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Abstract
Design of next-generation therapeutics comes with new challenges and emulates technology and methods to meet them. 
Characterizing the binding of either natural ligands or therapeutic proteins to cell-surface receptors, for which relevant recom-
binant versions may not exist, represents one of these challenges. Here we report the characterization of the interaction of five 
different antibody therapeutics (Trastuzumab, Rituximab, Panitumumab, Pertuzumab, and Cetuximab) with their cognate 
target receptors using LigandTracer. The method offers the advantage of being performed on live cells, alleviating the need 
for a recombinant source of the receptor. Furthermore, time-resolved measurements, in addition to allowing the determination 
of the affinity of the studied drug to its target, give access to the binding kinetics thereby providing a full characterization 
of the system. In this study, we also compared time-resolved LigandTracer data with end-point KD determination from flow 
cytometry experiments and hypothesize that discrepancies between these two approaches, when they exist, generally come 
from flow cytometry titration curves being acquired prior to full equilibration of the system. Our data, however, show that 
knowledge of the kinetics of the interaction allows to reconcile the data obtained by flow cytometry and LigandTracer and 
demonstrate the complementarity of these two methods.
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Introduction

Cell surface receptors, including—but not limited to—G-
protein-coupled receptors (GPCRs), constitute the most suc-
cessful class of target proteins for drug discovery research 
(Cacace et al. 2003). Quantitative measurement of bind-
ing affinity is key to searching for and characterizing new 

receptor–ligand pairs for drug development. The equilib-
rium dissociation constant KD describes the interaction of a 
drug or ligand L with a receptor R (with KD = [L].[R]/[LR]) 
and is a critical metric to characterize the binding affinity 
of ligand–receptor interactions. KD values are generally 
either obtained directly from equilibrium titration curves or 
deduced from either the ratio of the binding kinetics koff (dis-
sociation rate constant) and kon (association rate constant) 
or from the free energy of binding ∆Gbinding (Hulme and 
Trevethick 2010; Pan et al. 2013; Pollard 2010).

In recent years, in addition to KD determination, special 
emphasis has been given to methodologies that also give 
access to the binding kinetics, thereby allowing a descrip-
tion of the entire dynamic aspect of ligand–receptor inter-
actions for the prospective design of drugs with improved 
safety and efficacy profiles, and with better defined binding 
mechanisms (Andersson et al. 2006; Copeland et al. 2006; 
Dahl and Akerud 2013; Georgi et al. 2018; Schreiber 2002; 
Swinney 2008, 2009).

Paralleling the rise of biophysical methods in drug dis-
covery, biophysical instrumentation has also in recent years 
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improved in speed, sensitivity, robustness, and dynamic 
range, delivering rigorous, reliable, high-definition, and 
information-rich data. This field is constantly evolving to 
improve the drug discovery process and to address the new 
challenges of the next-generation therapeutics (Cariuk et al. 
2013; Renaud et al. 2016; Santiveri et al. 2017).

For example, over the past two decades, the need for 
higher specificity drugs with improved in vivo efficacy and 
better alignment with physiology has led to a quest for tight 
binding pairs with sub-nanomolar to picomolar KD’s (Graff 
and Wittrup 2003; Rathanaswami et al. 2005; Schreiber 
2002; Selzer et al. 2000). As a result, the low concentrations 
used for these types of assays require sensitive instrumenta-
tion. Furthermore, low concentrations and slow dissociation 
rates result in times to equilibrium that can span days, often 
exceeding the period of stability of the studied systems and 
making end-point KD measurements difficult if not impos-
sible (Andersson et al. 2010; Drake et al. 2018; Vanhove 
and Vanhove 2018). KD measurements are also complicated 
in techniques, such as flow cytometry when R0 » KD (with 
R0 as the total receptor concentration), leading to R0-driven 
interactions, where the value of KD is easily misinterpreted 
(Drake and Klakamp 2007; Tamaskovic et al. 2012; Vaish 
et al. 2020). Pitfalls for proper KD measurements of tight 
binders extend to time-resolved techniques even though they 
do not require equilibrium to be reached: dissociation rates 
slower than 10–5 s−1 generally involve several hour-long dis-
sociations requiring stable baselines and rigorous assay set-
tings, often pushing instrumentations to their limits (Barta 
et al. 2014; Jonsson et al. 2008; Rich and Myszka 2009). 
The growing trend for tight KD, therefore, needs to be better 
supported with methods and technologies that accurately 
measure these tight interactions (Drake et al. 2018).

