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Abstract

Changes in cis-regulatory element composition that result in novel patterns of gene expression are thought to be a major
contributor to the evolution of lineage-specific traits. Although transcription factor binding events show substantial
variation across species, most computational approaches to study regulatory elements focus primarily upon highly
conserved sites, and rely heavily upon multiple sequence alignments. However, sequence conservation based approaches
have limited ability to detect lineage-specific elements that could contribute to species-specific traits. In this paper, we
describe a novel framework that utilizes a birth-death model to trace the evolution of lineage-specific binding sites without
relying on detailed base-by-base cross-species alignments. Our model was applied to analyze the evolution of binding sites
based on the ChIP-seq data for six transcription factors (GATA1, SOX2, CTCF, MYC, MAX, ETS1) along the lineage toward
human after human-mouse common ancestor. We estimate that a substantial fraction of binding sites (,58–79% for each
factor) in humans have origins since the divergence with mouse. Over 15% of all binding sites are unique to hominids. Such
elements are often enriched near genes associated with specific pathways, and harbor more common SNPs than older
binding sites in the human genome. These results support the ability of our method to identify lineage-specific regulatory
elements and help understand their roles in shaping variation in gene regulation across species.
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Introduction

Changes in gene regulation play a key role in the evolution of

morphological traits [1–3]. At the level of transcription, gene

expression is controlled via transcription factor (TF) proteins that

selectively bind to cis-regulatory elements in a sequence-specific

manner [2,4]. Utilizing chromatin immunoprecipitation of specific

TFs followed by high-throughput sequencing (ChIP-seq), recent

studies showed that the evolution of these transcription factor

binding sites (TFBS) is highly dynamic, with sites differing a great

deal even within mammals [5–9].

Despite substantial experimental evidence for rapid divergence

of regulatory protein-binding events across species, computational

models designed to analyze regulatory elements using cross-species

comparisons have focused primarily upon ‘phylogenetic footprint-

ing’ approaches, in which putatively functional regulatory

elements are identified according to sequence conservation [10–

15]. Previous computational studies have inferred the evolution of

regulatory elements using, for example, the emergence of new

conserved elements specific to a particular clade in the phylogeny

[16] or lineage-specific alterations leading to a loss-of-function

phenotype [17,18]. Although such approaches have been helpful

in understanding lineage-specific regulatory element evolution, all

inherently rely upon fixed cross-species alignments, which are

frequently of low quality within non-coding regions in the genome

[19–21]. Previous studies have estimated that more than 15% of

aligned bases within human-mouse whole-genome alignments are

incorrect [22] and the error rate increases when more species are

involved [19]. Ancestral reconstruction, which is sensitive to details

of the multiple alignment, is a particularly challenging problem for

non-coding regions [23,24]. As a consequence, cross-species

comparisons of non-coding sequences are limited in their ability

to study regulatory sequence evolution, particularly in cases where

the elements are selected for novelty or newly-derived. Such

newly-derived regulatory elements are not rare; indeed, analyses

using human population variation data from the 1000 Genomes

Project [25] have shown that human genomic locations under

selection undergo considerable turnover and frequently lie outside

mammalian-conserved regions [26]. Yet, systematic identification

of binding sites for specific TFs and assessment of their

conservation and prevalence using cross-species comparisons

remains a challenging problem.

In this work, we introduce a novel evolutionary framework

through which lineage-specific TFBSs can be inferred on a

genome-wide scale. In contrast to conservation-based approaches

[13,16,27], we utilize a birth-death model to infer ancestral states
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of a given motif without the use of the base-by-base alignment

details in the underlying cross-species sequence alignment. Gains

and losses of TFBS have been explicitly used both to improve

cross-species sequence comparisons and to detect cis-regulatory

modules, although such models are usually framed within the

context of an alignment [21,28]. A more similar alignment-free

model was previously used to measure the overall rate of TFBS

creation along different lineages [29]. In this work, we instead

applied our framework to infer lineage-specific TFBS, estimating

the branch of origin of each individual TFBS for six TFs. We then

studied patterns for TFBS with different branches of origin,

including target genes of the newly-derived sites, relationship with

within-human variation, overlap with transposable elements, and

cell-type specificity of TF-binding. Our results provide strong

support that this novel method can help identify lineage-specific

regulatory elements, a first step towards understanding the role of

regulatory element evolution in shaping the variation of gene

regulation across species.

Results

Overview of the probabilistic framework for the birth-
death evolutionary model of TFBS

Our goal is to detect lineage-specific rates of TFBS evolution

and the branch of origin for individual TFBS. Here, lineage means

any ancestral branch in the phylogeny or a branch leading toward

any modern species. Our approach is to model TFBS evolution

using a birth-death framework, in which individual TFBSs can be

gained, lost, or conserved within a given lineage during evolution.

The rate of TFBS creation (birth rate) and loss (death rate) are first

estimated from a set of orthologous sequences, and are

subsequently used to trace the evolutionary origin of individual

TFBSs at the sequence level. The birth rate (a ) for a given motif

represents the probability at which a TFBS appears at a single

unoccupied site in a given year of evolutionary time. Similarly, the

death rate (b ) represents the rate at which an existing TFBS is lost

per year. The method considers only TF motif counts within

orthologous sequences across species, and therefore does not

require an accurate base-to-base multiple sequence alignment.

This framework allows us to reconstruct the ancestral states for

each TFBS throughout the genome, providing a distribution for

the branch of origin of the binding sites genome-wide.

For any set of orthologous sequences across species and a known

phylogeny, we first estimate birth and death rates according to the

observed numbers of TF motif occurrences within each species.

