, South
America, Australia, Europe, Asia, and the Middle
East. In the United States, federal regulations
require that a UCB must either be licensed by the
Food and Drug Administration (FDA) or used under
an Investigational New Drug (IND) protocol.

Private or family UCB banks collect units for
family use; an estimated 4 million units have been
stored for private use [3]. In Europe, hybrid UCB
banking is an innovative strategy to use private
donations to fund the public banking side, and
families can opt to have privately stored UCB units
available for patients in need [4].

Major Challenges in Umbilical Cord Blood

Banking

1. Regulatory issues, such as licensure, have
increased the cost to bank UCB units.

2. Less than 1 in 10 stored UCB units are used
for transplantation, also increasing the costs
[5].

3. Some obstetrical practices, such as delayed
cord clamping, may affect the volume and
cell dose collected [6].

Future Directions in Umbilical Cord Blood

Banking

Umbilical cord blood banks have adapted to eco-
nomic challenges by carefully selecting units to
human leukocyte antigen (HLA) type, freeze, and
store. Many banks have increased their minimum
cell dose to 125 or 150 3 107 nucleated cells
before processing UCB units [5]. In addition, the
use of automated freezing practices is more wide-
spread [7]. Innovative ways to use public and pri-
vate funds to support UCB initiatives are under
way. Newer ways to thaw UCB cells at the trans-
plant center, using a dilution and no-wash
method, may increase cell recovery [8, 9].

CORD BLOOD TRANSPLANT FOR HEMATOLOGIC

DISEASES

Umbilical cord blood transplant (UCBT) is poten-
tially curative therapy for patients with leukemia,
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lymphoma, myeloma, myeloproliferative disorders, genetic dis-
eases, and disorders of metabolism. UCB is particularly important
for patients of non-Western European ancestry, because these
patients have a difficult time finding a matched volunteer donor
in the donor registry [10]. The use of double cord blood transplant
and reduced intensity regimens in adults has led to increased use
in older patients and reduced transplant-related mortality [11,
12].

Major Challenges in Cord Blood Transplant for

Hematologic Diseases

1. Engraftment and immune reconstitution are delayed, which
leads to an increased risk of infection [13].

2. The cost of acquisition of two cord blood grafts (for double
cord blood transplant in adults) can be $80,000, in addition
to the cost of the transplant admission and immediate post-
transplant care [14].

3. Relapse of the primary disease remains the major cause of
death for patients post-transplant.

Future Trends in Cord Blood Transplant for Hematologic

Diseases

There are many techniques under investigation to improve
immune reconstitution and engraftment (Table 1). Expansion trials
include efforts with mesenchymal progenitor cell expansion,
which showed a neutrophil engraftment of 15 days, improved
from a historical control of 24 days [15]. Using the notch ligand
Delta 1, Delaney and colleagues improved neutrophil engraftment
to 16 days [16]. This work has now been extended to use an “off-
the-shelf” non-HLA-matched expanded UCB product, and a phase
II study is under way (NCT01690520). The use of copper chelation
led to the development of the NiCord product, which showed a
one-year overall survival of 82% and 11 days to neutrophil engraft-
ment in a phase I study [17]. The product recently obtained break-
through designation from the FDA, and a phase III registration
trial comparing expanded versus unexpanded UCB is in progress
(NCT02730299). While expansion studies are promising, the stud-
ies have been limited by small sample size and complex technol-
ogy that may be difficult to export to other centers.

Another approach is to improve homing of the infused UCB
cells to the bone marrow. The Boston group has used prostaglan-
din E2 to upregulate CXCR4 expression and has shown improved
engraftment [11]. Other strategies include the use of fucosylation,
hyperbaric oxygen, and direct intramarrow injection of the UCB
cells [18–21]. Additional efforts to reduce infection include the
use of cytotoxic T lymphocytes to decrease viral infection [22].

If expansion and homing techniques prove successful, this
work may decrease the cost of cord blood transplantation by elim-
inating the need for the second UCB unit. Single unit UCBT has

been shown to be equivalent to double UCBT in children and may
also be acceptable in younger adults [4, 23].

Although relapse remains the major cause of death, recent
work from the Seattle group has shown that for patients with
minimal residual disease, UCBT is associated with a lower risk of
relapse than for patients receiving unrelated donor transplants
[24]. In addition, for transplant in general, targeted post-
transplant maintenance therapy, such as for patients with FLT3-
positive acute myeloid leukemia, may decrease the risk of relapse
[25, 26].