Another biophysical challenge faced by the next-genera-
tion therapeutics relates to the fact that receptor targets may 
lose their 3D structure and/or function when isolated. For 
this reason, the measured KD values of a therapeutic-target 
pair can vary widely depending on whether the receptor tar-
get is presented on live cells or expressed as a recombinant 
protein (Cariuk et al. 2013; Drake et al. 2018; Nilvebrant 
et al. 2012; Rathanaswami et al. 2008). The discrepancy 
of KD values can also extend to the same ligand–receptor 
pair among different cell lines, highlighting cell-dependent 
receptor landscapes and receptor subunit pairing (Barta et al. 
2014; Bjorkelund et al. 2011). As a result, technologies and 
methods applicable to live cells strengthen the physiologi-
cal relevance of biophysical measurements and are, for that 
reason, gaining in popularity (Bondza et al. 2017; Drake 
et al. 2018; Rathanaswami et al. 2008; Renaud et al. 2016; 
Wood et al. 2004).

LigandTracer is a relatively new technology that allows 
real-time monitoring of ligand–receptor interaction on live 
cells (Bjorke and Andersson 2006; Bondza et al. 2017). Sim-
ilar to other time-resolved techniques, where one molecu-
lar partner is immobilized while the other is added to the 
medium, the resulting time-traces represent the number of 
ligand–receptor (LR) complexes forming or dissociating 
over time and thus contain the kinetic information character-
izing the studied molecular interaction (Canziani et al. 2004; 
Dubois et al. 2013). Binding kinetics are extracted from 
global fitting of the curves, and the value of KD can be calcu-
lated from the ratio of the binding kinetics without the need 
to reach equilibrium. The use of live cells exposing native 
receptors circumvents the need for recombinant targets. Fur-
thermore, LR complex dissociation can be monitored for 
several hours making it suitable for the characterization of 
slowly dissociating drugs. Here we report LigandTracer data 
for five tight therapeutic antibody–receptor pairs to illustrate 
the potential of the technology.

Furthermore, we compare LigandTracer kinetic data 
with traditional endpoint-based flow cytometry data. Flow 
cytometry-based KD measurements also use live cells and 
involve the titration of a fixed number of cells with various 
concentrations of a fluorescent ligand for a specific time. 
The resulting curve, representing the amount of LR complex 
formed as a function of the ligand concentration, is typically 
analyzed based on a 1:1 equilibrium model to extract the KD 
value (Drake and Klakamp 2007; Tamaskovic et al. 2012; 
Vaish et al. 2020). This end-point technique relies on the 
hypothesis that the incubation time used in the experiment 
is sufficiently long to reach equilibrium. Our kinetic data 
suggest that this prerequisite can be difficult to achieve in 
practice. Instead, we propose a general methodology com-
bining LigandTracer and flow cytometry measurements, the 
two methods complementing each other to provide the best 
and most accurate description of the studied system.

Materials and methods

Cell culture

Cell lines (all from ATCC) were cultured in a humidified 
incubator at 37 °C with 5% CO2. SKBR3 cells express-
ing HER2 were grown in ATCC-formulated McCoy’s 5a 
Medium Modified (ATCC, Manassas, VA), supplemented 
with 10% FBS (Millipore-Sigma, Burlington, MA). HER2-
expressing ovarian carcinoma SKOV3 cell lines were cul-
tured in Ham’s F10 medium (Biochrom AG, Berlin, DE) 
supplemented with 10% FBS (Millipore-Sigma, Burlington, 
MA), 1% l-glutamine, and 1% penicillin–streptomycin (Bio-
chrom AG, Berlin, DE). Daudi cells were cultured in RPMI 
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1640 cell culture medium (Biochrom AG, Berlin, DE) with 
the same supplements as above.

Antibodies and labeling

Trastuzumab (Apoteket, Sweden), Pertuzumab (Omnitarg™; 
Genentech, South San Francisco, CA), Rituximab (Apoteket, 
Sweden), Cetuximab (Apoteket, Sweden) were fluorescently 
labeled for LigandTracer and/or flow cytometry experi-
ments. Trastuzumab was labeled with Mix-n-Stain™ CF™ 
488A and Mix-n-Stain™ CF™ 647 Antibody Labeling Kits 
(Millipore-Sigma, Burlington, MA) for LigandTracer and 
flow cytometry experiments, respectively, according to the 
manufacturer’s recommendations. Rituximab, Pertuzumab, 
and Cetuximab were labeled with fluorescein isothiocy-
anate (FITC) (Millipore-Sigma, Burlington, MA) for flow 
cytometry experiments. FITC was dissolved at 1 µg/µL in 
DMSO. Antibodies in PBS were diluted in twice the volume 
of borate buffer pH 9, and 100 ng of FITC was added per 
µg of antibody. The samples were incubated at 37 °C for 
90 min. Labeled proteins were purified by buffer exchange 
on NAP-5 columns (GE Healthcare) and stored in aliquots 
at  − 20 °C prior to use (Bondza et al. 2017).

