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A B S T R A C T

Background and purpose: Magnetic resonance imaging (MRI) is crucial for in
vivo detection and characterization of white matter lesions (WML) in multiple sclerosis (MS). The most widely established MRI outcome measure is the volume of
hyperintense lesions on T2-weighted images (T2L). Unfortunately, T2L are non-specific for the level of tissue destruction and show a weak relationship to clinical
status. Interest in lesions that appear hypointense on T1-weighted images (T1L) (“black holes”) has grown because T1L provide more specificity for axonal loss and a
closer link to neurologic disability. The technical difficulty of T1L segmentation has led investigators to rely on time-consuming manual assessments prone to inter-
and intra-rater variability. This study aims to develop an automatic T1L segmentation approach, adapted from a T2L segmentation algorithm.
Materials and methods: T1, T2, and fluid-attenuated inversion recovery (FLAIR) sequences were acquired from 40 MS subjects at 3 Tesla (3 T). T2L and T1L were
manually segmented. A Method for Inter-Modal Segmentation Analysis (MIMoSA) was then employed.
Results: Using cross-validation, MIMoSA proved to be robust for segmenting both T2L and T1L. For T2L, a Sørensen-Dice coefficient (DSC) of 0.66 and partial AUC
(pAUC) up to 1% false positive rate of 0.70 were achieved. For T1L, 0.53 DSC and 0.64 pAUC were achieved. Manual and MIMoSA segmented volumes were
correlated and resulted in 0.88 for T1L and 0.95 for T2L. The correlation between Expanded Disability Status Scale (EDSS) scores and manual versus automatic
volumes were similar for T1L (0.32 manual vs. 0.34 MIMoSA), T2L (0.33 vs. 0.32), and the T1L/T2L ratio (0.33 vs 0.33).
Conclusions: Though originally designed to segment T2L, MIMoSA performs well for segmenting T1 black holes in patients with MS.

1. Introduction

Multiple sclerosis (MS) is an inflammatory and demyelinating au-
toimmune disease of the central nervous system which typically leads to
neurodegeneration (Ahlgren et al., 2011; Compston and Coles, 2002;
Harbo et al., 2013). The inflammatory and demyelinating process
causes multifocal lesions and widespread atrophy in white and gray
matter, often leading to physical disability, cognitive dysfunction, and
unemployment (Rovira and León, 2008; Tauhid et al., 2015). Structural
magnetic resonance imaging (MRI) is a commonly used tool for the
diagnosis, longitudinal management, and scientific investigation of MS
(Lublin et al., 2014) because it allows for the detection of white matter
lesions (WML). Common MRI metrics used to assess disease activity and
severity in patient management and clinical trials include WML count
and volume, the latter of which particularly relies on accurate seg-
mentation.

Several complementary characterizations of WML are commonly
delineated. Gadolinium-enhancing lesions (EL) are closely linked to
acute perivascular inflammatory activity due to focal break-down of the
blood-brain barrier and typically fade over 2–6weeks (Zivadinov and
Bakshi, 2004). T2 hyperintense lesions (T2L), which typically start as
EL but later remain as non-enhancing lesions, are nonspecific for the
severity of underlying pathology (Zivadinov and Bakshi, 2004). That is,
T2 sequences are nonspecific for the type and degree of tissue injury
such as demyelination, inflammation, edema or axonal loss. This non-
specificity is one factor that contributes to modest associations between
T2L metrics and clinical status (Molyneux et al., 2000). Approximately
50% of T2L also appear as persistent T1 hypointensities (T1L), com-
monly referred to as black holes, which are likely to be the most de-
structive regions with severe demyelination and axonal loss (Katdare
and Ursekar, 2015; Andermatt et al., 2017). Furthermore, the T1L/T2L
ratio, an index of the destructive potential of lesions, has been shown to
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be particularly sensitive in tracking MS therapeutic response (Kim et al.,
2016). T1L metrics provide high clinical significance but are usually
assessed manually in both clinical and trial settings because they are
difficult to segment (Bakshi et al., 2005).
Manual segmentation is the gold standard approach for WML

quantification and requires an expert to analyze scans visually.
Unfortunately, this process is costly, time-consuming, and prone to
intra- and inter-rater variability (Lladó et al., 2012; Sweeney et al.,
2014; García-Lorenzo et al., 2013). Difficulties associated with manual
lesion segmentation have led to the development of various segmen-
tation methods with different levels of accuracy and complexity
(Sweeney et al., 2014). While many methods are available, no single
approach has been shown to perform optimally across multiple lesion
assessments and scanning platforms. This is largely due to the chal-
lenges associated with heterogeneous lesion characteristics within and
across subjects and variability introduced by scanning hardware and
acquisition protocols.
The majority of automatic lesion segmentation methods delineate