Such orthologous sequences can, for instance, be obtained using a

genome-wide multiple species alignment. However, the underlying

base-level alignment is ignored once the orthologous sequences are

obtained, and subsequently the model considers only the number

of TF motifs within each sequence. Thus, the method operates

independently of any details within the alignment once the

sequence correspondence between species (i.e., orthologs) is

obtained. Every node in the phylogeny is then associated with a

(random) variable Qx, which represents the number of occurrences

of the TFBSs at that node x. The value of Qx is known for each

leaf node in the tree for any given ortholog set. Birth and death

rates of a given motif can then be estimated by maximizing the

likelihood across the entire data set, taking into account both

branch lengths as well as the size of the sequence region (see

Methods). Evolutionary rates were estimated using an iterative

approach, but were found to be extremely robust according to the

initial parameter settings. Once the birth and death rates are

estimated using the full data set, we can use these rates to trace the

branch of origin of individual TFBSs. This can be done by

reconstructing the most likely ancestral state at each node of the

phylogeny; i.e., the value of Qx that maximizes the likelihood of

the data for each individual ChIP-seq peak region. This provides

the most likely number of TF motif occurrences at each node, and

allows us to trace the most likely branch of origin for individual

site. The overall procedure of our method works as follows. (1) We

identify motif occurrences within ChIP-seq peak regions in human

for a given TF. (2) We estimate the likelihood for each ancestral

node in the phylogeny given the motif occurrences in the

descendant species. (3) We determine the branch of origin for

the TF-bound motif within ChIP-seq peak regions. See Methods

and Supplementary Methods in Text S1 for details.

The model framework and its motivations are illustrated in

Figure 1. Figure 1A shows one scenario where the binding site was

introduced to the genome through transposable elements (TEs)

insertion followed by point mutation, which is most likely branch

of origin of this site under our model. Figure 1B shows an example

that our method is able to identify cases of TFBS turnover within

stationary modules that might not otherwise be detected using

human-mouse ChIP-seq data direct comparisons. In this genomic

region, there is a human GATA1 binding site originating on the

ancestral primate lineage and a GATA1 binding site specific to

mouse and rat. Although the ChIP-seq peaks appear in the same

location between human and mouse, our model can predict such

lineage-specific events (which is also reflected in the cross-species

alignment). Again, our algorithm predicted these branches of

origin accurately without detailed alignment.

We note that in addition to the robustness of the parameter

estimates of a and b , the branch of origin estimates were quite

robust, since they were far more dependent on the number of sites

in each species in each region (usually either 0 or 1) than the exact

values of a and b . Although the loss of positional information

would appear to make the approach insensitive to some cases of

TFBS turnover, in which the creation of a new binding site

coincides with the loss of an old binding site, in practice such cases

are only problematic when applying the method to long branches

in the phylogeny. For densely sampled phylogenies containing

relatively short branch lengths, such turnover events can be

inferred as long as the gain and loss occur on different branches.

Author Summary

Recent experimental studies showed that the evolution of
transcription factor binding sites (TFBS) is highly dynamic,
with sites differing a great deal even between closely
related mammalian species. Despite the substantial
experimental evidence for rapid divergence of regulatory
protein-binding events across species, computational
methods designed to analyze regulatory elements evolu-
tion have focused primarily on phylogenetic footprinting
approaches, in which putative functional regulatory
elements are identified according to strong sequence
conservation. Cross-species comparisons of non-coding
sequences are limited in their ability to fully understand
the evolution of regulatory sequences, particularly in cases
where the elements are selected for novelty or species-
specific. We have developed a novel framework to
reconstruct the history of lineage-specific TFBS and
showed that large amount of TFBS in human were born
after human-mouse divergence. These elements also have
distinct biological implications as compared to more
ancient ones. This method can help understand the roles
of lineage-specific TFBS in shaping gene regulation across
different species.

Lineage-Specific Binding Sites Evolution
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Figure 1. Model framework for lineage-specific GATA1 binding sites. Multiple alignments are shown for two GATA1-bound regions in
humans. Red and blue boxes in the alignment correspond to GATA1 binding sites. Phylogenies illustrate the birth-death model framework, where the
most likely number of binding sites is assigned to each ancestral node (denoted here as either ‘present’ or ‘absent’, at values 1 or 0 in this example).
Highlighted branches denote the branch of origin. Evolutionary comparisons were conducted across ten primate species, as well as 36 non-primate
vertebrates (not all are shown). (A) A binding site originating within an LTR insertion. (B) A genomic region containing a human GATA1 binding site
originating along the ancestral primate lineage and a GATA1 binding site specific to mouse and rat. Despite nearly identical locations of the ChIP-seq
peaks across human and mouse (in analogous Erythroblast cell lines), the ability of the method to identify specific branches of origin allows us to
identify cases of TFBS turnover in close proximity.
doi:10.1371/journal.pcbi.1003771.g001
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This is usually the case, since old binding sites are seldom lost

through selection and are generally lost slowly, following a nearly-

neutral rate of decay [29,30]. Many neutrally (or near-neutrally)

evolving sites are still present after relatively long periods of

mammalian evolution [29].

Large number of TFBS embedded in ChIP-seq peaks of a
particular TF exhibit increased evolutionary rates along
lineages leading to human

In this work, we applied our method to ChIP-seq data, which is

now commonly used to map in vivo TF occupancy genome-wide

[31]. We applied our method to ChIP-seq data sets for six TFs,

namely GATA1, SOX2, MYC, MAX, ETS1, and CTCF [32–

35]. These TFs were chosen, in part, for their diverse functional

attributes, their well-documented binding motifs, and the avail-

ability of ChIP-seq data in analogous cell types in human and

mouse. Using our method, we can determine cases in which there

are lineage-specific differences in evolutionary rates of a given

motif along a particular branch in the phylogeny. Since previous

comparisons of ChIP-seq data from human and mouse have

reported substantial divergence in protein-binding locations across

the two species [5,6], ChIP-seq peaks in human are likely to

contain a high enrichment of TFBSs compared to the orthologous

regions in more distantly-related species. We thus hypothesized

that functional motifs present among ChIP-seq peak regions might

be detectable by testing for an increased birth rate a along

lineages ancestral to humans relative to other lineages, since any

recently-acquired TFBSs in humans would naturally increase the

birth rate along these lineages.