LigandTracer

SKBR3 cells were lifted with Accutase® (Millipore-Sigma, 
Burlington, MA), counted, and re-suspended at a density of 
3.3 × 105 cells/mL in full medium. Three milliliters of the 
cell suspension were seeded to tilted cell culture treated Petri 
dishes (Nunc #150350, ThermoFisher, Waltham, MA) and 
allowed to adhere to the plastic for 4 h at 37 °C after which 
the medium was replaced by 12 mL of fresh medium and the 
plates were incubated overnight horizontally. LigandTracer® 
experiments were conducted 2–3 days after seeding.

Binding of Trastuzumab-A488 to SKBR3 cells was meas-
ured with LigandTracer Green (Ridgeview Instruments AB, 
Uppsala, Sweden) using a blue (488 nm)–green (535 nm) 
detector. Experiments were performed essentially as previ-
ously described (Bondza et al. 2017). In short, a Petri dish 
with adherent cells in a confined area and 3 mL of fresh 
culture medium with 0.1% sodium azide (Millipore-Sigma) 
to prevent internalization was placed on an inclined, rotating 
support in the instrument. After 30 min of baseline meas-
urement, two increasing concentrations of a fluorescently 
labeled antibody were added sequentially and signals from 
cell target and background reference areas were recorded 
over time. Each sample was incubated for 2–5 h until suf-
ficient curvature was obtained. Antibody dissociation from 
target was measured for 9 h after replacement of the incu-
bation solution with fresh medium either in the absence or 

in the presence of an excess of unlabeled antibody. Kinetic 
traces were analyzed with TraceDrawer (Ridgeview Instru-
ments AB, Uppsala, Sweden) using either a standard one-
to-one binding model (referred to as “OneToOne model” in 
TraceDrawer, and essentially similar to Eq. 7 below) or, for 
situations where the number of ligand molecules is close 
to the number of receptors, a binding model corrected for 
ligand depletion (referred to as “OneToOneDepletionCor-
rected model” in TraceDrawer, and essentially similar to 
Eq. 2 below).

Experimental conditions to obtain LigandTracer kinetic 
data for Rituximab, Pertuzumab, Cetuximab, and Panitu-
mumab were described elsewhere (Bondza et al. 2017; Barta 
et al. 2014).

Flow cytometry

SKBR3 cells were re-suspended in 10 mL of full medium 
after harvest, counted, and allowed to recover for 1 h at 
37 °C. Although it is unclear from the literature whether 
Trastuzumab remains at the cell surface or internalizes 
(Ram et al. 2014), cells were spun down and re-suspended 
at 1 × 106 cells/mL at room temperature in full medium 
containing 0.1% sodium azide to prevent internalization. 
A total of 2.0 × 105 cells in 200 µL were added per well 
of round bottom polypropylene 96-well plates (USA sci-
entific). Plates were spun down at 4000 rpm for 4 min and 
flipped down vigorously once. Twenty-one concentrations 
of Trastuzumab-CF 647 ranging from 0.02 to 150 nM in full 
medium containing 0.1% sodium azide were added per well, 
in triplicate, for 3.5 h at room temperature and under gentle 
rocking. Plates were then spun down and fresh medium was 
added. The gate on live cells population was taken from a 
control cell well (without any antibody) and Guava® easy-
Cyte benchtop instrument (Millipore-Sigma) was set up to 
acquire 5000 events.

SKOV3 cells were re-suspended in 10  mL full of 
medium after harvest, counted, and allowed to recover for 
1 h at 37 °C in full medium. Cells were then spun down 
(4000 rpm, 4 min) and re-suspended at a concentration of 
1 × 106 cells/mL. Cells were added to an antibody titration 
series of 0.07–100 nM and incubated in the dark for 2 h at 
room temperature under gentle rocking followed by analysis 
using a BD LSRII SORP (Becton Dickinson Biosciences, 
San Jose, USA) flow cytometer. The gate on live cells popu-
lation was taken from a control cell well (without any anti-
body) and 10,000 events were collected.
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Equations used

In its simplest form, binding of a ligand L to its cognate 
receptor R can be written as Eq. 1, where kon and koff are the 
association and the dissociation rate constants, respectively:

The differential equation describing [LR] versus time can 
be expressed as Eq. 2, where L0 and R0 are the total concen-
tration of L and R, respectively, and [LR]t is the concentra-
tion of the complex LR at time t:

The integrated form of Eq. 2 was recently proposed by 
Vanhove and Vanhove (2018) in the form of Eq. 3, which 
allows to express [LR]t as a function of kon, koff, R0, L0, and t:

w h e r e  a = kon ⋅
�

L0 + R0

�

+ koff; b =

√

a2 − 4 ⋅ k2
on
⋅ L0 ⋅ R0;

c =

(

a−b

a+b

)

⋅ e−b⋅t.

