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    Introduction 
 During vertebrate gastrulation, an embryo of simple and sym-

metrical morphology is reshaped to reveal its fundamental 

body plan. This process is accomplished by cooperation of 

four morphogenetic movements — epiboly, internalization, and 

convergence and extension (C & E) — that are largely conserved 

among vertebrates ( Arendt and Nubler-Jung, 1999 ;  Leptin, 

2005 ;  Solnica-Krezel, 2005 ). Epiboly starts at the late blastula 

stage as the yolk cell pushes into the blastoderm, which thins 

and expands vegetally until it encloses the entire yolk cell 

( Warga and Kimmel, 1990 ;  Solnica-Krezel, 2006 ;  Rohde and 

Heisenberg, 2007 ). At this stage, the embryo is composed of 

four cell layers: the enveloping layer (EVL), deep cells, the 

yolk syncytial layer (YSL), and the yolk cell. The EVL is a 

superfi cial epithelial layer that covers a mass of deep cells, 

which give rise to embryonic tissues. The YSL is a shallow and 

superfi cial cytoplasmic layer within the yolk cell ( Solnica-

Krezel and Driever, 1994 ;  Rohde and Heisenberg, 2007 ). 

Proper epiboly involves coordinated movements of all of these 

layers, and the underlying cellular and molecular mechanisms 

remain to be fully defi ned ( Solnica-Krezel, 2006 ;  Rohde and 

Heisenberg, 2007 ). 

 Recent studies indicate that E-cadherin – mediated cell – cell 

adhesion plays a critical role in zebrafish epiboly. In both 

E-cadherin mutant embryos and embryos injected with E-cadherin 

morpholino oligonucleotides (MOs) to block its translation, the 

epibolic movement of the deep cells is delayed or arrested at 

midgastrulation, although the YSL and EVL expand vegetally 

in a relatively normal fashion ( Babb and Marrs, 2004 ;  Kane et al., 

2005 ;  McFarland et al., 2005 ;  Shimizu et al., 2005 ). This epi-

bolic delay has been attributed to impaired radial intercalation 

resulting from decreased adhesion among the deep cells and be-

tween the deep cells and the EVL ( Kane et al., 2005 ;  Montero 

et al., 2005 ;  Shimizu et al., 2005 ). An additional cell – cell adhesion 

E
piboly spreads and thins the blastoderm over the 

yolk cell during zebrafi sh gastrulation, and in-

volves coordinated movements of several cell layers. 

Although recent studies have begun to elucidate the 

processes that underlie these epibolic movements, the 

cellular and molecular mechanisms involved remain to 

be fully defi ned. Here, we show that gastrulae with al-

tered G �  12/13  signaling display delayed epibolic move-

ment of the deep cells, abnormal movement of dorsal 

forerunner cells, and dissociation of cells from the blasto-

derm, phenocopying  e-cadherin  mutants. Biochemical 

and genetic studies indicate that G �  12/13  regulate epi-

b oly, in part by associating with the cytoplasmic termi-

nus of E-cadherin, and thereby inhibiting E-cadherin 

activity and cell adhesion. Furthermore, we demonstrate 

that G �  12/13  modulate epibolic movements of the envel-

oping layer by regulating actin cytoskeleton organiza-

tion through a RhoGEF/Rho-dependent pathway. These 

results provide the fi rst in vivo evidence that G �  12/13  reg-

ulate epiboly through two distinct mechanisms: limiting 

E-cadherin activity and modulating the organization of 

the actin cytoskeleton.
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bands and the EVL margin, moving the EVL toward the vege-

tal pole ( Koppen et al., 2006 ). Disruption of these actin struc-

tures, as a consequence of either cytochalasin B treatment 

( Cheng et al., 2004 ), interference with myosin2 ( Koppen et al., 

2006 ), or the homeobox transcription factor Mtx2 ( Wilkins et al., 

2008 ), results in a delay or failure in epiboly. Similarly, an ab-

normal cytoskeleton contributes to the epibolic delay in Pou5fl -

defi cient embryos ( Lachnit et al., 2008 ). 