To determine differences in the rate of motif evolution along

specific lineages, we first assume a simple (null) model in which the

birth and death rates (a and b ) remain constant across the entire

phylogeny. We can then compare this hypothesis to a model in

which birth and death rates differ along a single branch of the

phylogeny relative to the other branches. The statistical signifi-

cance of lineage-specific evolutionary rates can then be assessed

using a likelihood-ratio test [36], producing a P-value reflecting the

significance of lineage-specific differences in evolutionary rates

along that branch (Supplementary Methods in Text S1).

We applied this approach to human ChIP-seq data generated

for the six TFs, testing for increased birth rates within the (2100,+
100) region relative to the summit of the peaks. Orthologous

regions were then determined using 46-way multiz alignments

from the UCSC Genome Browser [37], and analyses were

conducted using data from all 46 vertebrate lineages according to

their known phylogeny. For every TF, with the exception of MYC,

the known binding motif of TF was predicted with a substantially

increased birth rate along branches ancestral to humans (P,1e-

15). We note that in contrast to motif prediction using

conservation-based approaches, our method generates motif

predictions specifically using lineage-specific binding sites (or

rather, their increased rate of creation along a specific lineage). For

five of the six factors (GATA1, SOX2, MAX, CTCF, and ETS1),

the documented binding motif of the TF produced the most

statistically significant motif prediction using our method. The

MYC binding motif, which has previously been noted for its strong

patterns of conservation [27], was the only factor whose binding

motif was not the top-ranked prediction, although it was still

predicted under the P,1e-15 threshold. For each factor, we used

an iterative method to generate a Position Weight Matrix (PWM)

according to the nucleotide composition at each site of the motif

within the (2100,+100) window of peaks in humans. These

predicted PWMs very well matched with the known binding motifs

as well as the results from the MEME suite [38] (Supplementary

Methods in Text S1 and Table S1).

Substantial number of human TFBSs have recent origins
after the human-mouse divergence

Using our approach, we sought to determine the branch of

origin for each human binding site for the six TFs. Each binding

site was thus either inferred to be present in the common human-

mouse ancestor, or a more recent lineage leading to human using

the phylogeny shown in Figure 1. The distribution of the branch

of origin for each TFBS is shown in Figure 2. Notably, between

,58–79% of all human TFBSs had inferred origins after the

human-mouse split.

In addition to estimating the fraction of ancestral binding sites

present in the human-mouse common ancestor, our approach

allows us to estimate the age distribution across all binding site

occurrences. As shown in Figure 2 (left panel), a sizeable fraction

of binding sites in humans were estimated to have recent origins in

primates. For instance, the fraction of human binding sites that are

unique to hominids ranged from 16.1% for ETS1 to 31.1% for

MYC. Additionally, the number of sites estimated to be human-

specific, i.e., with recent origins after the human-chimp diver-

gence, ranged from 3.5% to 10%.

Since the total number of protein-bound sites for each factor is

quite large, these fractions represent a considerable number of sites

unique to humans or closely-related primate lineages. The number

of human binding sites originating since the common hominid

ancestor ranged from 1,084 to 3,931 for each factor, including 440

to 1,409 human-specific binding sites. The rate of appearance for

new sites along different ancestral lineages showed a relatively

stable rate of creation for new binding sites for most TFs up

through the common Simian-primate ancestor (Figure 2, right

panel), with slight increase in more recent branches. The birth rate

of new sites ranges from 50–300 per million years for most TFs.

Recent works have emphasized the emergence of new

regulatory elements via transposable elements (TEs) [7,39–41].

We assessed the amount of overlap between newly-derived TFBSs

and annotated TEs determined by RepeatMasker [42]. Consistent

with previous reports [7,43], a substantial fraction of binding sites

with recent origin were located within TEs. The number of TE-

derived sites varied between factors, ranging from approximately

35–40% for recently-derived SOX2 and GATA1 binding sites to

approximately 15–20% for newly-derived ETS1 and MYC

binding sites. TE-derived TFBSs of specific branch of origins

were associated with different TE families with different times of

origin (Supplementary Results in Text S1 and Figure S1).

TFBS origin estimates correspond to human-mouse ChIP-
seq data and cross-species alignments

To assess the accuracy of the age estimates, we first compared

our results to ChIP-seq data from human and mouse. Using

analogous cell types across species, we determined the amount of

overlap between human ChIP-seq peaks and ChIP-seq peaks in

the orthologous regions in mouse. A human ChIP-seq peak was

considered to be ‘shared’ with mouse if its summit was within

200 bp of a mouse ChIP-seq peak summit in the orthologous

region (note that the mouse ChIP-seq data were not the input our

algorithm). The amount of overlap was assessed separately for

regions containing a human binding site present in the common

human-mouse ancestor and for regions that are not ancestral.

We emphasize that, as illustrated previously in Figure 1B,

ChIP-seq peaks shared across human and mouse can often contain

TFBSs that are genuinely lineage-specific, since ChIP-seq peaks

Lineage-Specific Binding Sites Evolution
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span a relatively broad region and can contain instances of TFBS

turnover within static modules. In addition, human-specific ChIP-

seq peaks can also contain ancestral binding sites, since such sites

can either be lost (non-conserved) along the mouse lineage or may

not be bound by the TF along that lineage.