CORD BLOOD TRANSPLANTATION IN REGENERATIVE MEDICINE

An exciting new development is the use of either autologous or
unrelated UCBT for nontraditional applications (outside of oncol-
ogy) in neurology, endocrinology, and cardiology, for diseases that
have significant worldwide impact. Compared with stem cells
obtained from adult bone marrow harvests, UCB stem cells have
greater proliferative potential and longer telomeres [27]. UCB has
been used to treat neurologic conditions, including cerebral palsy,
hypoxic ischemic encephalopathy, traumatic brain injury, and
autism [28]. In cardiovascular disease, UCB-derived mesenchymal
stem cells are in clinical trials for dilated cardiomyopathy and
ischemic disease [29].

Major Challenges in Cord Blood Transplantation in

Regenerative Medicine

1. Trial endpoints may be more difficult to quantitate than in
hematologic malignancies, for example improved function in
cerebral palsy [30].

2. There are significant regulatory hurdles for large-scale use of
these products.

3. Use of autologous UCB units for regenerative medicine indi-
cations may affect UCB public banking.

Future Trends in Cord Blood Transplantation in

Regenerative Medicine

This is a fast-moving field with several clinical trials under way. In
cerebral palsy, intravenous autologous UCB infusions have been
administered safely [30]. Neurodevelopmental improvement has
been seen in a study of 57 patients treated with G-CSF with or
without autologous peripheral blood stem cells [31]. Allogeneic
infusions have also been used; 47 patients with severe cerebral
palsy were treated safely with unmatched allogeneic UCB cells,
given both intravenously and intrathecally [32]. Gross motor func-
tion scores improved, and there was no graft-versus-host disease
[33].

Approximately 15 million babies are born preterm worldwide,
and these babies are at much higher risk of neurodevelopment
abnormalities, likely related to hypoxia-ischemia [34]. Rat models

Table 1. Strategies to improve engraftment and immune recovery

Agent Mechanism Author n Days to ANC > 500 Current trial

Nicotinamide Inhibit enzymes that require NAD1 Horwitz et al. [17] 11 13 NCT02730299
Notch Inhibit differentiation Delaney et al. [16] 10 16 NCT01690520
Mesenchymal stem cells Improve stroma De Lima et al. [15] 31 15 NCT01854567
Prostaglandin E2 Homing Cutler et al. [11] 12 17
FT-VI Fucosylation Popat et al. [18] 7 14 NCT01471067
Sitagliptin DPP-IV inhibition Farag et al. [45] 24 21 NCT01720264
Intrabone marrow Homing Kurita et al. [21] 15 17

Abbreviations: ANC, absolute neutrophil count; FT, fucosyltransferase; DPP, dipeptidyl peptidase; NAD1, nicotinamide adenine dinucleotide.
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have shown an improvement in motor function after transplanta-
tion of human cord blood [35]. Clinical trials using UCB are
ongoing at Duke and National University Hospital, Singapore
(NCT00593242) [28, 36].

In cardiovascular disease, UCB mesenchymal stem cells
secrete cytokines that stimulate angiogenesis [37]. In rat models
of myocardial infarction, UCB-derived mesenchymal stem cells
have been shown to decrease infarct size, improve cardiac func-
tion, and promote angiogenesis via activating platelet-derived
growth factor D [38, 39].

Human UCB-derived cells are also being studied to treat
inflammatory bowel disease, corneal disease, renal disease, and
collagen-induced arthritis [40–42]. A clinical trial in 45 patients
with hepatitis B-induced liver disease has shown a benefit to UCB-
derived mesenchymal stem cells [43]. A partial listing of available

clinical trials for UCB-derived cells for regenerative medicine appli-
cations is shown in Table 2.

CONCLUSION

From the first UCBT in 1988, the field of UCBT has evolved consid-
erably [44]. UCBT is now a successful treatment option for both
pediatric and adult patients with a variety of hematologic dis-
eases, and transplant outcomes continue to improve with better
HLAmatching, UCB unit selection, refinement of conditioning regi-
mens, and expanded supportive and infection prevention regi-
mens. Exciting new applications in the field of cardiology,
neurology, autoimmune disease, and ophthalmology should make
major health advances in the next 10 years.
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