The experimental signal (S)t, whether in flow cytometry 
or LigandTracer experiments, is directly proportional to the 
concentration of complex LR and can thus be expressed as 
Eq. 4, where Smax is the maximum signal, i.e., the signal at 
saturating ligand concentrations, and where [LR]t is given 
by Eq. 3:

Equation 4 allows the analysis of pre-equilibrium titration 
curves. Of note, Eq. 3 is derived without any mathematical 
simplification and is thus not limited to pseudo first-order 
reactions, where L0 >  > R0 (Vanhove and Vanhove 2018).

(1)L + R

kon
−−→
←−−
koff

LR.

(2)

�[LR]
t

�t
= kon ⋅

(

R0 − [LR]
t

)

⋅

(

L0 − [LR]
t

)

− koff ⋅ [LR]t.

(3)[LR]
t
=

a ⋅ (1 − c) − b ⋅ (1 + c)

2 ⋅ kon ⋅ (1 − c)

(4)(S)t = Smax ⋅
[LR]

t

R0

.

At t = ∞, c = 0 and Eqs. 3 and 4 can be simplified into 
Eqs. 5 and 6, respectively, where [LR]e is the concentration 
of complex LR at equilibrium (Vanhove and Vanhove 2018):

Finally, when L0 >  > R0, Eq. 2 can be simplified into Eq. 7 
which, following a reasoning similar as above, leads to Eq. 8 
(Morton et al. 1995):

Data analysis

An overview of the data analysis workflow is shown in 
Fig. 1.

LigandTracer data were analyzed with TraceDrawer to 
compute kon and koff values. When shown, the U value was 
used to measure the precision of the fits and defines how 
much a given kinetic parameter can vary before the results 
show significant changes. The lower the U value, the better 
the fit. A U value > 15 for example indicates that the bind-
ing kinetics can be altered by 15% or more without signifi-
cantly affecting the fitted curve. The U value takes parameter 
dependency into account and is, therefore, a safer quality 
value than χ2 or T values (Onell and Andersson 2005).

Experimental flow cytometry data were first fitted with 
Eq. 4 with the help of the GraphPad Prism software (Graph-
Pad Software Inc., La Jolla, CA) using the kon and koff values 
obtained from LigandTracer experiments and fixing the term 
t to the actual incubation time, which allowed the determi-
nation the parameters R0 and Smax. The number of recep-
tors per cell was then calculated from the Avogadro number 
and the number of cells used in the experiment. For A431 
cells, since experimental flow cytometry data for Panitu-
mumab–EGFR binding were not generated, the value of R0 
was taken from Barta et al. (2011) and fixed to 2 × 106 recep-
tors/cell. Equation 4 was then used to simulate flow cytom-
etry curves at different incubation time based on the value of 
Smax, R0, kon, and koff obtained as described above.

(5)

[LR]
e
=

(

L0 + R0 + KD

2

)

−

√

(

L0 + R0 + KD

2

)2

− L0 ⋅ R0

(6)(S)t = Smax ×
[LR]

e

R0

.

(7)
�[LR]

t

�t
= kon ⋅

(

R0 − [LR]
t

)

⋅ L0 − koff ⋅ [LR]t

(8)(S)t = Smax.

(

L0

L0 + KD

)

.
(

1 − e
−(kon.L0+koff)⋅t

)

.

Fig. 1   Overview of data analysis workflow. Bold characters indicate 
calculated variable values. Experimental LigandTracer data were 
used to calculate the kinetic constants kon and koff. Experimental 
flow cytometry data were then fitted to Eq.  4 with binding kinetics 
obtained from LigandTracer and incubation time as constants, giving 
access to the receptor concentration term R0. Binding kinetics and R0 
values were used in Eq. 4 to simulate flow cytometry data at various 
incubation times, allowing a visual assessment of the progress of the 
reaction towards equilibrium. Both simulated and experimental flow 
cytometry data were then analyzed with Eq. 6 to calculate the appar-
ent equilibrium dissociation constant (KDApp) and apparent receptor 
concentration (R0App)

◂
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In a second stage, flow cytometry data (normalized based 
on Smax to facilitate visual comparison) were fitted to Eq. 6 
(using the Graphpad Prism software) without constraints. 
Since it was a priori not known whether the system was 
fully at equilibrium when the data were acquired, fitting with 
Eq. 6 yielded only apparent values for KD and R0 which will 
be referred to here as and KDApp and R0App.