Table 1 shows the amount of overlap in ChIP-seq peaks between

human and mouse according to the estimated branch of origin of

the TFBSs. Human peaks containing predicted ancestral TFBSs

were far more likely to overlap with bound regions in mouse than

peaks containing only predicted lineage-specific sites. Between 24–

41% of human peaks that overlapped with a peak for the same TF

in mouse contained only predicted lineage-specific TFBSs, while

59–76% of shared peaks contained a predicted ancestral TFBS.

Thus, there was a clear enrichment for TFBSs predicted to be

ancestral among the ChIP-seq peaks shared between human and

mouse. Among human-specific ChIP-seq peaks, a substantially

greater number contained only lineage-specific TFBSs than sites

predicted to be ancestral to human and mouse.

Although a relatively sizeable portion of shared ChIP-seq peaks

contained only TFBSs predicted to be lineage-specific, in the

majority of cases (.90%) the mouse TFBS did not occur within in

sequence region orthologous to the human peak region used, but

was instead offset to a non-overlapping region within a mouse

peak. Very few of these TFBSs actually aligned across the two

species, compared with those with predicted ancestral origin.

We compared the sequence level conservation of predicted

TFBSs according to their branch of origins. We used the PhyloP

mammalian conservation scores [44] available at the UCSC

Genome Browser to determine the conservation level for TFBS in

human. For a specific TF, we first computed the average PhyloP

score (X) in each ChIP-seq peak and then calculated the average

score (M) as well as standard deviation (SD) across all peaks in the

genome. We then grouped the binding sites according to their

branch of origin (in four groups: Hominid-specific, Simian-

specific, Primate-specific, and Eutherian-specific) and calculated

the average PhyloP score (X). Finally, we calculated the Z-score,

i.e. (X-M)/SD). As expected, older binding regions show higher

sequence level conservation than younger ones (Figure S2). These

results suggest that our method can identify more recent, less-

conserved TFBS, without relying on sequence-level conservation.

Figure 2. Time of origins for binding sites of six TFs in humans. Binding motifs were determined using human ChIP-seq data for GATA1,
SOX2, MYC, CTCF, ETS1, and MAX. The branch of origin was determined for each binding site within the (2100,+100) region relative to a human ChIP-
seq peak summit. (Left) Distribution of the branch of origin for each binding site. Branch labels correspond to those in Figure 1B. ‘Ancestral’ binding
sites have origins prior to human-mouse divergence. (Right) The rate of binding site creation along branches ancestral to humans. Rates were
estimated by dividing the number of sites originating along each branch by evolutionary time, including only binding sites currently existing in
humans.
doi:10.1371/journal.pcbi.1003771.g002
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Additionally, to further demonstrate the effectiveness of our

method in identifying conserved TFBS, we directly compared with

methods that use phylogenetic footprinting approaches. We

compared with phylogenetic footprinting methods at both element

level (using MotifMap [45] which is based on the method used in

[46–48]) and module level (using PReMod [12]). Overall, our

method outperformed both MotifMap and PReMod (see Supple-

mentary Results in Text S1, Table S3, and Figure S5).

Within-species variation is higher among TFBSs of more
recent origin

Recent work has reported a substantial difference between

genomic locations that are conserved across species versus those

conserved within the human population [26]. Thus, we compared

both human variation data as well as sequence conservation across

primates to the relative age of the TFBSs. Comparing the overall

frequency of common SNPs in humans among TFBSs originating

at different times of evolution showed that a substantial fraction of

human-specific TFBSs contained common SNPs, comprising over

6% of all human-specific TFBSs (Figure 3). This is much higher

than the total fraction of TFBSs overlapping with a common SNP,

at a median of less than 3% across all six factors.

Since substantial variation exists in TF-binding events between

human individuals [9], this high amount of variation among

human-specific binding sites may partially reflect the fact that

some TFBSs inferred to be human-specific may not be shared by

the entire human population. However, recently-derived TFBSs in

hominids were also substantially enriched for common SNPs, even

when excluding human-specific TFBSs. For instance, among

hominid-specific binding sites that are not human-specific, with a

median of almost 4% of all sites. As these sites are shared across

species, they cannot be fully explained by variation within the

population. In contrast, common SNPs were consistently low

among TFBSs with origins prior to hominids (Figure 3). Note that

this observation was not biased by the SNP density surrounding

the binding sites (Figure S3).

Hominid-specific binding sites target specific biological
processes

To determine potential functions for the newly derived binding

sites, we tested whether genes predicted to be targeted by binding

sites with recent origins in hominids were involved in specific

biological processes or pathways. Such enrichment was deter-

mined for genes near hominid-specific binding sites compared to

the total list of protein-bound sites for each factor, where each

TFBS was mapped to the nearest TSS, up to a distance of 100 kb.

This allowed us to assess potential lineage-specific functions of

these sites relative to sites of more ancient origin.

Genes located nearest to hominid-specific binding sites were

more frequently enriched for neural and sensory-related functions,

and were in many cases involved in neurological pathways (Table

S2). CTCF, MYC, and SOX2 target gene sets were all enriched

for GO categories involved in sensory perception, while GATA1,

MYC, ETS1, and MAX were enriched for neural development

and differentiation categories. Among the six factors, neural-

related functions are only well-documented for SOX2, which is

involved in neuronal-cell maintenance [49,50] and whose

hominid-specific target sites are enriched genes involved in sensory

perception. Similarly, genes in proximity to hominid-specific

binding sites for CTCF and MYC were enriched for sensory

perception processes and pathways, particularly those related to

olfaction, and in the case for MYC, hominid-specific target genes

were also enriched for genes involved in synapse assembly and

receptor clustering and binding. Hominid-specific binding sites for

GATA1, most commonly known for its role in erythroid

differentiation [51], were also found enriched near genes involved

in axon extension of neural cells. For ETS1, hominid-specific

binding sites were near genes involved in spinal cord neuron

differentiation, ventral spinal cord development, and behavioral

fear response. We also found that the hominid-specific sites are

near genes in different pathways as compared to Simian-specific

sites and more ancestral sites (Table S4 and Table S5).

