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Abstract
Purpose Volumetric quantitative analyses of bone micromorphometry changes following orthodontic tooth movements are
hardly standardizable. The present study aimed at validating and applying a novel microcomputed tomography (CT)-based
approach that enables the segmentation of teeth and definition of a standardized volume of interest (VOI) around the roots
to assess local bone micromorphometry.
Methods The jaws of 3 untreated and 14 orthodontically treated mice (protraction of the upper right molar for 11 days with
0.5N; untreated left upper molar) were scanned with a micro-CT. The first molars and the alveolar bone were segmented,
and a standardized VOI was defined around the teeth. The bone volume per total volume (BV/TV) was assessed within
the VOI, and BV/TV values were compared between contralateral sites in both untreated (method validation) and treated
animals (method application).
Results The intraclass correlation coefficient of 0.99 revealed high reliability of the method. In the untreated animals,
Bland–Altman analysis confirmed comparable BV/TV fractions (mean difference: –1.93, critical difference: 1.91,Wilcoxon:
p= 0.03). In the orthodontically treated animals, BV/TV values were significantly lower at the test compared to the control
site (test: 33.23%± 5.74%, control: 41.33%± 4.91%, Wilcoxon: p< 0.001).
Conclusion Within the limits of the study, the novel approach demonstrated the applicability to evaluate bone micromor-
phometry around teeth subjected to orthodontic treatment.
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Standardisierte Bewertung der peri-dentalen Knochenmikrostruktur umMolaren nach
kieferorthopädischer Zahnbewegung
Eine µCT-Split-mouth-Studie an Mäusen

Zusammenfassung
Hintergrund Volumetrische quantitative Analysen von Veränderungen der Knochenmikrostruktur nach kieferorthopädi-
schen Zahnbewegungen sind schwer standardisierbar. Ziel der vorliegenden Studie war die Validierung und Anwendung
eines neuartigen mikro-computertomographie(µ-CT)-basierten Ansatzes, der die Segmentierung von Zähnen und die De-
finition eines standardisierten „volume of interest“ (VOI) um die Wurzeln herum ermöglicht, um die lokale Knochenmi-
krostruktur zu beurteilen.
Methoden Die Kiefer von 3 unbehandelten und 14 kieferorthopädisch behandelten Mäusen (Protraktion des oberen
rechten Molaren für 11 Tage mit 0,5N; unbehandelter linker oberer Molar) wurden mit einem Mikro-CT gescannt. Die
ersten Molaren und der Alveolarknochen wurden segmentiert und ein standardisiertes VOI um die Zähne definiert. Das
Knochenvolumen pro Gesamtvolumen (BV/TV) wurde innerhalb des VOIs bestimmt. Die BV/TV-Werte wurden zwischen
den kontralateralen Seiten sowohl bei unbehandelten (Methodenvalidierung) als auch bei kieferorthopädisch behandelten
Tieren (Methodenanwendung) verglichen.
Ergebnisse Der Intraklassenkorrelationskoeffizient von 0,99 zeigte eine hohe Reliabilität der Methode. Bei den unbe-
handelten Tieren bestätigte die Bland-Altman-Analyse vergleichbare BV/TV-Werte (mittlere Differenz: –1,93, kritische
Differenz: 1,91, Wilcoxon-Test: p= 0,03). Bei den kieferorthopädisch behandelten Tieren waren die BV/TV-Werte in der
Test- im Vergleich zur Kontrollgruppe signifikant niedriger (Test: 33,23%± 5,74%, Kontrolle: 41,33%± 4,91%, Wilco-
xon-Test: p< 0,001).
Schlussfolgerung Im Rahmen der Studie zeigte der neuartige Ansatz die Anwendbarkeit zur Bewertung der Knochenmi-
krostruktur um Zahnwurzeln von Molaren, die einer kieferorthopädischen Behandlung unterzogen wurden.

Schlüsselwörter Wasserscheidentransformation · Parodontale Knochenanalyse · Mikro-Computertomographie ·
Zahnbewegung · Volumetrische Analyse

Introduction

Bone regeneration around teeth is a consequence of com-
plex bone remodeling which involves a balance of resorp-
tion of mineralized bone and formation of new bone ma-
trix [1–3]. Evaluation and quantification of bone micromor-
phometry around teeth can be of interest in the orthodontic
field, but also to assess bone regeneration at periodontally
compromised teeth [4]. For this purpose, histological ex-
aminations were frequently employed [5–9]. Major draw-
backs of histological approaches, however, are the limita-
tion to two dimensions and information loss during unde-
calcified sectioning. In addition, bone microstructure may
largely vary with respect to the cutting position. Eventually,
most histological analyses are limited to end-point analyses
[10–12].