T2L (García-Lorenzo et al., 2013; Valcarcel et al., 2018; Sweeney et al.,
2013; Meier et al., 2017; Shiee et al., 2010; Dadar et al., 2017). In
contrast, few studies have investigated a fully automatic segmentation
approach for T1L. The sparsity of prior research is in part due to a
technical challenge: since T1L and their boundaries appear similar to
gray matter (Ceccarelli et al., 2012) and are subtler than the boundaries
of T2L, they are much more difficult to segment by manual and auto-
matic methods. Related to the segmentation of T1L, Khayati et al.
proposed a method to segment different stages of lesions, including
chronic lesions which include T1L as well as other lesional phenotypes
(Khayati et al., 2008). The simplest method to segment T1L was pro-
posed by Filippi et al. using an expert-driven semi-automated thresh-
olding approach to estimate lesion volumes (Filippi et al., 1996). Mo-
lyneux et al. similarly proposed a semi-automated technique to
delineate T1L in a multi-center study where they showed that T1L vo-
lume is a consistent and reproducible metric that can be applied to MRI
data from various scanners (Molyneux et al., 2000). Following these
results, Datta et al. recently developed fully automated methods using
fuzzy connectivity modeling (Datta et al., 2006). Wu et al. proposed an
algorithm to detect EL, T1L, and T2L using intensity-based statistical k-
nearest neighbor classification combined with template-driven seg-
mentation and partial volume artifact correction (Wu et al., 2006). To
automatically segment T1L, Spies et al. proposed an approach that used
a standard classification algorithm to partition T1-weighted images into
gray matter, white matter, and cerebrospinal fluid and then found T1L
in the white matter using voxel-wise testing with healthy controls as a
reference (Spies et al., 2013). Harmouche et al. proposed a method to
segment T1L and T2L jointly by modeling the posterior probability
density function (Harmouche et al., 2015).
Unfortunately, none of these approaches provide publicly available

software, and the studies were based on relatively small MRI datasets
with uniform patient demographics and lesion load (Molyneux et al.,
2000; Filippi et al., 1996; Datta et al., 2006; Wu et al., 2006; Spies et al.,
2013). Additionally, studies to date have only used a single rater for
manual segmentations. Likely due to these limitations, adoption of
these previously published methods has been slow, and studies have
continued to obtain T1L segmentations manually. A comprehensive,
automated technique with readily available software that integrates
aspects of WML burden of multiple lesion characterizations in a diverse
patient population would thus address an important, unmet need in the
radiological assessment of MS lesions.
In our previous work, a Method for Inter-Modal Segmentation

Analysis (MIMoSA) was developed and validated as an automatic T2L
segmentation method in people with MS. (Valcarcel et al., 2018)
MIMoSA has readily available software for implementation in R
as a package on Neuroconductor (https://neuroconductor.org/
package/details/mimosa) with documentation and a vignette avail-
able on GitHub (https://github.com/avalcarcel9/mimosa/blob/

master/vignettes/mimosa_git.md) (Valcarcel, 2018; Muschelli et al.,
2018). In the present study, we applied the MIMoSA method to au-
tomatically segment T1L. Since no publicly available software for
automatic detection of T1L exists, we automatically segmented T2L
using MIMoSA and used these measures as a reference for T1L per-
formance. This was motivated by our findings that MIMoSA is a
competitive T2L segmentation approach (Valcarcel et al., 2018), and
all T1L are also seen as T2L (but not vice-versa). Moreover, since the
data in this study were acquired under a different protocol than data
in the original development of MIMoSA, application of MIMoSA to
segment T2L enabled us to validate and assess the robustness of MI-
MoSA's accuracy across different scanner platforms and protocols. For
further comparison, OASIS, another validated T2L lesion segmenta-
tion algorithm (Sweeney et al., 2013), was used to automatically
segment T1L. Finally, we examined correlations between lesion vo-
lume and clinical status measurements in order to determine if au-
tomatic lesion segmentation reduced noise and revealed stronger
associations with disability.
Here we propose an automatic approach to segmenting T1L with

software that is publicly available for implementation. The ability to
segment T1L automatically and quickly has the potential to facilitate
tracking of disease activity and lesional damage over time.
Additionally, using the same automatic approach to determine T2L and
T1L reduces variability in segmentation metrics by eliminating multiple
data processing pipelines.

2. Materials and methods

2.1. Patients and study design

Data were collected at the Brigham and Women's Hospital in Boston,
Massachusetts. The Institutional Review Board approved the study and
transfer of data to the University of Pennsylvania. Forty patients, all
with a clinical diagnosis of MS, were consecutively obtained from MRI
scans at the center. Subjects had an examination by an MS specialist
neurologist to assess the type of MS, the level of physical disability on
the Expanded Disability Status Scale (EDSS), and ambulatory function
on the timed 25-ft walk (T25FW). Patient demographics are provided in
Table 1. Additionally, a scatterplot of lesion count against volume is
displayed in Fig. 1, which shows a wide range of lesion counts and
volumes across subjects.

2.2. Image acquisition and preprocessing

High-resolution 3D T1-weighted (T1WI), T2-weighted (T2WI), and
fluid-attenuated inversion recovery (FLAIR) volumes of the brain were
collected on a Siemens 3 Tesla (3 T) Skyra instrument using a consistent

Table 1
Demographic information for subjects in this study are provided. Included were
40 subjects diagnosed with multiple sclerosis (MS) and scanned between 2015
and 2016 at the Brigham and Women's Hospital.