 We previously demonstrated that G �  12/13  are required for 

C & E gastrulation movements in zebrafi sh ( Lin et al., 2005 ). 

Here, we fi nd that G �  12/13  regulate epiboly in zebrafi sh, and pro-

vide evidence that G �  12/13  interact with E-cadherin to negatively 

modulate E-cadherin – mediated cell – cell adhesion. Moreover, 

we show that G �  12/13  also regulate epiboly by promoting actin 

microfi lament assembly through a Rho guanine nucleotide ex-

change factor (GEF)-dependent signaling pathway. Our results 

therefore identify a novel G �  12/13 -dependent mechanism for 

modulating epiboly during vertebrate gastrulation. 

 Results 
 Disruption of G �  12/13  function results in 
epiboly delay 
 We have previously identifi ed one G �  12  and two G �  13  (G �  13 a 

and G �  13 b isoforms) in zebrafi sh and demonstrated that proper 

G �  12/13  signaling is essential for C & E movements, as well as for 

epiboly during zebrafi sh gastrulation ( Lin et al., 2005 ). To de-

fi ne further the mechanisms whereby G �  12  and G �  13  regulate 

epiboly, we used gain- and loss-of-function approaches. To en-

hance G �  13  function, we injected embryos with a synthetic 

RNA encoding G �  13 a. To inhibit G �  12/13  function, we injected 

embryos with a mixture of antisense MOs (3MO) that interfere 

with translation of the three G �  12/13  transcripts ( gna13a ,  gna13b , 

and  gna12 ; 4 ng each). Alternatively, we injected a synthetic 

RNA encoding the carboxy-terminal (CT) peptides of G �  12/13 , 

which have been shown to disrupt the coupling of G �  12/13  to 

their cognate receptors ( Akhter et al., 1998 ;  Gilchrist et al., 

1999 ;  Arai et al., 2003 ;  Lin et al., 2005 ). In zebrafi sh, epiboly 

initiates at the sphere stage and is complete when the blasto-

derm encloses the yolk cell ( Warga and Kimmel, 1990 ). Embryos 

with either an excess or defi ciency of G �  12/13  expression initi-

ated epiboly and progressed through early stages at rates com-

parable to those of their uninjected siblings. Furthermore, they 

underwent internalization normally and formed embryonic 

shields of normal morphology (unpublished data). However, 

when the blastoderm covered 70% of the yolk cell in control 

embryos (70% E), embryos with altered G �  12/13  activity lagged 

in epibolic movements behind their siblings by 10 – 20%. By 

80% E, only a very small fraction of uninjected embryos (1.1  ±  

1.9%; 136 embryos) showed epiboly defects, yet a majority of 

embryos overexpressing G �  13 a (98.5  ±  2.6%, 258 embryos), in-

jected with the G �  13 -CT RNA (86.5  ±  6.5%, 106 embryos) or 

injected with 3MO (84.4  ±  5.7%, 143 embryos), exhibited epib-

oly defects ( Fig. 1 M ). 

 The YSL consists of an internal YSL and an external YSL 

that is populated with YSN ( Solnica-Krezel and Driever, 1994 ). 

The EVL is tightly linked to the YSL margin. Therefore, as 

defect was observed in E-cadherin – defi cient embryos, with cells 

bulging and detaching from the embryonic surface ( Babb and 

Marrs, 2004 ;  Kane et al., 2005 ;  McFarland et al., 2005 ;  Shimizu 

et al., 2005 ). 

 E-cadherin is a plasma membrane glycoprotein that is 

indirectly linked to the actin cytoskeleton through  � -catenin 

( Barth et al., 1997 ). The involvement of E-cadherin in morpho-

genesis and differentiation during the early development has 

been also demonstrated in many species including mouse, chick, 

and frog ( Halbleib and Nelson, 2006 ). In addition, E-cadherin is 

essential for cell migration and polarity, as well as neuronal 

synapse function. E-cadherin expression is regulated at various 

levels including gene expression, protein stability, and intra-

cellular protein distribution ( Halbleib and Nelson, 2006 ). Down-

regulation of E-cadherin is regarded as the hallmark of the 

epithelial – mesenchymal transition, and is often observed in in-

vasive tumor cells ( Behrens, 1999 ). 