In contrast, microcomputed tomography (micro-CT) is
a nondestructive alternative overcoming the above-men-
tioned limitations. It provides high-resolution volumetric
images and enables three-dimensional (3D) analyses of
bone microstructural properties [13–15]. For small ani-
mals, the dynamics of bone remodeling can be studied
even longitudinally by means of in vivo micro-CT. If only
end-point analyses are possible, corresponding contralateral
sites can be compared instead [16, 17].

To perform 3D quantitative and qualitative analyses of
hard tissue around teeth, segmentation of the alveolar bone
and definition of standardized volumes of interest (VOIs) is
mandatory. This step can be challenging when histograms
from bone, cement and dentin overlap [18]. Therefore, the
majority of previous micro-CT studies performed linear
measurements in two-dimensional (2D) slices around teeth
or defined a rectangular VOIs between tooth roots to ana-
lyze the alveolar bone microstructural properties [19, 20].
To the best knowledge of the authors, no methods have
been reported for standardized automated analyses of the
alveolar bone around teeth/periodontal ligament space.

The marker-based Watershed algorithm (WS) has been
described in the literature as a tool to segment tissues with
overlapping histograms in volumetric radiographic images
[21, 22]. After placement of different markers at each
anatomical structure, they will be enlarged until reaching
the closest edge. Eventually, a labeled image is created
that can be used for standardized definitions of VOIs and
microstructural analyses.

Therefore, the present study aimed at presenting and val-
idating a novel WS-based method for automated and stan-
dardized assessment of bone micromorphometry around
tooth roots following orthodontic tooth movement in split-
mouth preclinical animal studies.
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Fig. 1 Volumetric rendering of a microcomputed tomography (CT) scan showing the orthodontic appliance from sagittal (a) and occlusal (b)
view. The activated nickel–titanium coil spring (force: 0.5N) is red; the composite is yellow. c Clinical photograph showing the installation of the
orthodontic appliance between the left incisor and upper left first molar
Abb. 1 Die volumetrische Darstellung eines Mikrocomputertomographie(µ-CT)-Scans zeigt die kieferorthopädische Apparatur aus sagittaler (a)
und okklusaler (b) Ansicht. Die aktivierte Nickel-Titan-Feder (Kraft: 0,5N) ist rot eingefärbt, das Komposit gelb. cDas klinische Foto veranschau-
licht die Insertion der kieferorthopädischen Apparatur zwischen dem linken Schneidezahn und dem oberen linken ersten Molaren

Materials andmethods

Animals

For method validation (Method part), 3 female mice
(BALB/c strain, age 5.2–5.6 months) that did not retrieve
any orthodontic treatment were included. For method ap-
plication (Application part), assessment of the bone volume
fraction (BV/TV) was carried out in 14 mice (11 animals:
Enpp1asj–2J (BALB/cJ-Enpp1asj–2J/GrsrJ) deficient, 3 ani-
mals: littermate wild type; 9 females, 5 males). In these
animals, a stretched 0.012-inch nickel–titanium closed coil
spring (force: 0.5N) was attached between the left upper
first molar and the incisors for 11 days (Fig. 1). According
to the previously published protocols [20, 23], the ani-
mals had an age of 60 days when orthodontic treatment
was initiated. A 2D analysis of micro-CT scans (distance
measurement between protracted molar and second mo-
lar, vertical bone loss, periodontal ligament space width),
immunohistochemistry and histological findings have been
reported previously for the same animals (and additional
animals not included in the present study due to lacking
micro-CT scans) [20]. All experiments were conducted
in accordance with the appropriate animal care commit-
tees and law (Central institution for animal research and
scientific research protection tasks, University hospital of
Düsseldorf, Germany. National Institute of Arthritis and
Musculoskeletal and Ski Diseases [NIAMS] Animal Care
and Use Committee, reference number: A016-12-09).

Microcomputed tomographic analysis

Method part After sacrificing the animals, the skulls were
harvested and the jaws were scanned with a micro-CT (Viva
CT 80; Scanco Medical AG, Brüttisellen, Switzerland) op-
erated at 70kVp, 114μA, 8W, 31.9mm FOV, 1500 projec-
tions, and an integration time of 500ms. The data sets were
reconstructed into three-dimensional (3D) volumes with an
isotropic nominal resolution of 10.4μm voxel size.