a Mean Std. Dev. Min, Max

Age (years) 50.4 9.9 30.4, 69.9
Disease duration (years) 14.5 4.6 3.8, 21.3
Expanded Disability Status Scale score 2.3 1.6 0, 7
Timed 25-ft walk (seconds) 5.1 2.6 3.0, 18.4
T1L manual volume 7.70 8.33 0.18, 35.03
T2L manual volume 13.57 12.78 0.58, 52.04

b %

Male 30
Female 70
Relapsing-Remitting MS 80
Secondary Progressive MS 20
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scan protocol for all subjects. Acquisition details are provided in Table 2
and have also been detailed previously (Meier et al., 2017).
All images were preprocessed prior to implementing the MIMoSA

model using the R (version 3.1.0, R Foundation for Statistical
Computing, Vienna, Austria) packages extrantsr (Muschelli, 2017) and
WhiteStripe (Shinohara and Muschelli, 2017), as well as Multi-Atlas
Skull-Stripping (MASS) (Doshi et al., 2013; NITRC, n.d.). After N4 in-
homogeneity correction (Tustison et al., 2010), volumes were co-re-
gistered across sequences for each subject using a rigid-body transfor-
mation with a Lanczos windowed sinc interpolator. To remove
extracerebral voxels, MASS was implemented (Doshi et al., 2013;
NITRC, n.d.). Manually delineated T2L masks were obtained in the
FLAIR space, and manual T1L masks were obtained in the T1WI space.
To avoid interpolation errors in these masks, analyses of T1L and T2L
were conducted in their respective native spaces and no transforma-
tions of the segmentation masks nor the primary imaging sequences
were applied. First, T1WI and T2WI images were registered to the
FLAIR for all T2L modeling; then, separately, T2WI and FLAIR images
were registered to the T1WI space for all T1L modeling. As conven-
tional MRI volumes are acquired in arbitrary units, statistical intensity
normalization using WhiteStripe (Shinohara and Muschelli, 2017) was
applied in order to facilitate modeling of intensities across subjects.

2.3. Image analysis

T1L and T2L were manually segmented by a reading panel of two
trained observers under the supervision of an experienced observer at

the Brigham and Women's Hospital. Each trained observer in-
dependently determined the presence or absence of T1L and T2L and
then reviewed these results together to form a consensus. In the event of
a disagreement, a senior experienced observer was consulted. A WML
was categorized as a T2L if it appeared as hyperintense on the FLAIR.
T1L, or black holes, were defined as appearing hypointense on T1WI
and at least partially hyperintense on the FLAIR volumes. After a con-
sensus of lesions was determined, one observer segmented all T1L and
T2L using an edge-finding tool in Jim (v. 7.0) (Internet Analysis Tools
Registry, n.d.). This process resulted in manually segmented gold
standard masks for T1L and T2L for each subject in the study. Fig. 2
shows examples of preprocessed images and manual T1L and T2L
segmentations. All gadolinium-enhancing lesions were excluded from
T1L manual segmentations.

2.4. Automatic segmentation of T1L and T2L using MIMoSA

2.4.1. Overview
To automatically segment both T1L and T2L, MIMoSA (Valcarcel

et al., 2018) was applied using the mimosa (Valcarcel, 2018) package in
R, which is available on Neuroconductor (Muschelli et al., 2018). MI-
MoSA was originally developed to automatically segment T2L. We at-
tempted to modify the MIMoSA paradigm to better tailor it to the T1L
segmentation task by introducing: 1) a two-stage model that first seg-
ments T2L and then segments T1L, and 2) a modification of the can-
didate mask procedure. However, these changes did not improve the
results over the original MIMoSA method proposed for T2L segmenta-
tion. Therefore, the original method was applied with no changes. In
this section, we broadly summarize the steps of the approach and ela-
borate on each step in the sections that follow.
MIMoSA relies on a brain tissue mask that excludes cerebrospinal

fluid and extracerebral tissue. Given this mask, MIMoSA first identifies
candidate lesion voxels by thresholding hyperintensities on the FLAIR.
This step reduces computation time and minimizes false positive de-
tection. Since feature extraction is known to be pivotal for a segmen-
tation algorithm's accuracy and generalizability (Sweeney et al., 2014),
MIMoSA relies on features that capture the mean structure of each
imaging volume as well as the covariance across volumes. The proce-
dure proceeds by creating these features, which are later used as pre-
dictors in a multivariable regression model. Once all relevant features
have been calculated, MIMoSA fits a local logistic regression using
training data with gold standard manual segmentations of either T1L or
T2L. Coefficients from the model fit are then used to produce maps that
contain the probability that each voxel location contains lesional tissue.
Thresholding can be applied to the probability maps to obtain binary
lesion segmentation maps for each patient. MIMoSA also includes a
thresholding algorithm that optimizes the similarity of predicted seg-
mentation masks in the training set with manual segmentations based
on the Sørensen-Dice coefficient (DSC). The MIMoSA model can then be
applied to subjects who were not included in the training set in order to
automatically segment lesions.
In this study, MIMoSA was applied to automatically segment T1L

and T2L by fitting separate models for each lesion type. One model was
fit to segment T2L using preprocessed images registered to the FLAIR
space, and a separate model was fit to segment T1L using preprocessed
images registered to the T1WI space. This separate fitting procedure is
necessary because, while all T1L are seen as T2L, not all T2L are seen as
T1L (Sweeney et al., 2014). Specific steps of the MIMoSA method are
described in more detail in the following sections and illustrated in
Fig. 3.

2.4.2. Candidate voxel selection
The first step in the MIMoSA procedure is to select candidate voxels

for lesion presence for a candidate mask. Since WML appear as hy-
perintensities on the FLAIR volume, the method excludes voxels whose
FLAIR intensities are likely not consistent with lesional tissue.

Fig. 1. Lesion volume (mL) and count for each subject are presented using
manual segmentation masks. The lesion number and volume across subjects are
both diverse for T1 lesions (T1L) and T2 lesions (T2L).