 In comparison to our fairly detailed knowledge about the 

regulation of E-cadherin expression, we know very little about 

regulation of its activity. However, recent studies in cell culture 

indicate that heterotrimeric G proteins of the G �  12  family (G �  12  

and G �  13 ) can modulate E-cadherin function: G �  12/13  can bind 

E-cadherin at its cytoplasmic domain to block the  � -catenin –

 binding site, resulting in inhibition of cell – cell adhesion ( Kaplan 

et al., 2001 ;  Meigs et al., 2001 ;  Meigs et al., 2002 ). Nevertheless, 

the signifi cance of the G �  12/13  and E-cadherin interaction during 

morphogenesis remains to be tested. 

 During epiboly, the yolk cell may serve as a towing motor 

to drive the movements of epiboly. Nuclei of the YSL move 

vegetally even after removal of the blastoderm ( Trinkaus, 1951 ), 

which indicates that the YSL can undergo epiboly autono-

mously. Because the EVL and the YSL are tightly attached 

( Betchaku and Trinkaus, 1986 ), EVL epiboly is believed to de-

pend on the YSL expansion. In addition, endocytosis in the YSL 

near the blastoderm margin results in removal of the yolk cyto-

plasmic membrane and could play a role in epiboly by drawing 

the blastoderm to the vegetal pole ( Trinkaus, 1993 ;  Solnica-

Krezel and Driever, 1994 ). 

 The cytoskeleton plays many important roles during 

epiboly. Extensive microtubule networks in the yolk cell may 

facilitate the epibolic movements, as microtubule disruption 

completely inhibits the movement of yolk syncytial nuclei 

(YSN) and impairs the epibolic movements of the deep cells 

and the EVL ( Strahle and Jesuthasan, 1993 ;  Solnica-Krezel 

and Driever, 1994 ). A decrease in the amount of polymerized 

microtubules in the yolk cell also leads to epiboly delay ( Hsu 

et al., 2006 ). Actin microfi laments throughout the embryo 

contribute to epiboly as well ( Zalik et al., 1999 ;  Cheng et al., 

2004 ;  Koppen et al., 2006 ). Three distinct actin structures are 

elaborated during late epiboly stages: two rings at the margin 

of the deep cells and the EVL, and a punctate band of actin ac-

cumulation in the external YSL adjacent to the EVL margin 

( Cheng et al., 2004 ). It has been proposed that the actin rings 

act as a  “ purse string ”  to pull the EVL vegetally, thereby ad-

vancing the epiboly process ( Cheng et al., 2004 ), whereas the 

punctate band of contractile elements including actin and 

myosin 2 in the YSL contributes to the shortening of the actin 
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 Figure 1.    G �  12/13  regulate epibolic movements of the deep cells.  (A and B) Nomarski images of control WT embryos (A) and embryos overexpress-
ing G �  13 a (B) at 80% epiboly (A �  and B �  are schematic drawings of A and B), showing the dcm and YSL nuclei (YSLn; green arrows and dots), which 
move together in control embryos (A and A � ) but are separated in embryos overexpressing G �  13 a (B and B � ). (C and D) Nomarski images of yolk cell 
region at high magnifi cation in a control WT embryo (C) and an embryo overexpressing G �  13 a (D), showing distortions in the YCL (white arrowheads). 
(A – D) Lateral view, with dorsal shown toward the right and vegetal toward the bottom. (E – H) Nomarski images of control WT embryos (E), embryos over-
expressing either full-length G �  13 a (F), or the CT fragment of G �  13 a (G �  13 -CT; G), and embryos injected with 3MOs against  gna13a ,  gna13b , and  gna12  
(4 ng each; H) at 95% epiboly. (E �  – H � ) Schematic drawings of E – H. Vegetal view is shown. df, df cells (red arrowheads). Note: in F – H versus E, the vegetal 
opening is much larger, and dfs are separated from the dcm; in F and H, the dfs are split. (I – L) Expression of the  ntl  mRNA at 90% epiboly. Images show 
 ntl  expression domains at dcm and df. Dorsal view, with the vegetal pole (VP; blue lines) toward the bottom. Yellow lines with double arrows, distance 
from dcm to VP. Bars, 100  μ m. (M) The percentage of embryos with epibolic defects. Data are compiled from two to three different experiments. Error bars 
represent mean  ±  SEM.   
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affect the expression of E-cadherin in embryos with reduced 