Application part The samples were scanned with a micro-
CT 50 (Micro-CT 50; Scanco Medical AG, Brüttisellen,
Switzerland) operated at 70kVp, 76µA, 300–900ms inte-
gration time and 9–10µm voxel size.

Image processing

Image processing was performed using Amira software
(v6.5, FEI Visualization Science Group, Burlington, MA,
USA) by a trained investigator (V. T.-S.) and validated
by another author (C. B.). All steps for the Method part,
which are described below, were performed in triplicate for
validation purposes.

Bone and tooth segmentation

Method part All first molars and the surrounding bone
were segmented using a marker-based Watershed algorithm
(WS). In detail, a median filter (n= 3 iterations) was applied,
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Fig. 2 The three steps of the marker-based Watershed segmentation procedure are shown. Manually placed seed points label each tissue that is
going to be segmented. The algorithm enlarges each label until it touches the edges of the respective material. a Placement of the seed points
(materials: teeth, air, and bone). b Application of an edge filter (i.e., creation of the gradient image), seed points still have their initial size.
c Growing of the seed points to the boundaries of the gradient image. The seed points now label the respective materials. Color convention: Bone
(beige), tooth (red), air (black)
Abb. 2 Die 3 Schritte des markerbasierten Wasserscheidentransformationssegmentierungsverfahrens. Manuell platzierte Marker definieren jedes
zu segmentierende Gewebe. Der Algorithmus vergrößert jede Markierung, bis sie die Kanten des jeweiligen Materials berührt. a Platzierung
der Marker (Materialien: Zähne, Luft und Knochen). b Anwendung eines Kantenfilters (zur Erstellung des Gradientenbildes), die Marker haben
noch ihre Anfangsgröße. c Wachsen der Marker an die Grenzen des Gradientenbildes. Die Marker kennzeichnen nun die jeweiligen Materialien.
Farbkonvention: Knochen (beige), Zahn (rot), Luft (schwarz)

and a gradient image was computed using the Sobel oper-
ator for edge detection. Then, the following classification
labels were defined per jaw and quadrant: first molar, bone,
and air. For each label, seed points were located manually
by marking voxels belonging to the respective tissue. The
seed points were subject to automated growing towards the
edges of the gradient image (Fig. 2).

Application part The described WS method was used to
segment the first upper molars, the adjacent bone, and the
background (air).

Alignment of bone and molars to the axes of the coordinate
system

Method part Each segmented molar was aligned such that
the normal vector of the plane containing the cementoe-
namel junction (CEJ) coincided with the z-axis from the
Euclidean coordinate system. For this purpose, three co-
ordinate vectors from the CEJ plane were selected manu-
ally and aligned to the xy-plane by means of a principal
component analysis which was performed in Matlab (Mat-

lab R2015a 64-bit, The Mathworks Inc., MA, USA). After
aligning the segmented molar, the calculated translation and
rotation coordinates were transferred to the segmented bone
tissue.

Application part In the application part, the alignment was
applied to the upper molars and the alveolar bone only.

Separating the molar roots

Method part After alignment of the CEJ of each upper and
lower first molar to the xy-plane of the coordinate system,
roots were separated from the teeth by cropping them at
30 voxels apical to the CEJ (Fig. 3a).

Applaction part After alignment of the CEJ from each up-
per first molar to the xy-plane of the coordinate system,
roots were separated from the teeth by cropping them at
30 voxels apical to the CEJ.
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Fig. 3 Definition of a standardized volume of interest (VOI) around the tooth roots for calculation of the bone fraction (BV/TV) values. aDefinition
of the height of the VOI (orange). b Definition of the width (color: blue, distance of 100μm). c Visualization of the entire volume of interest (VOI)
showing also the fraction of periodontal bone. Color convention: Periodontal bone (beige), nondecalcified space of VOI (blue)
Abb. 3 Definition eines standardisierten „volume of interest“ (VOI) um die Zahnwurzeln zur Berechnung der Knochenfraktion (BV/TV). a Ver-
anschaulichung der VOI-Höhe (orange). b Veranschaulichung der Breite (Farbe: blau, Abstand von 100μm). c Visualisierung des gesamten VOI
einschließlich des parodontalen Knochenanteils. Farbkonvention: parodontaler Knochen (beige), nichtentkalkter Bereich des VOI (blau)