Branches of origin of CTCF binding sites differ between
cell type specific and ubiquitously bound sites

ChIP-seq data of CTCF is available for several different cell

types, and thus we sought to determine whether CTCF-bound

sites have distinct age distributions according to cell type. We thus

expanded our analyses to include ChIP-seq data for CTCF

collected from four different cell types in humans: B-lymphocytes

(GM12878), embryonic stem cells (H1hESC), cerebellum (HAC),

and kidney cells (HRE). Interestingly, we observed substantial

differences in the age distribution of cell-type specific and

ubiquitously-bound sites. Figure 4 shows the age distribution for

CTCF-bound sites, separated according to the number of cell

types in which each site was bound. Only 43% of all sites bound by

CTCF in all four cell types were primate-specific and 10% were

specific to hominids. For cell-specific sites, i.e., those bound by

CTCF in only one cell-type, these fractions increased to 63% and

24%, respectively (Figure 4).

These results are consistent with previous observations that cell-

type specific CTCF binding sites are less conserved across

mammalian species than ubiquitously-bound sites [39,52]. How-

ever, the recent origin of the cell-type specific TFBSs suggests that

this cannot simply be explained by a relative lack of selective

pressure, since cell-specific CTCF binding sites were frequently

found to be absent in older lineages. Instead, there exists the

possibility that cell type specific TFBSs might contribute to

lineage-specific regulatory function.

Our method identified a TFBS turnover event within a
functionally conserved enhancer

Using our framework, we then utilized genome-wide chromatin

data to search for potential functional consequences driven by

birth or death of specific lineage-specific TFBS. We intersected the

lineage-specific TFBSs with predicted human enhancer regions

marked by ChromHMM model [53] as well as in vivo verified

enhancers listed in the VISTA Enhancer Browser [54]. Figure 5

shows a potential functional take-over through TFBS turnover

inside an enhancer after human-mouse divergence. At the

sequence level, two MAX binding sites were identified by our

method with an ancestral one and a primate-specific binding site

emerging after human-bushbaby split (Figure 5). Here these two

MAX binding sites are also MYC binding sites since MAX and

MYC have very similar motif (their ChIP-seq peaks overlap in

Figure 5). The orthologous region of predicted primate-specific

MAX/MYC binding site has no MAX or MYC ChIP-seq signal

at all in mouse, which is consistent with our lineage-specific

prediction. Since the young MAX/MYC binding site only locates

1,700 bp upstream of the ancestral one and ChIP-seq intensity of

ancestral binding site is much weaker in human compared to

mouse, this is likely to be a turnover of MAX/MYC binding site

within the enhancer. Then we asked whether the function of

predicted enhancer was conserved between human and mouse.

Interestingly, despite the potential turnover of MAX/MYC

binding site in the sequence level, the mouse orthologous region

Lineage-Specific Binding Sites Evolution
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Figure 3. Within-species variation of binding sites according to time of origin. Boxplots show the fraction of TFBSs containing common
SNPs in humans [72], where plots show the median (center line), upper- and lower-quartile (boxes), and range (whisker extremes) of percentages across
the TFBSs of six TFs. TFBSs are categorized as human-specific, hominid-specific (not including human-specific sites), Simian primate-specific (not
including hominid-specific sites), and ancestral (present in the human-mouse common ancestor). Overall fractions (including all sites) are shown in the
left-most boxplot. Note the substantial rise in the amount of human variation within more recently derived binding sites compared to older sites.
doi:10.1371/journal.pcbi.1003771.g003
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of predicted enhancer was found to drive reproducible LacZ

expression in E11.5 mouse blood cell as demonstrated by in vivo
transgenic mouse embryos essay based on VISTA Enhancer

Browser, which confirms that the predicted enhancer also

functions as an enhancer in mouse. It certainly remains to be

solved whether this enhancer regulates the same genes in human

and mouse and why the ChIP-seq signal on ancient MAX/MYC

binding site is much weaker than the younger one in human.

Nevertheless, this example demonstrates the ability of our method

to compare functional level dynamics with sequence level

difference in an evolutionary framework.

Discussion

The approach presented here represents an initial step towards

understanding regulatory element evolution using in silico
methods without relying on accurate cross-species alignments.

Studies regarding the evolution of TFBSs are largely separable

into those that emphasize cross-species conservation of regulatory

elements [13,27,55–57] and studies highlighting the substantial

divergence of transcription factor-binding events across species [5–

7,58–60]. To some extent, this dichotomy may largely reflect

differences between analyses conducted in silico and experiment-

based studies. Although computational approaches have had some

success in identifying cis-regulatory alterations responsible for

changes in phenotype [16,17], the study of regulatory sequence

evolution is limited by reliance upon multiple sequence alignments

[20,21]. Reconstructing the ancestral states of regulatory sequenc-

es is a particularly challenging problem; comparative studies of

regulatory elements generally categorize sites as ‘conserved’ and

‘non-conserved’ in terms of their presence across species

[34,39,61]. ‘Non-conserved’ sites are thus often assumed to be

under a weaker amount of purifying selection, indicating a relative

lack of function [62]. However, any interpretation of the results is

obscured by the fact that no distinction can be made between

ancestral sites that have later been lost, versus sites of recent

origins. Newly-derived functional elements, which are also ‘non-

conserved’ by the common definition, may induce a gain-of-

function trait, harboring the potential for lineage-specific adapta-

tion or positive selection. It has long been argued that alterations

in regulatory function are responsible for many, if not most,

species-specific traits [1–3], and it is indeed these elements that are

likely to contribute to phenotypic adaptation and the variation

seen across species.