or excess signaling. We performed Western blot analyses using 

an anti – E-cadherin antibody with protein extracts prepared 

either from gastrulae injected with  gna13a  RNA or 3MO, or 

from uninjected control siblings. As shown in  Fig. 3 A , two 

prominent bands of E-cadherin, which may correspond to two 

glycosylation forms of E-cadherin, were detected, as described 

previously ( Babb and Marrs, 2004 ). There was no clear differ-

ence in the expression level of E-cadherin protein between the 

control embryos and embryos with excess or reduced G �  12/13  

signaling ( Fig. 3 A ). We then performed whole-mount immuno-

staining to determine if G �  12/13  regulate the cellular distribu-

tion of E-cadherin. It has been shown that E-cadherin is 

expressed at a higher level at the anterior region of the hypo-

blast during gastrulation ( Babb and Marrs, 2004 ). To identify 

this region, we used embryos obtained from transgenic 

 TG :[ gsc-GFP ] fi sh, in which GFP is expressed in the dorsal 

midline ( Doitsidou et al., 2002 ;  Inbal et al., 2006 ). As shown 

in  Fig. 3 B , in control embryos at 70% E, E-cadherin was ex-

pressed in all blastomeres, predominantly on the cell mem-

branes, but also in a punctate pattern in the cytosol, as described 

previously ( Babb and Marrs, 2004 ;  Montero et al., 2005 ). Our 

analyses revealed that neither G �  13 a overexpression nor 

G �  12/13  down-regulation (3MO-mediated) affected the expres-

sion level or the cellular distribution of E-cadherin ( Fig. 3 B ). 

seen in  Fig. 1 (A and A � ) , during the course of normal epiboly, 

the YSN and the deep cell margin (dcm) stay together (the 

EVL is invisible, as it is not in the focal plane;  Trinkaus, 1984 ; 

 Solnica-Krezel and Driever, 1994 ). However, in embryos over-

expressing G �  13 a, a sizable gap was formed between the YSN 

and the dcm ( Fig. 1, B and B �  ), which indicates that epibolic 

movement of the deep cells lags behind the movement of the 

YSL. Thus, the distance between the dcm and the vegetal pole 

is signifi cantly greater in embryos overexpressing G �  13 a than 

in the uninjected control ( Fig. 1, A and B ). In addition, we 

noted that in contrast to the uniform and smooth appearance of 

the yolk cytoplasmic layer (YCL; a thin anuclear cytoplasmic 

layer covering the yolk mass) in control embryos ( Fig. 1 C ), 

this structure was frequently distorted in G �  13 a-expressing 

embryos, exhibiting an uneven thickness ( Fig. 1 D , arrowheads). 