Fig. 4 Bland–Altman plots showing the BV/TV values from repeated measurements in the upper and lower jaw as well as the right and left side
in the untreated animals (Method part). The difference of repeated measurements in the upper jaw were low and amounted to –1.72%, agreement
limits: 0.68% and –4.11% (upper jaw) and –2.15%, agreement limits –0.86% and –3.43% (lower jaw)
Abb. 4 Der Bland-Altman-Plot zeigt die BV/TV-Werte aus wiederholten Messungen im Ober- und Unterkiefer sowie der rechten und linken
Seite bei den unbehandelten Tieren (Methodenteil). Die Differenz der Wiederholungsmessungen im Oberkiefer war mit –1,72% gering, Über-
einstimmungsgrenzen: 0,68% und –4,11% (Oberkiefer), im Vergleich zum Unterkiefer –2,15%, Übereinstimmungsgrenzen –0,86% und –3,43%
(Unterkiefer)
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Fig. 5 Boxplot showing the differences in BV/TV values between the
control (left) and the orthodontically treated test side (right). BV/TV
values were significantly lower after 11 days of molar protraction
(BV/TV: p= 0.001, test: 33.23± 5.74%, control 41.33± 4.91%)
Abb. 5 Der Boxplot stellt die BV/TV-Wert-Unterschiede der Kontrol-
le (links) und der kieferorthopädisch behandelten Testgruppe (rechts)
dar. Die BV/TV-Werte waren nach 11 Tagen Molarenprotraktion sig-
nifikant niedriger (BV/TV: p= 0,001, Test: 33,23± 5,74%, Kontrolle
41,33± 4,91%)

Bone volumes

Method part and application part After separation of the
molar roots, standardized VOIs were created as follows:
All “holes” (corresponding to the root canals) were filled
virtually, and a dilation filter was applied to increase the
size of the roots by 100μm. The originally sized roots were
then subtracted from the enlarged ones to retrieve the stan-
dardized VOI (Fig. 3b). To assess the bone volume per tis-
sue volume (BV/TV) within VOI, the amount of calcified
within VOI was quantified (Fig. 3c).

Statistical analysis

The statistical analysis was performed using the software
program R [24].

Method part Reliability of the segmentation procedures
was analyzed by computing the respective intraclass cor-
relation coefficients (ICC). For descriptive purposes, the
means and standard deviations were computed. To assess
agreement among repeated measurements, Bland–Altman
analyses were employed [25]. Contralateral BV/TV val-
ues were compared using the Wilcoxon signed rank test.
Results were considered significant at p< 0.05.

Application part For descriptive purposes, the means and
standard deviations as well as boxplots were created. The
Wilcoxon signed rank test was used to assess differences in

BV/TV values between the test and control sites. Results
were considered significant at p< 0.05.

Results

Method part

The presented approach allowed to segment teeth and bone
tissue, and to define standardized volumes of interest (VOI)
around teeth for micromorphometrical analyses of alveolar
bone.

Reliability of the method

Repetition of all procedures (image segmentation, defini-
tion of the VOI, calculation of BV/TV values) in triplicate
confirmed the high reliability of the method. The respective
intraclass correlation coefficient (ICC) was 0.99.

Comparability of left and right periodontal bone volumes

The overall BV/TV values amounted to 62.19%± 1.80%.
In the upper jaw, slightly lower values were identified
(61.41%± 1.73%) compared to the lower jaw
(63.05%± 1.44%).

Bland–Altman analyses confirmed high comparability
of BV/TV around the left and right upper (mean differ-
ence 1.72%), and lower molars (mean difference: 2.15%)
(Fig. 4). This finding is in line with the Wilcoxon signed
rank test which did not reveal any significant difference in
BV/TV values between the contralateral sites (upper jaw:
p= 0.25; lower jaw: p= 0.25).

Application part

The overall BV/TV values at the protracted upper right
molars amounted to 33.23%± 5.74%, whereas significantly
higher values were identified at the untreated left side, i.e.,
41.33%± 4.91% (p= 0.001; Fig. 5). Qualitative visual ex-
amination also revealed a more pronounced loss of calcified
tissue around the mesial root, whereas minor differences
were observed around the remaining two roots (Fig. 6).