Finally, time to equilibrium for a given ligand concen-
tration was calculated from the ratio of Eqs. 3 and 5, the 
[LR]t/[LR]e ratio representing the degree of completion of 
the reaction at a given time. A ratio of 1 indicates that the 
equilibrium has been reached.

Results

Binding kinetics with LigandTracer

Except for Trastuzumab binding to HER2 on SKBR3 cells, 
binding kinetics have been reported elsewhere (see data 
with respective references in Table 1). LigandTracer data 
for Trastuzumab are shown in Fig. 2. The kinetic traces 
could be accurately analyzed with a standard 1:1 binding 
model with the help of the TraceDrawer software with low 
χ2 and U values of 0.36 and 1.90, respectively, leading to 
kon, koff, and calculated KD values of 2.4 × 104 M−1 s−1, 
5.4 × 10–6 s−1, and 2.2 × 10–10 M, respectively. Data analy-
sis using a binding model corrected for ligand depletion 
yielded identical parameters. To be noted, and despite a 
dissociation rate < 10–5 s−1, the dissociation phase showed 
a decrease of 14%, allowing robust koff estimation (the 
experiment was repeated independently twice resulting 
in identical KD values and binding kinetics parameters 
within 2% standard deviation—not shown). In addition, 
worth noting, following the dissociation of Trastuzumab-
A488 from SKBR3 cells in the presence of an excess of 
unlabeled antibody (insert in Fig. 2) provided a koff value 
of 4.7 × 10–6  s−1 in excellent agreement with the value 
reported above, which demonstrates that rebinding of the 
antibody during the dissociation phase can be neglected.

Flow cytometry

Experimental flow cytometry data for binding of Rituxi-
mab to CD20-expressing Daudi cells (incubation time 
1 h), Trastuzumab and Pertuzumab to HER2-expressing 
SKOV3 cells (incubation time 3.5 and 2 h, respectively), 
and Cetuximab to EGFR-expressing SKOV3 cells (incuba-
tion time 2 h) are shown in Fig. 3. Worth mentioning, these 
incubation times, although selected arbitrarily, correspond 
to incubation times generally used for this kind of experi-
ment, since longer incubation times are often associated Ta
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with cell viability issues. For example, Freeman et al. 
(2012) performed flow cytometry titration experiments 
with Panitumumab on EGFR-expressing A431 cells with 
1 h incubation time. We did not, however, assume that 
the different systems were necessarily at equilibrium at 
the indicated incubation times. Data analysis using Eq. 6 
was thus not appropriate. Instead, we chose to fit the flow 
cytometry traces to Eq. 4, fixing the kinetic parameters kon 
and koff to the values obtained from LigandTracer experi-
ments which allowed to extract the value of the recep-
tor concentration (R0) for each system and cell type, from 
which the number of receptor molecules per cell was cal-
culated. These values are reported in Table 1 and are con-
sistent with published data for at least HER2-expressing 
SKBR3 and SKOV3 cells. For EGFR-expressing A431 
cells, in the absence of flow cytometry data with Pani-
tumumab, R0 was fixed to a value corresponding 2 × 106 
receptors/cell based on Barta et al (2011).

Equation 4 was then used to generate theoretical flow 
cytometry traces for the different systems and for various 
times of incubation (Fig. 3). From this, it is immediately 
evident for all studied systems except Cetuximab–EGFR 
that full equilibration requires incubation times significantly 
longer than 1 h, the Rituximab–CD20, Trastuzumab–HER2, 
and Panitumumab–EGFR systems being the slowest to 
equilibrate.

Flow cytometry experiments performed with the objec-
tive of determining the affinity of antibodies to cell surface 
receptors are generally analyzed using Eq. 6 assuming that 
the system is at equilibrium. The extent to which the com-
puted parameters R0 and KD deviate from their exact value 
when that latter hypothesis is not fulfilled can be appreciated 

by fitting either actual flow cytometry data sets acquired 
prior to equilibrium or theoretical simulated flow cytometry 
curves generated for different incubation times with Eq. 6 
(Fig. 4A, B). This analysis reveals that R0 and KD values 
computed prior to full equilibration (R0App and KDApp) dif-
fer to a great extent from the intrinsic R0 and KD values, 
even when visual observation of the curves suggests that the 
system is almost at equilibrium (see data for Cetuximab).

