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Synaptic function in the central nervous system (CNS) is highly dependent on a dynamic actin cytoskeleton in both the
pre- and the postsynaptic compartment. Remodelling of the actin cytoskeleton is controlled by tropomyosins, a family of
actin-associated proteins which define distinct actin filament populations. Here we show that TPM3 and TPM4 gene
products localize to the postsynaptic region in mouse hippocampal neurons. Furthermore our data confirm previous
findings of isoform segregation to the pre- and postsynaptic compartments at CNS synapses. These data provide
fundamental insights in the formation of functionally distinct actin filament populations at the pre- and post-synapse.

Introduction

The actin cytoskeleton is the predominant cytoskeletal structure
in the postsynaptic compartment of excitatory synapses in the
mammalian brain. The majority of postsynaptic compartments
are formed at the distal ends of dendritic spines,1 small
protrusions that form along the length of dendrites. Constant
remodelling of actin filaments is crucial to support the structural
and functional changes that occur at CNS synapses during
memory and learning. On the molecular level, changes of the
structure and dynamics of actin filaments is required for the
trafficking and recycling of neurotransmitter receptors such
as 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid
(AMPA) and N-Methyl-D-aspartic acid or N-Methyl-D-aspartate
(NMDA) receptors (AMPAR and NMDAR respectively). These
neurotransmitter receptors are integrated in the spine head and
linked to actin filaments by a number of scaffolding proteins.
Recent studies have shown the presence of distinct actin filament
populations in dendritic spines which are characterized by
different structural and dynamic properties.2,3 On the structural
level (for a review see ref. 3), a meshwork made of short, straight
actin filaments has been observed. These filaments have a
diameter of 4–6 nm and a length of 20 nm, are part of the
post-synaptic density (PSD) and extend into the spine head.
Throughout the spine head an additional network of actin
filaments is present of which only few are making contact with the
PSD. A third population of filaments with a diameter of 5–7 nm
has been localized in the neck of the spine. Analysis of actin
dynamics at the post-synapse has identified three types of actin

filament pools, namely a dynamic pool, an enlargement pool and
a stable pool.2 The dynamic pool is thought to allow for gluta-
mate sensitivity and the regulation of spine volume while the
enlargement pool is required for processes of long-term potentia-
tion involving long-term enlargement of the spines. The stable
pool on the other hand is thought to be more involved in giving
the spines stability.

Previous functional studies on the actin filament system at
CNS synapses have focused on the role of known actin filament
regulators that have been characterized in other cell types and
subcellular compartments. These include the actin filament
nucleator Arp2/3,4,5 the filament severing protein cofilin6,7 and
actin-associated motor proteins such as myosin IIb.8 In contrast,
little is known about tropomyosins, key regulators of actin
filament function at synapses.9 Tropomyosins have been sug-
gested to play a role at CNS synapses based on their identification
in synaptosome preparations and immunogold electon micro-
scopy of rat brain tissue showing an isoform specific segregation of
tropomyosins at synapses in the cerebellum.10-12 However the
question of whether different tropomyosin isoforms co-exist in
the same sub-cellular compartment at synapses has so far not
been addressed.

Tropomyosin is a coiled-coil dimer which forms a head-to-tail
polymer lying in the major groove of the actin-filament. Over 40
isoforms of tropomyosin are generated in mammals by alternative
splicing from four different genes (TPM1–4).9 This diversity is
reflected in remarkable spatial segregation of isoforms13 and their
capacity to regulate actin filament function in an isoform specific
manner.9,14

*Correspondence to: Thomas Fath; Email: t.fath@unsw.edu.au
Submitted: 11/17/11; Revised: 12/29/11; Accepted: 01/04/12
http://dx.doi.org/10.4161/bioa.1.6.19336

BioArchitecture 1:6, 284–289; November/December 2011; G 2011 Landes Bioscience

284 BioArchitecture Volume 1 Issue 6

http://dx.doi.org/10.4161/bioa.1.6.19336


© 2012 Landes Bioscience.

Do not distribute.