In this context, the high fraction of TFBSs that have recent

origins after human-mouse divergence is particularly notable. For

all six factors analyzed, the majority of human TFBSs bound in
vivo were originally absent in human-mouse common ancestor,

which is consistent with previous cross-species comparisons noting

substantial divergence in ChIP-seq protein-binding events across

the two species [5,6] and similar comparisons presented here

(Table 1), and is also comparable to detailed analyses conducted in

Drosophila using alternative approaches [57]. This does not

appear to simply be a consequence of the specific selection of TFs,

since binding motifs for several factors analyzed (CTCF, ETS1,

MYC, MAX) have been previously documented as ‘highly

conserved’ compared to motifs of other factors [27,39]. In

particular, a comprehensive scan for conserved motifs identified

the binding motifs of MYC and ETS1 as the second and third-

highest ranking motifs across all motifs in terms of conservation

score across human, mouse, rat, and dog (where the ETS1 binding

motif was denoted as the ELK1 motif) [27]. It is important to note

that ‘phylogenetic footprinting’ approaches usually measure motif

conservation relative to neutrally evolving elements in non-coding

regions. The fact that such motifs are substantially more conserved

compared to a neutral proxy does not mean that the majority of

binding sites are conserved, nor does it imply that protein-bound

sites considered collectively across the genome are more conserved

than coding sequences under relatively weak selection. Since some

of the most ‘highly conserved’ regulatory motifs are largely

comprised by sites with recent origins, it is unlikely that this birth

of new binding sites is simply a special property of a handful of

TFs, but instead is likely to apply across many other factors.

Nevertheless, some analysis challenges remain. For example, it is

acknowledged that not all computationally predicted TFBSs

within ChIP-seq peaks were actively bound by the TF and many

ChIP-seq peaks may correspond to experimental noise. While

researchers have continuously improved TFBS identification,

high-throughput experimental approaches would be necessary to

systematically validate binding site predictions, especially for

lineage-specific ones.

Among TFBSs in humans, a considerable amount of them are

unique to hominids and are even human-specific. Since there are

an estimated ,1700–1900 TFs in the human genome [63], if even

a small fraction of these sites harbor important regulatory

potential, the total number of human-specific functional binding

sites genome-wide is quite large. Although not all TFBSs with

recent origins will be responsible for lineage-specific traits, these

results nonetheless offer the potential to understand adaptive

evolution of gene regulation via the creation of new TFBSs, not

only alone, but also in combination. In addition, a number of

recent studies have highlighted differences in transcription factor

binding within humans [9,64], and our results suggest that

sequence-level variation of TFBSs within the population may be

more common among more recently-derived binding sites.

The functional categories of genes close to recently derived

binding sites may serve to shed new light upon adaptive traits

obtained along the lineage leading to human. It is interesting that,

despite substantial differences in the biological functions generally

associated with the six TFs analyzed, genes near binding sites with

recent origins are enriched for several sensory and neural related

pathways and processes. We note that since the ChIP-seq data we

used in this study were not derived from neuronal cells, further

study is needed to more comprehensively understand the roles of

hominid-specific sites in specific cell types. Nevertheless, identify-

ing such lineage-specific regulatory elements not only provides

potential insight on human biology, but may also provide new

knowledge on the molecular mechanisms of human diseases.

A natural future direction for this work would be to determine

the specific regulatory effects of the recently derived TFBSs

identified using this method. For instance, enrichment for within-

species variation among recently derived binding sites raises the

intriguing possibility that recently derived TFBSs most responsible

for phenotypic differences across species are also the elements

responsible for within-species variation. Future work will be

necessary to demonstrate whether this is the case and the

Figure 4. Time of origin for human CTCF binding sites according to cell-specificity. CTCF binding sites in humans were separated
according to cell-specificity, considering four distinct cell lines (GM12878, H1hESC, HAC, and HRE). Colored bars correspond to varying amounts of
cell-specificity, denoting sites bound in one, two, three, or in all four cell types (red to dark blue bars, respectively). Note the tendency for cell-specific
binding sites to have more recent evolutionary origins than sites bound ubiquitously in all cell types.
doi:10.1371/journal.pcbi.1003771.g004
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Figure 5. A TFBS turnover event within a functionally conserved enhancer. A TFBS turnover event shows the impact of lineage-specific
TFBS within an enhancer. The Genome Browser view shows the upstream of human gene EPB41. VISTA Enhancer track and ChromHMM track (orange
means strong enhancer, yellow means weak enhancer) indicate a putative human enhancer. ChIP-seq signals of three TFs used in this study near
predicted enhancer region are consistent with predicted lineage-specific binding site represented by 46-way multiple sequence alignment (only a
subset of species are shown). Note that here the two MAX binding sites are also MYC binding sites since MAX and MYC have very similar motif. A
potential TFBS turnover is observed between two predicted MAX/MYC binding sites (1700 bp apart). Different TFBSs are highlighted in different
colors with MAX in blue and GATA1 in red. The predicted enhancer may function as blood cell specific enhancer in mouse, demonstrated by images
of LacZ positive E11.5 mouse transgenic embryo on the VISTA Enhancer Browser [54] (ID: mm80; http://enhancer.lbl.gov/cgi-bin/imagedb3.
pl?form = presentation&show = 1&experiment_id = 80&organism_id = 2).
doi:10.1371/journal.pcbi.1003771.g005
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differences in traits brought about by this variation. Also, our

current model needs to be integrated with gene expression data to

understand the interplay between cis-regulatory element evolution

(e.g., binding site turnover and lineage-specific sites) and gene

expression differences across different species [65–68]. The extent

to which newly derived TFBSs operate primarily as cell-type

specific elements with cell-specific regulatory function also remains

an open question. The mechanisms that contribute to cell-type

specific TF binding, whether through the presence or absence of

other protein factors, accessibility of DNA within the chromatin

structure, or by other means, are also possible future directions

that can be more fully understood using a combination of different

types of data that are becoming available.