As epiboly progressed to 95% E, the dcm of wild-type (WT) 

embryos moved closer to the vegetal pole ( Fig. 1, E and E �  ), 

but those of embryos overexpressing G �  13 a, the dominant-

negative G �  13 -CT peptide, or injected with 3MO had a much 

larger vegetal opening ( Fig. 1, E – H �  ). Moreover, the dorsal 

forerunners (dfs), a small dorsal cell population that normally 

moves toward the vegetal pole as a single cluster in close asso-

ciation with the dcm ( Fig. 1 E ;  Cooper and D ’ Amico, 1996 ), 

were well separated from the dcm and far ahead of the remain-

ing deep cells in embryos with reduced or excess G �  12/13  func-

tion. Interestingly, in these embryos, the df cells split and 

formed several smaller clusters ( Fig. 1, F – H ). These observa-

tions in live embryos were confi rmed by analyzing the expres-

sion of the  no tail  ( ntl ) gene, which marks the mesodermal 

precursors at the dcm and the df cells ( Schulte-Merker et al., 

1994 ). As seen in  Fig. 1 (I – L) , the distance between the dcm 

and the vegetal pole was signifi cantly greater in embryos with 

either reduced or excess G �  12/13  function than that in control 

embryos, and dfs were separated from the dcm and divided 

into several smaller clusters. The observed delay in epiboly 

and abnormal behavior of the dfs resemble aspects of the pheno-

types that have been described for the  half-baked  ( hab ) 

mutants, which harbor mutations in the  cadherin1  ( cdh1 ; 

E-cadherin) gene ( Kane et al., 1996 ;  Kane and Warga, 2004 ), 

and in embryos injected with an MO that targets  cdh1  ( Babb 

and Marrs, 2004 ). This observation suggested a possible link 

between G �  12/13  function and E-cadherin activity. 

 In embryos overexpressing G �  13 a, but not those injected 

with G �  13 -CT RNA or 3MO (not depicted), cells frequently dis-

sociated from the embryonic surface ( Fig. 2, A – C �  ), and gaps 

formed between the paraxial and axial mesoderm during seg-

mentation ( Fig. 2 E ). These phenotypic changes have also been 

observed in  hab  mutant embryos and have been attributed to 

defects in cell – cell adhesion ( Kane et al., 2005 ;  McFarland 

et al., 2005 ). Together, these observations suggest that G �  12/13  

signaling may negatively regulate E-cadherin – mediated cell –

 cell adhesion during zebrafi sh gastrulation. 

 G �  12/13  do not infl uence E-cadherin 
expression or intracellular distribution 
 To test the hypothesis that G �  12/13  regulate epiboly by modu-

lating the function of E-cadherin, we fi rst determined if G �  12/13  

 Figure 2.    Overexpression of G �  13 a results in cell adhesion defects in 
embryonic tissues.  (A – C � ) Nomarski images of uninjected WT embryos, em-
bryos overexpressing G �  13 a, and  hab vu44/vu44   mutant (E-cadherin – defi cient) 
embryos. Higher magnifi cation images of the boxed areas are shown in 
A �  – C � . Red arrows indicate cells detaching from the blastoderm. Lateral 
view is shown, with dorsal (D) toward the right and the vegetal pole (VP) 
toward the bottom. (D and E) Nomarski images of notochord and somites 
in the WT embryos and embryos overexpressing G �  13 a at the 4 – 5 somite 
stage. Red arrowheads indicate gaps between the notochord and somites. 
Dorsal view is shown, with anterior to the left. Bars, 100  μ m.   
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G �  12/13  signaling should suppress the phenotypic changes 

caused by E-cadherin defi ciency. Among the uninjected prog-

eny from  hab vu44/+   parents, 63  ±  11% embryos showed a nor-

mal pattern of  ntl  expression ( Fig. 4 A ); 16  ±  9% exhibited 

mild defects in epiboly, in which their df cells were divided 

into smaller clusters in spite of being tightly associated with 

the margin (type I defect;  Fig. 4 B ); and 20  ±  3.3% showed a 

strong epiboly delay in the deep cells and obvious separation 

of the df cells from the dcm (type II defect;  Fig. 4 C ). This 

phenotypic distribution is consistent with a partial penetrance 

of both the dominant df defect and the recessive epiboly pheno-

type of  hab vu44   mutation ( Kane et al., 2005 ). A reduction in the 

expression of either G �  12  or G �  13  in the progeny of  hab vu44/+   
heterozygotes partially suppressed the mutant epibolic de-

fects, as indicated by a signifi cant increase in the proportion of 

embryos showing normal  ntl  expression in the blastoderm 

margin and df cells, and a decrease in the percentage of em-

bryos with severe epibolic defects (type II;  Fig. 4 E ). Con-

versely, a slight increase in G �  13  activity exacerbated these 

defects ( Fig. 4, D – E ). These results support the notion that 

G �  12/13  regulate epiboly through E-cadherin by acting as nega-

tive regulators of E-cadherin activity. 