Tropomyosin expression is developmentally regulated in both
a tissue and cell type specific manner.9,15 In neuronal tissue
products from three of the four Tm genes have been found:
TmBr1, TmBr2 and TmBr3 (TPM1); Tm5NM1–11 (TPM3);
Tm4 (TPM4).16

Tropomyosins regulate actin filament function at least in part
by controlling the access and recruitment of other actin binding
proteins to the filaments thereby differentially slowing the ‘off-
rate’ of actin monomers from actin filament ends and increasing
actin filament stiffness.17 Previous studies have demonstrated that
tropomyosins can protect filaments from the severing action
of ADF/cofilin18,19 and influence myosin mechanochemistry.20

A number of actin filament-associated proteins that have been
shown to interact with actin filaments in a tropomyosin
dependent way are enriched at the postsynapse of excitatory
synapses in the CNS. These include the actin motor protein
myosin IIb which is important in regulating actin dynamics
during synapse function.21 We have previously shown that in
B35 neuroblastoma cells the TPM1 product Tm5NM1 is able
to recruit myosin IIb to actin filaments.22 The localization of
Tm5NM1 in mature neuronal networks has not yet been
addressed.

Our present study reports for the first time the presence of
different tropomyosin gene products from the TPM3 and TPM4
genes within the same synaptic compartment at CNS synapses.
Furthermore our data obtained using dissociated cultures of
mouse hippocampal neurons confirm previous findings of the
segregation of TPM1 and TPM4 products to the pre- and
postsynaptic compartment respectively. Taken together with data
on the functional diversity of tropomyosins we can conclude
that tropomyosins are instrumental in the formation of actin
filament populations with different functional properties at the
pre- and postsynapse. This will have important implications for
future studies that aim to understand actin filament dependent
mechanisms at CNS synapses.

Results

Previous studies using immunogold electron microscopy of
cerebellar tissue from rats revealed the localization of TPM1
products to the pre- and TPM4 products to the postsynaptic
compartment. For our study we used primary neuronal cultures
from mouse embryonal hippocampi, harvested at 16.5 d after
gestation as previously described.23 Immunocytochemical staining
using an antibody directed against exon 9c of the TPM1 gene
shows the localization of TmBr1/3 at the presynapse as
determined by co-localization with the synaptic marker protein
synapsin (Fig. 1). Using an antibody directed against exon 1b
of the TPM3 gene, detecting all non-muscle products of the
TPM3 gene we demonstrate the postsynaptic localization of
these products as indicated by the close proximity but lack of
overlap with the presynaptic marker synapsin (Fig. 2A and B).
Similarly we show the localization of Tm4 to the postsynaptic
compartment with only little immunostaining of the presynaptic
compartment which is detected using an antibody against the
presynaptic marker synaptophysin (Fig. 2C and D). To further

confirm the localization of Tm4 at the postsynapse we decided
to use a non-antibody dependent approach. We tested the
localization of exogenously expressed EYFP-Tm4 in mature
cultures of hippocampal neurons using lentivirus-mediated gene-
transfer techniques which allows the identification of individual
dendritic trees in a neuronal network. Analysis of infected cells
demonstrated the presence of EYFP-tagged Tm4 in dendritic
spines (Fig. 2E and F) supporting a postsynaptic localization of
TPM4 gene products.

Discussion

The cytoskeletal architecture at the post-synapse of synaptic
connections in the CNS plays a pivotal role in supporting and
mediating processes of memory and learning. To understand the
mechanisms that control the actin cytoskeleton at the CNS
synapse we studied the segregation of TPM1, 3 and 4 gene
products to the pre- and postsynaptic compartments of cultured
mouse hippocampal neurons. Our data show for the first time the
localization of products from the TPM3 gene at synapses of CNS
neurons with an enrichment at the post-synaptic site. The
localization of TPM1 and TPM4 products at the pre- and post-
synapse of CNS neurons is consistent with previous findings
by Had et al. which showed an enrichment of TmBr1/3 at the
presynaptic terminals of parallel fibers in the cerebellum and
an enrichment of Tm4 at the post-synapse of synapses in the
molecular layer.11

Figure 1. Localization of TPM1 gene products at the post-synapse of
hippocampal neurons using immmunocytochemistry. Hippocampal
neurons were co-stained using an antibody detecting exon 9c of TPM1
gene products (TmBr1,3)24 (A, B) together with anti-synapsin (A, C) to
identify the pre-synaptic compartment. Note the co-localization of
TmB1/3 with the presynaptic marker synapsin (arrows). Scale Bars =
25 mm (A), 5 mm (B, C).