Table 2
Image acquisition protocol using a 3 Tesla (3 T) Siemens Skyra scanner at the
Brigham and Women's Hospital.

3 T Brain MRI Acquisition Protocol

Scanner Hardware Siemens Skyra
Scanner Software Syngo MR D13
Coil 20 channel
MR Acquisition Type 3D
Orientation Sagittal
Number of signal

averages
1

Sequence type FLAIR T2WI T1WI
Number of slices 176 192 176
Voxel size (mm) 1.0× 1.0× 1.0 0.98× 0.98×1.0 1.0× 1.0×1.0
TR (ms) 5000 2500 2300
TE (ms) 389 300 2.96
TI (ms) 1800 N/A 900
Flip angle (degrees) 120 120 9
Parallel acceleration 2 4 2
Scan time (minutes) 6:00 3:18 5:09

A.M. Valcarcel et al. NeuroImage: Clinical 20 (2018) 1211–1221

1213



Candidate voxels are defined as the 85th percentile and above on the
FLAIR volume. This step reduces computation time and restricts the
modeling space, which empirically has been found to reduce false po-
sitives and leads to an increase in performance measures (Valcarcel
et al., 2018; Sweeney et al., 2013).

2.4.3. Feature extraction
The next step in the algorithm is to obtain features from the can-

didate voxels that will be used in the model. MIMoSA utilizes three
distinct feature types: (1) normalized images, (2) smoothed images, and
(3) inter-modal coupling (IMCo) intercept and slope images (Vandekar
et al., 2016). MIMoSA allows for T1WI, T2WI, FLAIR, and Proton
Density (PD) MRI modalities as inputs, but it has been shown that only
T1WI and FLAIR sequences are required to achieve statistically
equivalent performance to the model with all four sequences (Valcarcel
et al., 2018). In this study, PD images were not collected; therefore,
only T1WI, T2WI, and FLAIR are used as inputs and subsequently in-
cluded in the model as features. Since sequences are generally acquired
in arbitrary units, MIMoSA utilizes intensity-normalized images to fa-
cilitate across-subject modeling of intensities (Valcarcel et al., 2018;
Sweeney et al., 2013). To account for average signal intensities around
each voxel, Gaussian smoothers with varying kernel sizes are applied to
the intensity-normalized images and also included in the model. The
smoothed-image features have been noted to mitigate segmentation
artifacts that are due to residual image inhomogeneity after N4 cor-
rection (Shinohara et al., 2011) and to incorporate local spatial context.
The model incorporates images smoothed with parameters σ=10mm
and σ=20mm. To further help distinguish the lesional tissue from
normal appearing white matter, the MIMoSA model includes features
extracted from IMCo regressions, which quantify the local covariance
between two image modalities throughout the brain at the subject level.

For a given center voxel, the IMCo features are extracted from a
weighted linear regression of one modality on the other in a local
neighborhood around the center voxel. The weights are derived from a
Gaussian kernel with fixed full width half maximum (FWHM) para-
meter (3mm). Thus, voxels in the neighborhood are weighted by their
distance to the center voxel. MIMoSA estimates the intercept and slope
from a weighted linear regression at all voxels in the candidate mask for
each pair of imaging modalities. That is, MIMoSA exhausts all possible
pairs of the scanning contrasts available for feature extraction. For each
pair, IMCo regression is performed twice so that both image types in the
pair are used, once as the outcome and once as the predictor. For ex-
ample, for T1WI and FLAIR images, MIMoSA performs IMCo regression
using T1WI intensities as the predictor with FLAIR intensities as the
outcome and then repeats the IMCo regression with T1WI as the out-
come and FLAIR as the predictor. With our three contrasts, six unique
IMCo regressions were performed.

2.4.4. Fit the MIMoSA model
After features are calculated, a logistic regression is fit to model the

probability that a voxel contains lesional tissue (Walter, 2005). Logistic
regression is straightforward to interpret and implement and is com-
monly used in the segmentation literature (Sweeney et al., 2014; Dadar
et al., 2017).
The MIMoSA model is a voxel-level logistic regression that is fit

using the candidate voxels. Let Li(v) be a random variable denoting
voxel-level lesion presence at voxel v; if voxel v contains lesional tissue
for subject i, then Li(v)= 1, otherwise Li(v)= 0. We model the prob-
ability that a voxel v contains lesion P{Li(v)= 1} with the following
logistic regression model:

Fig. 2. Axial slices from an inhomogeneity corrected, registered, and intensity normalized MRI of a single subject are displayed in the top row. In the bottom row,
manual lesion segmentation masks are overlaid on T1WI and FLAIR volumes.
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denotes the image smoothing operator with parameter δ∈ {10 mm,20
mm}. We further denote all combinations of intercept and slope IMCo
parameters respectively by X (v)i,I

TC and X (v)i,S
TC . We use ⨂ to re-

present the Hadamard product. The interaction terms between the

normalized volumes and the smoothed volumes, denoted by βj0∗, con-
tribute to the model by capturing differences between voxel intensities
and their local mean intensities. These aid in mitigating artifacts due to
residual field inhomogeneity and have generally been shown to im-
prove lesion detection performance (Sweeney et al., 2014; Sweeney
et al., 2013).
The normalized and smoothed volumes allow the MIMoSA model to

capture mean structure within modalities and the IMCo features help to
capture inter-modal patterns that contain information about lesion
presence. The combination of modeling mean structure within an image
type and the covariance across image types allows for sensitive and
specific delineation of WML. The model is trained using manually
segmented gold standard lesion masks. Two separate models are fit for
automatically segmenting T1L and T2L using their respective gold
standard masks. More specifically, the only difference between the
models is whether Li(v) denotes T1L or T2L. Each model output is a set
of coefficients that can be used to obtain lesion probability maps on
subjects not included in the training of the model.