Discussion

Microstructural analyses of bone in conventional histology
are limited to two dimensions and crucially depend on the
selected cutting position. Whereas histology provides valu-
able information on the cell level, micro-CT has been re-
ported to be an accurate and complementary technique to
assess bone remodeling in all three dimensions [11, 13].
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Fig. 6 Visualization of an unaf-
fected (a) and orthodontically
protracted (b) molar with its
surrounding periodontal bone
tissue. Lower amounts of calci-
fied tissue can be seen around
the mesial root of the protracted
molar

Abb. 6 Darstellung eines un-
bewegten (a) und eines kiefer-
orthopädisch protrahierten (b)
Molaren mit dem umgebenden
parodontalen Knochengewebe.
Um die mesiale Wurzel des pro-
trahierten Molaren sind gerin-
gere Mengen an kalzifiziertem
Gewebe zu erkennen

In case of overlapping histograms from bone and teeth,
bone segmentation can be challenging and may require ad-
vanced methodologies. To allow quantitative comparisons,
standardized definition of a volume of interest (VOI) is
required. In previous studies, linear 2D measurements and
cubic VOIs have been frequently applied. However, no auto-
mated and standardized approaches have been reported for
reliable segmentation and definition of standardized VOIs
around tooth roots. Therefore, the present study aimed at
presenting and validating a method for automated and stan-
dardized assessment of bone micromorphometry around
tooth roots, and to apply the novel method to micro-CT
scans from a preclinical animal study performing orthodon-
tic tooth protraction in mice. The respective 2D measure-
ments have been published previously [20].

The intraclass correlation coefficient amounted to 0.99
and confirmed the high reliability of the novel approach.

When comparing BV/TV values between contralateral
sites in the untreated animals (Method part), Bland–Altman
analyses revealed negligible differences of 1.72% in the up-
per, and of 2.15% in the lower jaw. Nevertheless, it has
to be noted that BV/TV values were slightly more het-
erogeneous in the lower jaw. The differences between an-
imals were greater than differences between contralateral
sites and amounted to 3.17%± 1.23% in the upper jaw and
2.00%± 0.71% in the lower jaw.

Application of the novel method (Application part) re-
vealed significantly lower BV/TV values at protracted mo-
lars compared to the contralateral control sites, probably
resulting from bone resorption in the pressure zones, and
less mineralized newly formed bone at the tension zones.

Undecalcified regions were mostly found in proximity
to the tooth root and decreased towards the borders of the
100µm VOI, suggesting that bone resorption was highest
in close proximity to the roots but still present in the se-
lected region. In addition, bone resorption was highest at

the mesial roots which is in line with a recent 3D analysis
showing that intrusion and mesial–palatal tipping was the
most common movement of the protracted teeth [26].

Nonetheless, definition of a reliable VOI is challenging.
It has to be large enough to be representative, whereas on
the other hand, it must not exceed the jawbone. Further-
more, it should be limited to the areas in which bone re-
modeling occurs. In the present study, a diameter of 100μm
was found to be optimal, as this was the maximum possible
size giving the boundaries of the jawbone. The Application
part confirmed that bone remodeling occurred in the VOIs,
which demonstrated that the analyzed regions were not too
small.

When comparing the present findings with the previ-
ously published data, it has to be noted that no significant
differences in vertical bone loss could be found in the pre-
viously published 2D measurements [20]. In contrast, the
present analysis revealed a significant decrease of BV/TV
at the test site. In addition, it revealed that bone loss was
most pronounced at the mesial root and decreased towards
periphery. Hence, we believe that this novel approach is
a valuable tool to better understand volumetric changes in
bone micromorphology following orthodontic tooth move-
ments.

Limitations of the present investigation include the lack
of longitudinal data; thus, different animals were used for
method validation, and the comparison of the test and
control sites after 11 days of molar protraction. Further-
more, the study design did not allow differentiation of
whether the minor BV/TV differences between animals
from the Method part resulted from differences in genetic
background, age, or were related to the orthodontic appli-
ance which might have impaired food intake. In addition,
analyses were limited to assessment of BV/TV values.
Additional parameters such as trabecular thickness, bone
mineral density, bone surface area or trabecular spacing
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may be calculated in future studies utilizing the presented
approach to understand the impact of genetic disorders,
metabolic diseases or drug intake on bone remodeling
during orthodontic treatments.

Conclusion

Within its limitations, the present study provides a novel
approach to assess bone micromorphometry in micro-
CT scans within a standardized volume of interest around
murine teeth. It confirmed high agreement of BV/TV values
between contralateral sites in untreated animals. Applica-
tion of the method to animals subjected to orthodontic
tooth protraction confirmed significant reduction of min-
eral content at the test site which was most pronounced at
the mesial root.
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