Methods

The model
Our approach is designed to estimate genome-wide rates of

evolution for a given motif according to a birth-death framework

(formally, a quasi birth-death process [69]), similar to that used to

measure the timing of accelerated motif evolution as in [29]. The

birth rate (a) represents the rate at which a new motif occurrence

appears at any unoccupied site per year, while the death rate (b)

represents the rate at which an existing site is lost per year. Given a

set of orthologous sequences and a known phylogeny, we estimate

birth and death rates for the motif across the phylogenetic tree

using a maximum likelihood approach.

Let w(t) denote the probability that a given TFBS motif

occupies that nucleotide position at time t. The probability that the

motif will exist at time tz 1 is then

w(tz1)~a(1{w(t))z(1{b)w(t) ð1Þ

Setting w0(t) ~ w(tz1) { w(t) to be the rate of change of w
with respect to t, Eq (1) gives the differential equation

w0(t)~a{(azb)w(t) ð2Þ

We denote the solutions to Eq (2) by u(t) and v(t) , where u(t)
assumes that the motif was present at this site at time t~ 0, while

v(t) assumes that the motif did not exist at time t~ 0 (i.e., initial

conditions w(0) ~ 1 and w(0) ~ 0, respectively). As u(t) and

v(t) are solutions for w(t) in Eq (2), both represent the

probability that the motif exists at a specific nucleotide position

after time t, differing only in the initial conditions. Solving Eq (2)

gives

u(t)~
1

azb
azbe{(azb)t
� �

, v(t)~
a

azb
1{e{(azb)t
� �

ð3Þ

The transition probability pij(t) is the conditional probability

that a given region will contain j occurrences of the motif after

time t, assuming i initial occurrences of the motif within the

region. Namely, if a sequence initially contains i motif occurrenc-

es, the probability Ui, k(t) that k of these occurrences remain after

time t is given by the binomial distribution:

Ui,k(t)~
i!

(i{k)!k!
u(t)k(1{u(t))i{k ð4Þ

Similarly, if the width of our region is N nucleotide sites, there

are initially N { i unoccupied sites. Thus the probability

VN { i, b(t) that b of these unoccupied sites become occupied

after time t also follows the binomial distribution:

VN{i,b(t)~
(N{i)!

(N{i{b)!b!
v(t)b(1{v(t))N{i{b ð5Þ

The transition probability pij(t) that the given region contains j

sites after time t is then given by

pij(t)~
Xmin(i,j)

k~0

Ui,k(t):VN{i,j{k(t) ð6Þ

Here, the sum is over all possible values k, where k represents the

number of motif occurrences at time t among the sites that were

originally occupied at time t~ 0.

Calculating the likelihood of the data
Given the birth and death rates (a and b) across the tree (which

are estimated using the method described below), we can calculate

the likelihood of the data using Felsenstein’s pruning algorithm

[70]. Let us first consider data from a single sequence. We let

h ~ ½a, b� represent the parameter vector comprising the birth

and death rates, and let DY represent the data downstream of a

node Y in the phylogeny. Let Z1, Z2, :::, Zm be the daughter

nodes of Y , occurring at times tZ1
, tZ2

, :::, tZm
relative to parent

node Y , respectively.

If random variable QY represents the number of motif

occurrences at node Y , the likelihood xY (i; h) ~ Pr(DY D QY ~
i; h) of the data downstream of Y , assuming i motif occurrences

exist at node Y , can be obtained recursively. This likelihood is

given by

xY (i; h)~ P
m

k~1

X
j

pij(tZk
):xZk

(j; h) ð7Þ

where the inner sum is across all possible values for j,
corresponding to the number of motif occurrences at daughter

node Zk. If node Z is a modern lineage, the probability xZ(j; h) is

equal to 1 if we actually observe j motif occurrences within the

sequence, while the likelihood is zero otherwise.

The likelihood of the data can therefore be obtained recursively

by determining the values x(i; h) progressively for each node

farther up the tree. The log-likelihood L(D( k) ; h ) for a single

sequence (the kth sequence) is then given by

L(D(k); h)~log
X

j
P(j):xR(j; h)

h i
ð8Þ

where R is the root node and P(j) is the prior probability that j
binding sites exist in a single sequence. For our implementation,

prior probabilities P(j) were set to the Poisson distribution:

P(j) ~ l j e { l =j! where l is the mean number of motif

occurrences per sequence. The total log-likelihood L(D; h) is then

the sum L(D; h) ~
Pn

k~ 1 L(D( k) ; h) across each of the n

regions.

Determining the optimal ancestral states
We can determine the most likely ancestral states using the

computed values for x( j; h ) at each node in the phylogeny. At

the root node R, the most likely ancestral state is the one that

produces the highest likelihood; that is, the value of j that

Lineage-Specific Binding Sites Evolution

PLOS Computational Biology | www.ploscompbiol.org 12 August 2014 | Volume 10 | Issue 8 | e1003771



maximizes the expression qR~ argmaxjP(j) : xR(j; h) . Progres-

sively moving down the tree, if the most likely number of motif

occurrences at parent node Y is qY , the optimal number of motif

occurrences qZ at a daughter node Z is given by

qZ~argmaxjxZ(j; h):pqY j(tZ) ð9Þ

where tZ is the branch length from node Y to node Z.