SHORT COMMUNICATION

www.landesbioscience.com BioArchitecture 285



© 2012 Landes Bioscience.

Do not distribute.

The spatial segregation of tropomyosins at the CNS synapse is
intriguing due to the central role of tropomyosins in defining
different actin filament populations with distinct dynamic and
mechanical properties. Functional characterization of the TPM1
gene product TmBr3 and the TPM3 gene product Tm5NM1 in
B35 neuroblastoma cells allowed us to formulate a current model
of the formation of distinct actin filament populations. While
the association of TmBr3 with actin filaments promotes the
formation of shorter less stiff filaments, the association of
Tm5NM1 results in longer and stiffer filaments by blocking
ADF/cofilin activity and the recruitment of the actin motor
protein myosin IIb.22 The functional properties of Tm4 have not
yet been fully assessed in this cellular model. However in a
fluorescence recovery after photobleaching (FRAP) approach
YFP-Tm4 showed a different dynamic association with actin

filaments in human osteosarcoma cells (U2OS) as compared with
YFP-tagged TPM3 gene products with YFP-Tm4 displaying a
more rapid fluorescence recovery at actin structures.25 These data
are suggestive for specific functional roles for Tm5NM1 and Tm4
in the same subcellular compartments.

The confirmation of the segregation of tropomyosins to the the
pre- and post-synapse and the finding of different tropomyosin
isoforms at the post-synapse in hippocampal neurons is significant
since cultures of primary hippocampal neurons are an easily
accessible system for genetic manipulation and electrophysio-
logical analyses to study the actin cytoskeleton at the CNS
synapse. Elevated expression of Tm5NM1 leads to an increase
in the filamentous actin pool and the size of growth cones of
hippocampal and cortical neurons.26 Changes in the size of
dendritic spines are associated with long-term potentiation
(LTP),27,28 in which strengthening of individual synapses occurs
through presynaptic input on depolarized postsynaptic compart-
ments, an essential process for learning and memory. Increased
dendritic spine head size as seen during LTP is also associated
with an increased pool of filamentous actin in the spine heads.29

Therefore the localization of TPM3 gene products in the post-
synapse provides a regulatory component to control actin filament
pool size in this compartment which eventually can control
learning and memory.

The presence of different tropomyosin isoforms provides a
potential mechanism for the formation of the structurally and
functionally distinct actin filament populations that have been
observed at the postsynapse.2,3 LTP involves the increased
expression and insertion of AMPARs into the postsynaptic
plasma membrane30,31 and it is this AMPAR trafficking that is
believed to be controlled by a dynamic actin cytoskeleton.32,33

Gu et al. showed that increased ADF/cofilin activity enhanced
insertion of AMPARs at the postsynaptic plasma membrane after
tetraethylammonium (TEA) induced LTP.33

This emphasizes the importance of understanding how changes
in the actin network at the post-synapse are mediated during LTP.
NMDA receptor activation leads to the phosphorylation and
activation of Myosin Light Chain (MLC)21 and the phosphoryla-
tion and deactivation of ADF/cofilin.34 A product from the
TPM3 gene has been shown to direct these functional out-
comes.22 Both the phosphorylation of MLC and the phosphor-
ylation of ADF/cofilin are essential for stable LTP.21,32,35 Based on
the role of tropomyosins in controlling access of actin-associated
proteins to distinct actin filaments, we speculate that TPM3 and
TPM4 may be instrumental in mediating the effect of NMDAR
receptor induced changes downstream or in parallel to the
phosphorylation of MLC and ADF/cofilin.