2.4.5. Apply the MIMoSA model
To determine where lesions are present, a probability map is ob-

tained using the estimated regression coefficients for each voxel in the
candidate mask. To create a binary segmentation, a population-level
threshold on the probability map is applied. Any lesion smaller than 8
cubic millimeters is removed (Shinohara et al., 2011). Fig. 3 shows an
example of a probability map and binary segmentation for a subject not
included during training of the model.

2.4.6. Optimal thresholding algorithm
To make the method fully automated, an optimization strategy for

the thresholding is employed to yield binary lesion segmentations. After
the model is fit on the training data, probability maps for the subjects in
the training set are generated. A threshold is then applied to the
probability maps for each subject based on a user-defined grid of pos-
sible threshold values to create a set of binary segmentation masks; in
this study, the grid selected was 0% to 100% by 1% increments. Using
the set of predicted lesion masks for each threshold, DSC is calculated at
the subject level. After DSC is calculated for each subject in the training
set, the average across subjects for each threshold is collected. The
threshold with the highest average DSC score is applied to probability
maps estimated for subjects in the test set.

2.5. Statistical analyses

Training and testing of the MIMoSA method was conducted using
cross-validation. In addition to implementing MIMoSA, a competitive
T2L segmentation algorithm, OASIS was also applied (Valcarcel et al.,
2018). OASIS was specifically chosen for the present study because it
can be easily trained using publicly available software and there are no
publicly available data for benchmarking T1L automatic lesion seg-
mentation. To fit the models and measure performance, 100 iterations
of the following procedure were performed. First, 20 subjects were
randomly allocated to the training set and the remaining 20 subjects
constituted the test set. Thus, every subject was represented in each
iteration. MIMoSA and OASIS were then trained to detect T1L and T2L
separately using subjects in the training set. After fitting the models, the
estimated coefficients were applied to the test set to generate prob-
ability maps. To generate lesion masks, the threshold obtained from the
optimal thresholding algorithm described above was applied.
In each of the 100 iterations, subject-level DSC, partial AUC (pAUC,

up to 1% false positive rate), root mean square error (Root MSE), de-
tection error (DE) (Wack et al., 2012), and outline error (OE) (Wack
et al., 2012) were recorded (Sing et al., 2005). pAUC was estimated
instead of traditional AUC because it only considers regions of the ROC
space that correspond to clinically relevant values of specificity (Walter,
2005). All performance measures were calculated at the subject level

Fig. 3. The MIMoSA procedure is demonstrated and visualized in an example
axial slice. 1. MIMoSA first selected candidate voxels defined as being the 85th
quantile or above in intensity on the FLAIR images. 2. Features inside the
candidate mask were then extracted (full brain features derived from FLAIR
volumes are only shown for simplicity). 3. To obtain T1 lesion (T1L) masks and
T2 lesion (T2L) masks, separate models were fit. 4. Training the MIMoSA
models on a subset of subjects with manual segmentations yielded segmenta-
tion models which were then applied to test subjects not included in the
training set.
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and then averaged across subjects and cross-validation folds. Fig. 4
shows the full cross-validation pipeline. In addition to these summary
measures, MIMoSA performance was assessed by estimating the
Pearson correlation ( ) between manually segmented and MIMoSA-
predicted volumes.
To adjudicate MIMoSA's performance, Pearson correlation coeffi-

cients were calculated to assess the relationship between image-derived
features (T1L volume, T2L volume, and the T1L/T2L ratio (Kim et al.,
2016)) and clinical variables, including clinical status, disease duration
(time from first symptoms in years), EDSS score, and T25FW. Manual
segmentation-based measures of T1L, T2L, and the T1L/T2L ratio were
also computed, and associations with clinical variables were estimated
for comparison. To avoid overfitting, correlations were estimated in
each cross-validation fold using only subjects in the test set and then
averaged across folds. We denote MIMoSA measures by MIMoSA( ),
whereas manual evaluations are represented by Manual( ). For each
measure, p-values were similarly calculated in each fold and averaged
across folds. We additionally calculated each measure adjusted for sex
and age.
In order to assess the accuracy and variability of the optimal

threshold for each subject in the testing set we applied thresholds from
0% to 100% by 1% increments to obtain lesion masks. DSC was then
calculated comparing the MIMoSA mask at each threshold with the
manual segmentation.

3. Results

3.1. Segmentation Accuracy

Results are provided in Table 3, including average DSC, partial AUC
with up to 1% false positive rate, and the correlation coefficient for
MIMoSA and OASIS volumes with manual volumes ( ). Results in
Table 3 indicate competitive lesion segmentation performance of both
T1L and T2L. DSC and pAUC for T2L lesion segmentation were com-
petitive compared to state-of-the-art automatic methods. DSC and

pAUC for T1L were modest compared to those measures for T2L but
high compared with previous automated approaches in T1L studies.
The MIMoSA performance measures were all greater than the OASIS
performance measures, indicating superior automatic segmentation.
Specifically, for T1L the 95% confidence interval for DSC was 0.02 to
0.16 and pAUC was 0.03 to 0.13. Since 0 is not contained in these
intervals, we can conclude that MIMoSA statistically significantly seg-
mented T1L more accurately than OASIS.
Similarly, the DE, OE, and Root MSE were all lower for MIMoSA