Birth-death rate estimation
Birth and death rates can be estimated using a maximum-

likelihood approach. Namely, we use an EM-based approach [71] to

iteratively optimize the likelihood of the data D given the parameters

h ~ ½a, b�. We begin with an initial estimate h (0) for the birth-

death rates, generated by determining empirical birth-death rates

after conducting ancestral reconstruction using parsimony (in our

analysis, we found that the optimized parameters were not sensitive

to the initial estimates). We determine the most likely ancestral state

at each node given the initial parameter values. We then determine

the observed number of births and deaths according to these optimal

ancestral states, providing new estimates for the birth and death rates

h (1) ~ ½a (1) ,b(1)�. We then continue the process, using the

previous parameter estimates h (i) at each iteration to estimate the

optimal ancestral states and obtain more optimal estimates of the

birth and death rates h ( iz 1) until convergence (i.e., where

h (iz1) { h (i)
�� ��2

falls below a certain threshold).

Supporting Information

Figure S1 Fraction of binding sites overlapping trans-
posable elements. Plots show the percentage of human TFBSs

overlapping transposable elements (TEs) (y-axis), where binding

sites are separated according to the branch of origin (x-axis). (A)

Each colored plot corresponds to a single consensus motif; the

fraction of binding sites overlapping TEs documented by

RepeatMasker [42] are given as percentages along the y-axis. (B)

Genome-wide prevalence of seven common TE families in

humans. Fractions denote the total number of sites derived from

each family across all TEs documented by RepeatMasker. (C) TE

family composition for TE-derived TFBS according to the age of

origin of SOX2, GATA1, and CTCF binding sites. The total

height of each plot shows the total fraction of TFBS overlapping

known TEs. Colored regions corresponding to the colored regions

of Panel B denote the fraction of TFBS derived from each TE

family according to the estimated age of the binding sites (x-axis).

(TIF)

Figure S2 PhyloP conservation vs. TFBS with different
branch of origins. We used the PhyloP mammalian conserva-

tion scores available at the UCSC Genome Browser to determine

the sequence conservation level for TFBS with different branch of

origins in human. X-axis shows TFBS with different branch of

origins for four different window sizes surrounding the peak

summit. Y-axis shows the Z-score distribution for each group. For

a specific TF, we first computed the average PhyloP score (X) in

each ChIP-seq peak and then calculated the average score (M) as

well as standard deviation (SD) across all peaks in the genome. We

then grouped the binding sites according to their branch of origin

(in four groups: Hominid-specific, Simian-specific, Primate-

specific, and Eutherian-specific) and calculated the average PhyloP

score (X). Finally, we calculated the Z-score, i.e. (X-M)/SD. t-

statistic from t-test between the youngest and the oldest for each

group is also shown.

(TIF)

Figure S3 Background SNP density for TFBSs with
different branch of origin. TFBSs were grouped into different

branches of origin (X-axis). To calculate the background SNP

density surrounding these TFBSs, we extended 1 kb, 500 bp, or

125 bp to both directions (i.e., 2k, 1k, or 250 bp window) and

counted the number of common SNPs in this 2 kb window. The

figure shows that there are no significant differences of SNP

density surrounding the TFBSs with different branches of origin.

(TIF)

Figure S4 Positive enhancer rate based on the VISTA
enhancer database. The positive rate is the percentage of

human enhancers that also show enhancer activity in mouse. The

expected rate is based on all the enhancers overlapping with TFBS

used in our six TF data sets. ‘More ancestral enhancer’ has higher

positive enhancer rate compared with ‘more lineage-specific

enhancers’ or ‘neutral enhancer’, which is generally consistent

with our computational prediction that the ancestral TFBS are

more functionally conserved than lineage-specific TFBS, even

though this comparison dataset is not ideal. See Supplementary

Results in Text S1 for details.

(TIF)

Figure S5 Comparison between our method and Motif-
Map. A receiver operating characteristic (ROC) curve shows the

prediction power between our method and MotifMap. ROC

curves for MotifMap were generated using different BBLS

thresholds (ranging from zero to the maximum possible BBLS

score here, 4.73) to call a TFBS as a conserved one. In our

method, we tested two shift sizes, +/215 bp (light blue) and +/2

30 bp (dark blue). The results from MotifMap were based on +/2

15 bp shift size (magenta). See Supplementary Results in Text S1

for detailed explanation of the comparison method and how the

benchmark dataset was constructed.

(TIF)

Figure S6 Sensitivity of our method when we add noisy
sites in leaf nodes. Sensitivity of our method on the uncertainty

of number of binding sites in leaf nodes was determined by

randomly deleting/adding 5% sites in +/2100 bp of peak summit

in all the species except human. Predictions were compared with

original results and the changes of branch of origin for each

binding site were counted. Y-axis shows the percentage of binding

sites with various branch change. 0 means the prediction of branch

of origins remain same before and after we randomly delete or

insert binding sites.

(TIF)

Figure S7 Sensitivity of our method when we change the
branch lengths. Sensitivity of our method on the branch length

of phylogenetic tree was characterized by randomly changing the

branch lengths to a certain extent. The length of each branch in

phylogenetic tree can be varied in certain range relative to its

original length (shown on X-axis). Y-axis shows the percentage of

binding sites that have different branch of origin before and after

we randomly change branch lengths in the phylogenetic tree.

(TIF)

Table S1 Comparison of consensus motifs.
(PDF)

Table S2 Gene functions and pathways associated with
hominid-specific TFBS.
(PDF)

Table S3 Performance comparison with MotifMap and
PReMod.
(PDF)
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Table S4 Gene functions and pathways associated with
simian-specific TFBS.
(PDF)

Table S5 Gene functions and pathways associated with
ancestral TFBS.
(PDF)

Text S1 Supplementary methods and supplementary
results.
(PDF)
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