While our study established the localization of TPM3 and
TPM4 gene products at the post-synapse, further studies will be
required to analyze the sub-compartment specific distribution of
products from these two genes. For this, recent advances in super-
resolution microscopy applications such as STED, STORM and
PALM microscopy will be very valuable and will help to
characterize the role of these product in synapse function.36-38

Our findings of the presence of products from both the TPM3
and TPM4 gene (illustrated in Fig. 3) adds significantly to our

Figure 2. Localization of TPM3 and TPM4 gene products at the post-
synapse of hippocampal neurons using immmunocytochemistry.
Hippocampal neurons were co-stained using an antibody detecting the
TPM3 gene products (A and B) or TPM4 gene products (C and D)
together with anti-synapsin (A and B) or anti-synaptophysin (C and D) to
identify the presynaptic compartment. Note the close localization but
lack of overlap of tropomyosins (arrow) and synapsin or synaptophysin
signal which demonstrates the postsynaptic enrichment of these
tropomyosins. (E and F) Infection of 20 d in vitro cultured hippocampal
neurons with lentiviral particles expressing EYFP-tagged Tm4. Note the
localization of Tm4 at the spine heads along the dendrites of the imaged
neuron. Scale Bars = 10 mm (A, C and E), 5 mm (B, D and F).
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current view of actin filament populations at the post-synapse.
The identification of two different tropomyosins at the post-
synapse provides a potential mechanism to create and regulate
different actin filament populations.

Material and Methods

Hippocampal-cortical co-cultures were prepared as described
previously.23 In brief, hippocampi and cortices were dissected
from embryonal day 16.5 C57Bl6 mice and triturated in plating
medium containing DMEM/10% FBS (Gibco) using firepolished
glass Pasteur pipettes. 1x103 hippocampal cells were plated on

poly D-lysine (0.1 mg/ml; Sigma)-coated 12-mm glass coverslips
(Menzel) mounted in the center of a 12-well culture plate well
and 1 x 105 cortical cells around the edge of the wells. After 2 h,
the plating medium was replaced by 1 ml of Neurobasal medium
containing B27 supplement and Glutamax (Gibco). For immuno-
fluorescence staining, cells were fixed after 21 d with 4%
paraformaldehyde in PBS. Cells were permeabilized with 0.1%
Triton in PBS solution and stained with the following anti-
obodies: monoclonal CG3, directed against all non-muscle TPM3
products,24 rabbit anti Tm4,24 anti-synapsin (AB1543, Millipore)
and anti-synaptophysin (Millipore, MAB5258). All fluorophore-
conjugated antibodies were obtained from Molecular Probes.

Figure 3. Schematic of an excitatory synapse in the CNS. The actin filament organization and relative localization of Tropomyosins at the CNS synapse are
depicted. Note the localization of TPM1 gene products at the presynapse while TPM3 and TPM4 gene products localize to the postsynapse.
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Catalogue numbers are given in brackets. The following
secondary antibodies were used: Alexa 647-conjugated donkey
anti-rabbit (A31573), Alexa 555-conjugated donkey anti-rabbit
(A31572), Alexa 488 donkey anti-mouse (A21202), Alexa 555
donkey anti-mouse (A31570). Images of neuronal cultures were
taken on an IX81 (Olympus) and an Axioskop 40 (Carl Zeiss)
microscope.

A EYFP-Tm4 expression construct was prepared by sub-
cloning of EYFP-Tm4 from pEYPF-Tm425 into a pRRLsin18.
PPT.CMV.Wpre39 resulting in the EYFP-Tm4 expressing vector
pCMV-EYFP-Tm4. For the preparation of Lenti-viral particles
293 cells were plated in T75 flasks at a density of 4 � 106 cells per
flask. Cells were co-transfection with pCMV-YFP-Tm4, pREV,
pRRE and pVSVg using CaCl2 transfection as previously
described.40 The transfected cells were incubated at 37˚C and
5% CO2 in DMEM, 10% FBS, the medium was changed for
fresh medium and incubated for 28–32 h. After the incubation,
supernatant was collected and the titer determined using a
FACSCalibur flow cytometer (BD Biosciences).

For infection, hippocampal neurons were plated as described
above. Lenti-viral particle stocks were diluted in neurobasal
medium to achieve a concentration of 3 � 105 particles per 10 ml.
Infected cultures were fixed at two days post infection by
applying equal volume of 8% PFA in PBS. After fixation,

coverslips were washed with PBS and mounted on glass slides
for imaging.
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