segmentations than OASIS, indicating that MIMoSA has less error. The
DE for both methods was very small, indicating that the automatic
methods detected most of the lesions that were found manually. OE was
much higher than DE, indicating that the automatic methods tended to
disagree at the boundary of lesions. Root MSE, though very small for
both MIMoSA and OASIS, favored MIMoSA and suggested that MIMoSA
had smaller average error.
Change in lesion volume and counts are both important outcomes

commonly used in MS clinical trials (Bakshi et al., 2005). The corre-
lation between manual segmentation volume and MIMoSA volume was
high for both T1L and T2L. In Fig. 5, plots of MIMoSA predicted volume
are displayed against manual segmentation volume. The trend for both
T1L volume and T2L volume were markedly linear and close to the
identity line. Subjects with low total lesion volume tended to have ac-
curate MIMoSA volume estimation with small variance. As total lesion
volume increases, the standard deviations around the MIMoSA volume
estimates increase. Fig. 5 also provides plots of MIMoSA predicted
count versus manual segmentation count. The count estimated by MI-
MoSA for subjects with smaller lesion volumes (i.e. less than 25mL)
was similar to the manual segmentation count. For larger lesion loads,
MIMoSA underestimated the count. With a few exceptions, subjects
with low lesion counts tended to have small variance around the MI-
MoSA estimate, but variability of the estimates can be seen to increase
along with increasing lesion counts. Although MIMoSA underestimated
lesion count for subjects with large manual lesion counts, the MIMoSA
volume estimate remained accurate. In follow-up investigations, we

Fig. 4. Cross-validation scheme used to assess MIMoSA performance on T1 lesions (T1L) and T2 lesions (T2L) is pictured. Subjects were randomized to either the
training set or the testing set. The MIMoSA model was fit using subjects in the training set. To identify the optimal threshold, probability maps were generated for
subjects. These maps were thresholded along a grid selected from 0% to 100% by 1% and then the Sørensen-Dice coefficient (DSC) was calculated. The threshold that
resulted in the maximum DSC across subjects in the training set was applied as the threshold in the test set. This procedure was iterated 100 times. Summary statistics
are based only on the test set data. The same analysis was repeated using OASIS as the segmentation approach.
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found that the joint underestimation of lesion count and accurate es-
timation of volume by MIMoSA was attributable to generous segmen-
tation of spatially neighboring lesions that resulted in more confluent
lesions.
Subject-level DSC and pAUC are presented in Fig. 6. While DSC

tended to be larger for patients with larger manual lesion volume,
pAUC tended to be higher for patients with small to moderate manual
lesion volume.

3.2. Correlations with clinical status

In practice, lesion segmentation metrics are commonly used to
predict clinical status and evaluate therapeutic efficacy (Zivadinov and
Bakshi, 2004; Bakshi et al., 2005). In Table 4, clinical measures are
related to both manual and MIMoSA lesion segmentation metrics. EDSS
score and T25FW were correlated with T1L and T2L volume, as well as
the T1L/T2L ratio. The correlations displayed in this table show that

MIMoSA( ) tended to be equal to or larger than Manual( ). The as-
sociated p-values in Table 4 indicate that MIMoSA and the manual
segmentations performed similarly. Age and sex-adjusted results were
similar to unadjusted results, with the exception of EDSS. Results are
visualized in Fig. 7. The correlations, whether calculated with the
manual or MIMoSA volumes, were modest but consistent with the es-
tablished literature.
Fig. 7 also facilitates the comparison of correlations across the T1L

and T2L metrics, both marginally and adjusted for age and sex. T1L and
T2L tended to have similar correlations with clinical variables. How-
ever, the T1L/T2L ratio has similar or higher correlations with clinical
measures. Notably, the partial correlations of T1L and T2L with T25FW

are small in magnitude, whereas the T1L/T2L ratio is more strongly
associated with T25FW.

3.3. Optimal threshold

To assess the accuracy and variability of the optimal thresholding
algorithm, Table 5 presents summary measures across the cross-vali-
dation iterations. The mean values were slightly larger for T2L com-
pared to T1L, while the standard deviations and range were similar.
Fig. 8 shows average DSC across thresholds applied to subjects in the
testing set. For both T1L and T2L, the average optimal threshold that
was applied, denoted by the colored point, lay close to the peak of each
curve, which indicates that the optimal threshold algorithm indeed
chose appropriate thresholds to apply to test subjects. Additionally, we
note that the relatively flat areas of the curves surrounding the max-
imum DSC value suggest that slight differences in thresholds did not
have a major impact on segmentation accuracy.

3.4. Qualitative performance

An example of MIMoSA's qualitative performance is provided in
Fig. 9, where an axial slice from a subject chosen at random is provided.
MIMoSA masks are overlaid on T1WI and FLAIR volumes respectively
for T1L and T2L, and the probability maps used to generate MIMoSA
segmentations are shown. Qualitative results were consistent with
quantitative performance.

Table 3
Results from the cross-validation are presented. Sørensen-Dice coefficient (DSC), partial AUC (pAUC) with up to 1% false positive rate, root mean square error (Root
MSE), detection error (DE), and outline error (OE) were averaged within each testing set and then across folds. Standard deviation (SD) was calculated within cross-
validation folds and then averaged across 100 iterations. DE and OE are presented in mL. The correlation coefficient relating MIMoSA volumes to manual volumes
( ) was recorded in each fold and then averaged across folds.