Altogether, these observations highlight the benefit of 
combining LigandTracer-based kinetic determination with 
flow cytometry experiments, especially for slowly equilibrat-
ing systems which may require incubation times far exceed-
ing the time during which the reagents are stable to reach 
the equilibrium.

Time to equilibrium

The time for a system to reach 97% of the final equilibrium 
has been described by Eq. 9 (Andersson et al. 2010; Hulme 
and Trevethick 2010):

The above expression, however, assumes that the consid-
ered reaction obeys pseudo-first-order kinetics, which is true 
only if L0 >  > R0. To assess the degree of completeness of 
the reaction, we, therefore, propose to use the ratio of [LR]t 
versus [LR]e as obtained from Eqs. 3 and 5. The closer to 
0, the further away the system is from equilibrium. Con-
versely, a ratio of 1 indicates that the system has reached 
equilibrium.

(9)teq =
5 . ln2

(

kon . L + koff

) .

Fig. 2   Time course (signal 
intensity vs. time) for binding 
of Trastuzumab–A488 (Tz) to 
SKBR3 cells. Two antibody 
concentrations of 1 and 10 nM 
were added sequentially for 150 
and 200 min, respectively, and 
dissociation was followed for 
9 h. The fitted curve for a 1:1 
binding model is shown in red. 
Calculated values and fitting 
parameters are reported in the 
table below the curve. The 
insert shows the dissociation 
of Trastuzumab–A488 in the 
presence of 10 nM unlabeled 
antibody ([Tz] = 10 nM for the 
association phase)
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Figure 5 represents plots of [LR]t/[LR]e versus L0 for 
various incubation times for all the systems studied here, 
offering a visual assessment of time to equilibrium for all 
molecular pairs under their specific experimental settings. 
For example, the fast-equilibrating Cetuximab–EGFR and 
Pertuzumab–HER2 systems requires 1–3 h and 6–10 h for 
full equilibration, respectively, while the other systems 
have reached equilibrium for all ligand concentrations 
only after  ~ 24 h. It can also be appreciated that all con-
sidered systems are predicted to be at equilibrium for the 
highest ligand concentrations even for the shortest incuba-
tion time considered here, i.e., 1 h. Conversely, the time 

to equilibrium is longer for lower ligand concentrations. 
Interestingly, though, the value of [LR]t/[LR]e reaches 
for all systems a minimum for L0 values roughly around 
10–9–10–8 M as shown as a dip in the curves. Although 
counter-intuitive, this indicates that the ligand concentra-
tion that requires the longest time to reach equilibrium is 
not necessarily the lowest concentration used in an experi-
mental setting. A formal mathematical demonstration of 
this observation would require calculating the L0 value for 
which the derivative of the [LR]t/[LR]e expression (with 
[LR]t and [LR]e as per Eqs. 3, 5) is equal to zero, which is 
complex and far beyond the scope of this work. Instead, 

Fig. 3   Comparison of normalized experimental flow cytometry (FC) 
data recorded at the indicated incubation time (average from duplicate 
or triplicate measurements) with flow cytometry data simulated for 
various incubation times with Eq.  4. A Rituximab–CD20 on Daudi 
cells, experimental flow cytometry incubation time 1 h with 106 cells/
mL; B Trastuzumab–HER2 on SKOV3 cells, experimental flow 
cytometry incubation time 3.5 h with 106 cells/mL; C Pertuzumab–

HER2 on SKOV3 cells, experimental flow cytometry incubation time 
2  h with 6 × 105 cells/mL; D Panitumumab–EGFR on A431 cells, 
only simulated flow cytometry data assuming 106 cells/mL; E Cetuxi-
mab–EGFR on SKOV3 cells, experimental flow cytometry incuba-
tion time 2  h with 1.33 × 106  cells/mL. The thumbnails in A, B, C, 
and E represent the experimental flow cytometry data together with 
the data simulated at the same incubation time
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the numerical methodology proposed here allows to eas-
ily assess the time needed to reach the equilibrium for any 
pre-defined experimental conditions.

Discussion

LigandTracer information on kinetic constants 
to strengthen flow cytometry data

From Eq. 1, which describes the interaction between a 
ligand L and its receptor R, the rate of LR complex forma-
tion over time can be expressed without simplification as 
Eq. 2 or, assuming that L0 >  > R0, as Eq. 7. These are dif-
ferential equations, which is the form usually used by soft-
ware to globally analyze time-resolved binding data through 
numerical integration. Equation 2 (or variations thereof) is 
useful to analyze data generated under conditions where 
L0 ~ R0, and TraceDrawer is, to our knowledge, the only 
commercially available software offering it as an option.