Results

DSC (SD) pAUC (SD) Root MSE (SD) DE (SD) OE (SD)

MIMoSA T1L 0.53 (0.14) 0.64 (0.12) 0.06 (0.03) 1.02 (0.96) 9.22 (9.63) 0.88
OASIS T1L 0.43 (0.14) 0.55 (0.13) 0.08 (0.04) 1.76 (1.49) 9.85 (1.49) 0.85
MIMoSA T2L 0.66 (0.13) 0.70 (0.10) 0.07 (0.03) 1.41 (1.12) 14.9 (13.8) 0.95
OASIS T2L 0.55 (0.13) 0.62 (0.11) 0.09 (0.04) 2.55 (2.17) 15.6 (15.1) 0.88

Fig. 5. Lesion volume and count are presented to compare manual segmentation with MIMoSA segmentation metrics. MIMoSA values were obtained by averaging
volume or count for each test subject across cross-validation folds (100). The solid line depicts the y=x line. Vertical lines traversing the points are computed at the
subject-level and indicate one standard deviation above and below the mean.
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4. Discussion

MIMoSA is a fully automated segmentation method that leverages
changes in inter-modal covariance structure that occurs in white matter
pathology. It can be used to delineate T1L and T2L accurately, reliably,
and efficiently in people with MS. Improvements in accuracy seem to be
driven by the inclusion of IMCo regression features, which are features
that are not included in OASIS. These measures seem especially useful
for detecting T1L, a challenging task since T1L lesions often appear
similar to gray matter. MIMoSA does not require human input, which
promises to promote stability across a range of lesion delineation tasks.
By using the same procedure to automatically segment T1L and T2L,
MIMoSA also offers a consistent framework to obtain both metrics.
Furthermore, the optimal thresholding algorithm fully automates the
MIMoSA segmentation method by using the training subjects and their
manual segmentations to provide a threshold that empirically works
well in the test set. Results from our cross-validation experiments

demonstrate its accuracy and support its use in practice. The MIMoSA
model can easily be adapted and trained for cases with different sets of
imaging sequences (Valcarcel et al., 2018; Sweeney et al., 2013). The
full modeling procedure is fast and can be easily implemented using
software and documentation provided on Neuroconductor (Valcarcel,
2018; Home/Neuroconductor, n.d.).
MIMoSA provides accurate and reliable automatic segmentations of

both T1L and T2L. Though T2L DSC and pAUC measures were slightly
larger, indicating greater similarity with our manual segmentations,
T1L performance was competitive. Simultaneous delineation of T1L and
T2L may lead to a better understanding of overall patient status.
MIMoSA total lesion volumes were well-correlated with the manual
total lesion volumes, suggesting that MIMoSA may provide a promising
alternative to manual segmentation in the assessment of new therapies
in clinical trials (Valcarcel et al., 2018). This may be especially useful
for multi-center studies with a large number of patients or longitudinal
studies with sequences collected over time.

Fig. 6. To further demonstrate model accuracy, Sørensen-Dice coefficient (DSC) and partial AUC (pAUC) with up to 1% false positive rate were calculated. Results for
each subject were averaged across folds and are presented. Horizontal lines are the respective overall averages presented in Table 2. Vertical lines traversing the
points are computed at the subject-level and indicate one standard deviation above and below the mean.

Table 4
Clinical-MRI relationships with manual lesion volume, denoted as Manual( ), or MIMoSA lesion volume, denoted as MIMoSA( ), was averaged across cross-
validation folds. T1 lesion (T1L) volume, T2 lesion (T2L) volume, and the T1L/T2L ratio were correlated separately with Expanded Disability Status Scale (EDSS)
score, timed 25-ft walk (T25FW), and disease duration. For each assessment, p-values were calculated and are presented in parentheses beside each measure. The first
table presents unadjusted correlations; the second table presents correlations adjusted for sex and age (in years).

Clinical Associations

EDSS T25FW Disease duration

T1L Manual( ), (p-value) 0.32, (0.26) −0.07, (0.56) 0.12, (0.54)
MIMoSA( ), (p-value) 0.34, (0.21) −0.05, (0.58) 0.29, (0.30)

T2L Manual( ), (p-value) 0.33, (0.24) −0.07, (0.55) 0.15, (0.52)
MIMoSA( ), (p-value) 0.32, (0.23) −0.08, (0.56) 0.23, (0.37)

T1L/T2L ratio Manual( ), (p-value) 0.33, (0.22) 0.13, (0.56) 0.06, (0.54)
MIMoSA( ), (p-value) 0.33, (0.22) 0.18, (0.45) 0.40, (0.12)

Adjusted Clinical Associations

EDSS T25FW Disease duration

T1L Manual( ), (p-value) 0.36, (0.23) −0.03, (0.56) 0.08, (0.59)
MIMoSA( ), (p-value) 0.34, (0.25) 0.04, (0.58) 0.13, (0.53)

T2L Manual( ), (p-value) 0.38, (0.21) −0.02, (0.55) 0.10, (0.57)
MIMoSA( ), (p-value) 0.34, (0.23) −0.05, (0.58) 0.14, (0.50)

T1L/T2L ratio Manual( ), (p-value) 0.36, (0.20) 0.16, (0.53) 0.12, (0.51)
MIMoSA( ), (p-value) 0.30, (0.31) 0.18, (0.46) 0.26, (0.30)
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The MIMoSA method was previously implemented on data acquired
at a different site using a different scanner and acquisition protocol than
data collected in this study (Sweeney et al., 2013; Valcarcel, 2018). The
results here indicate that the method performed well using images ac-
quired across scanner manufacturers and protocols when the model was
appropriately trained. Previously published experiments indicate that
20 subjects is sufficient for model training (Valcarcel et al., 2018). Pre-
trained models are available for immediate application of the method,
but for the best results training on data acquired under the protocol of

interest is encouraged (Valcarcel, 2018; Home/Neuroconductor, n.d.).
The MIMoSA method should be implemented after appropriate image
preprocessing. MIMoSA users should be aware that processing failures
in registration, skull-stripping, and normalization may lead to seg-
mentation failures. Quality control should be implemented after each
step of preprocessing before applying MIMoSA.
Often lesion volumes are correlated with clinical covariates and

disease status in patient management and clinical trials that evaluate
therapy effectiveness. Therefore, automatic segmentation approaches
should be as sensitive as manual measures. Correlations were provided
to compare manual and MIMoSA segmentations with clinically relevant
variables. Our results indicate that the relationship between MIMoSA
volumetric assessments showed as close or better correlations compared
to correlations with manual segmentations. This was likely due to the
stability and consistency introduced by an automatic method that re-
quires no operator input. Segmentation of T1L can be challenging since
the intensity profile is often indistinguishable from gray matter (Bakshi

Fig. 7. Visualization of clinical-MRI relationships. Both manual and MIMoSA segmentations provided T1 lesion (T1L) volume, T2 lesion (T2L) volume, and the T1L/
T2L ratio. The value of the vertical axis for disease duration, Expanded Disability Status Scale (EDSS) score, and timed 25-ft walk (T25FW) represents the Pearson
correlations between each measure and the MIMoSA or manual segmentation volume. The first row presents unadjusted correlations and the second row presents
correlations adjusted for sex and age (in years).

Table 5
Summary measures for the optimal threshold obtained across iterations in the
cross-validation are shown for T1 lesions (T1L) and T2 lesions (T2L).

Lesion Type Mean Std. Dev. Min, Max

T1L 0.28 0.05 0.2, 0.36
T2L 0.32 0.04 0.25, 0.39
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et al., 2005), especially with respect to delineating boundaries; thus,
reliability in these areas may be driving stronger correlation with
covariates. For T2L evaluation, correlations seemed to be approxi-
mately equal between MIMoSA and manual segmentations. In general,
the measurements, whether obtained from manual segmentation or
MIMoSA, were similar, advocating for the use of the automated method
to reduce cost and time.
In this study, T1L and T2L (Barkhof, 1999) were correlated ap-

proximately equally with clinical metrics. While the sample size and
cross-validation in this study were powerful enough to evaluate the
accuracy of MIMoSA, it did not likely provide sufficient power to show

improvement in clinical associations. With a larger clinical cohort, it
should be possible to see the increased clinical value of T1L compared
to T2L. Additionally, the images were acquired using a gradient echo
acquisition which has been shown in the literature to identify T1L more
commonly than a spin echo acquisition but with weaker associations to
clinical status (Dupuy et al., 2015). The T1L/T2L ratio demonstrated
equal or stronger associations with clinical covariates compared to T1L
or T2L volumes alone, motivating the advantage of segmenting both
T1L and T2L.
In this dataset, two subjects presented with gadolinium enhancing

lesions. Unfortunately, without a post-contrast T1 included in the

Fig. 8. To assess the accuracy and variability of the optimal threshold, the average Sørensen-Dice coefficients (DSC) across subjects and iterations are shown across
thresholds. Results for T1 lesions (T1L) and T2 lesions (T2L) are presented separately. The solid line represents the average while the filled-in area corresponds to one
standard deviation from the mean. The round points on each figure are the average optimal threshold selected.

Fig. 9. Segmented T1 lesions (T1L) and T2 lesions (T2L) in a randomly selected subject and axial slice are pictured. The first row shows T1L segmentations for both
MIMoSA and manual assessment, the MIMoSA probability map, and the T1WI volume. In the second row, T2L segmentations for both MIMoSA and manual
assessment, the MIMoSA probability map, and the FLAIR volume are displayed. The Sørensen-Dice coefficients (DSC) between the MIMoSA and manual segmentation
for T1L and T2L were 0.54 and 0.69, respectively. To elucidate the differences between the T1L and T2L tissue type segmentations for both the MIMoSA and manual
segmentations, we provide DSC between the lesion types. The DSC between MIMoSA T1L and T2L was 0.64 and the DSC between the manually segmented T1L and
T2L was 0.52.
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MIMoSA model, we tend to segment these as T1L. In the future, we
propose to include post-contrast T1 imaging in the MIMoSA model to
assess the capability of MIMoSA to distinguish black holes from con-
trast-enhancing lesions. We will also evaluate whether MIMoSA im-
proves longitudinal assessment of dynamic lesion evolution and ther-
apeutic response over currently available methods, in particular, when
a number of sequences are collected at each visit. Finally, we demon-
strated MIMoSA's robustness to multiple scanners and protocols when
assessing T2L volume. Thus, MIMoSA may be useful for large, multi-
center clinical trials that employ a number of different scanners. In all
future work, comparison of MIMoSA T1L and T2L volumes to bench-
mark manual assessment is warranted.
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