Equation 4, or its simplified version (Eq. 8), are better 
suited to be used in software’s such as Excel for data simula-
tion or GraphPad Prism for non-linear regression analysis. 
Eq. 4, derived from Eq. 3, and which can be used to describe 
or analyze pre-equilibrium titration curves, is, however, 
complex and may not be ideally suited to analyze only one 
set of flow cytometry data obtained for a specific incubation 
time. We, therefore, propose to use the kinetic parameters 
kon and koff obtained from LigandTracer experiments as con-
stants to “stabilize” the equation and allow robust determina-
tion of the receptor concentration R0, as exemplified in this 
manuscript.

Fitting of flow cytometry data with Eq. 6 is only recom-
mended if the system has reached full equilibrium. When 
that condition is not perfectly fulfilled, data analysis with 
Eq. 6 can return R0 and KD values that can deviate substan-
tially from the true values of these parameters depending not 
only on the degree of completion of the reaction but also, 
to a certain extent, on the relationship between R0 and KD 
(Vaish et al. 2020).

The systems studied here can be sorted into three groups 
based on their respective R0/KD ratio (Table 1), namely, (1) 
Rituximab–CD20 (R0 ~ KD); (2) Trastuzumab–HER2, Per-
tuzumab–HER2 and Panitumumab–EGFR (R0 > KD); and 
(3) Cetuximab–EGFR (R0 >  > KD). As discussed elsewhere 
(Drake et al. 2018; Drake and Klakamp 2007; Tamaskovic 
et al. 2012; Vanhove and Vanhove 2018), experimental data 
obtained under conditions where R0 ~ KD allows the deter-
mination of both parameters, while only R0 can be robustly 
determined when R0 >  > KD. This also applies to analysis 
of pre-equilibrium titration curves with Eq. 4 (Vanhove and 
Vanhove 2018). Therefore, determination of KD values from 
flow cytometry data without the support of information on 
the kinetics of the interaction such as provided by Ligan-
dTracer would have been challenging or impossible for all 
studied systems except Rituximab–CD20, and this regardless 
of whether the data would have been generated under condi-
tions of pre-equilibrium and analyzed with Eq. 4 or under 
conditions of full equilibrium and analyzed with Eq. 6.

When conducting flow cytometry experiments with the 
objective of analyzing a given system at equilibrium, it is 
common practice to run the experiment at two (or more) 
incubation times and to consider in practice that the sys-
tem has reached its equilibrium if the different data sets, 

Fig. 4   Experimental flow cytometry (FC) data as well as flow cytom-
etry data simulated for various incubation times based on Eq. 4 were 
fitted with Eq.  6 to compute apparent equilibrium dissociation con-
stants (KDApp) and apparent receptor concentrations (R0App). A KDApp 

values. The stars correspond to KDApp values obtained from the exper-
imental flow cytometry data sets. B R0App values. The dotted disks 
correspond R0App values obtained from the experimental flow cytom-
etry data sets
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e.g., in the form of saturation binding curves, superimpose. 
It is important to appreciate, however, that when R0 > KD 
only a small fraction of the curve (corresponding to a nar-
row range of low ligand concentrations near the saturation 
plateau phase—see below) contributes to the numerical 

determination of KD. For that narrow range of concentra-
tion, equilibration will take longer than for most of the rest 
of the data sets and it is, therefore, easy to wrongly consider 
that the system is at equilibrium, while it is not, and, further-
more, for the most important part of the curve (see Fig. 3). 

Fig. 5   Equilibrium charts for the studied systems based on binding 
kinetics obtained from LigandTracer data and receptor concentra-
tions obtained from flow cytometry data (all systems except Panitu-
mumab) or literature (Panitumumab). The ratio of the concentration 

of the antibody–receptor complex at a given time ([LR]t, from Eq. 3) 
and at time infinite ([LR]e, from Eq. 5) was plotted against antibody 
concentration. At equilibrium, [LR]t = [LR]e and the [LR]t/[LR]e ratio 
is equal to 1
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This can be illustrated here from the Trastuzumab–HER2, 
Pertuzumab–HER2, and Cetuximab–EGFR flow cytometry 
data which, from a rough visual examination, seemingly 
appeared close to the equilibrium after incubation times of 
3.5, 2 and 2 h, respectively. Yet, KDApp values obtained from 
fitting the curves with Eq. 6 differed significantly from the 
real KD values (Fig. 4).

To explore this aspect further, we modeled, assuming 
unchanged kinetics, the Pertuzumab–HER2 interaction in 
an altered yet realistic setting, with R0 = 1 nM (vs. 10 nM), 
which could for example be achieved using a low concen-
tration of BT474 cells which express less HER2 receptors 
than SKOV3. The data are reported in Fig. 6, with pre-
dicted flow cytometry traces, time to equilibrium data, and 
subsequent effects on KDApp values compared to the set-
ting used in this paper. Despite a marked difference in the 
predicted time to equilibrium (reached only after 24–48 h 
compared to 4–6 h for the current setting with SKOV3 
cells), the difference in KDApp for each given incubation 
time is minimum between the two conditions, as shown in 
Fig. 6A–C, illustrating the fact that attempts to reach the 
equilibrium faster by increasing R0 does not improve the 
robustness of affinity measurements on live cells.

It can also be appreciated from Fig. 6A that the shape 
of the curve changes significantly when increasing R0 from 
1 to 10 nM, resulting in the fact that for the higher R0 
value only a small part of the experimental data set, cor-
responding to the very top of the sigmoid curve, i.e., when 
a significant fraction of the receptor has been titrated, can 
be exploited to extract the value of KD. In practice, any 
experimental variability in that part of the curve will thus 
have strong repercussions on the computed KD value. The 
Cetuximab–EGFR interaction studied here is an extreme 
example of an R0-driven system, i.e., of a system not 
allowing KD determination from equilibrium experiments, 

because it is studied under conditions where R0 is much 
larger than KD.

Our recommendation to combine LigandTracer kinetic 
data with flow cytometry data, making no assumption on 
whether flow cytometry data are obtained at equilibrium or 
not, i.e., analyzing data with Eq. 4, eliminates all the risks 
described above and ensures robust determination of all the 
parameters describing the studied system, namely, kon, koff, 
KD, and R0, even under conditions where R0 is much larger 
than KD.

Finally, for researchers wishing to analyze flow cytometry 
data only under equilibrium conditions, the knowledge of the 
kinetic constants obtained from LigandTracer experiments 
will allow said researchers to determine, as shown here from 
[LR]t/[LR]e versus L0 plots, the degree of completion of the 
reaction for any ligand concentration, and therefore, gain 
confidence that the experiment is conducted under proper 
conditions.

Conclusion

Screening for biologics has evolved significantly in the past 
decades and often involves live cell receptors as some cat-
egories of targets can be difficult to express as recombinant 
proteins. Furthermore, new generation biologics frequently 
present very high affinities towards their cognate receptors 
which represents new challenges. LigandTracer measures 
the equilibrium dissociation constant KD from the ratio of 
binding kinetics, thereby bypassing the need to reach equi-
librium. It can also record dissociation for hours and meas-
ure off rates slower than 10–5 s−1, which are getting more 
frequent within this category of therapeutics. Finally, the 
technology uses live cells expressing functional receptors 
closer to in vivo conditions.

Fig. 6   Influence of receptor concentration R0 on time to equilibrium 
and subsequent impact on KDApp values exemplified by the Pertu-
zumab–HER2 system. A value of R0 = 1  nM was compared with 
actual R0 value (10  nM) used for experimental work in this study 
(light gray curves). A Simulated flow cytometry data (signal vs. 

antibody concentration for various incubation times). B Degree of 
advancement of the reaction towards equilibrium ([LR]t/[LR]e ver-
sus antibody concentration [L0]). C Apparent KD (KDAPP) vs. time of 
incubation
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Flow cytometry measurements also involve live cells and 
titration with a labelled ligand to record molecular complex 
formation. However, measured KD values do not always 
agree among those platforms. We hypothesized that these 
discrepancies, when they exist, originate most frequently 
from either flow cytometry experiments being recorded prior 
to full equilibration of the system or under conditions, where 
the receptor concentration is much larger than the value of 
the dissociation constant. Being operated under similar con-
ditions, flow cytometry and LigandTracer platforms are thus 
ideal for cross-validation.

Ultimately, the goal of the drug discovery pipeline is to 
develop and produce safe and effective drugs. It is, therefore, 
essential to translate in vitro therapeutics–receptor interac-
tion data in general, and KD in particular, into hypothesis of 
biological effects. In vitro platforms are evolving, aiming to 
predict in vivo outcome such as described by Spiegelberg 
et al. (2016). Furthermore, joint analysis of binding kinetics, 
pharmacokinetics, target information, and dosage regimen 
during pharmacokinetic/pharmacodynamic modeling could 
be beneficial to early drug development (Georgi et al. 2018; 
Zhao and Schuck 2015). LigandTracer belongs to the arse-
nal of new tools now at the disposal of scientists to achieve 
these objectives.
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