 G �  12/13  regulate epiboly by inhibiting 
E-cadherin activity 
 Next, we aimed to determine whether G �  12/13  modulate 

E-cadherin function in vivo by testing their genetic interactions. 

We took advantage of a zebrafi sh mutant,  hab vu44  , harboring a pre-

mature stop codon at amino acid residue L553 within the EC4 

domain of the extracellular portion of the  cdh1  gene ( Kane 

et al., 2005 ).  hab vu44/vu44   embryos display an epiboly delay/arrest 

after midgastrulation, probably due to a moderating effect of 

the maternal contribution of E-cadherin, which has been 

shown to cooperate with the zygotically expressed E-cadherin 

to regulate epiboly ( Shimizu et al., 2005 ). We injected embryos 

derived from crosses among  hab vu44   heterozygous fi sh with 

either a small dose of synthetic RNA encoding G �  13 a (10 pg) or 

a single MO against G �  13 a or G �  12  (4 ng) to elevate or reduce 

the function of G �  13  or G �  12 , respectively. Such treatments 

alone had no effect on the epiboly in WT embryos (unpublished 

data). We then assessed whether this manipulation of G �  12/13  

function can modulate the phenotypic changes caused by 

E-cadherin defi ciency by analyzing the  ntl  expression profi le. We 

reasoned that if G �  12/13  negatively regulate the E-cadherin activ-

ity, then excess G �  12/13  function exacerbates it, and decreased 

 Figure 3.    Altered G �  12/13  expression does 
not change the levels and distribution of 
E-cadherin and  � -catenin.  (A) Western blots 
showing the expression levels of E-cadherin, 
the G protein  �  subunit, and  � -catenin in the un-
injected WT, G �  13 a-overexpressing, and three 
MOs (3MO)-injected gastrulae. (B and C) Con-
focal images showing the cellular distribution 
of E-cadherin (red) in the anterior mesendo-
derm of embryos at 70% E (B;  gsc -GFP labels 
the prechordal mesoderm), and of  � -catenin in 
the lateral mesoderm in embryos at 80% E (C). 
Bars, 10  μ m.   
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E-cad–CyT but not by GST alone, which suggests a specifi c 

association between zebrafi sh G �  13 a and the E-cad–CyT. In addi-

tion, we demonstrated that  � -catenin can compete with G �  13 a for 

the binding to E-cadherin in a dose-dependent manner ( Fig. 5 B ), 

confirming that the  � -catenin –  and G �  13 a-binding sites on 

E-cadherin are close to one another ( Kaplan et al., 2001 ). How-

ever, we did not observe any obvious change in the expression 

level and intracellular distribution of  � -catenin in embryos with 

altered G �  12/13  expression ( Figs. 3 C  and  S1 ). 

 E-cadherin is known to regulate cell – cell adhesion in zebra-

fi sh ( Meigs et al., 2002 ;  Montero et al., 2005 ) and many other 

animals ( Halbleib and Nelson, 2006 ). Moreover, the binding of 

G �  13  to E-cadherin interferes with its cell adhesive function in 

mammalian cultured cells ( Meigs et al., 2002 ). To determine if 

G �  12/13  can infl uence cell adhesion in zebrafi sh, we performed a 

cell tracing experiment in embryos ( Warga and Kane, 2003 ). In 

this assay, zygotes were fi rst injected with  gna13a  RNA to en-

hance G �  13  function. At the 256-cell stage, a single cell at the 

animal pole of an uninjected or  gna13a -RNA – injected blastula 

was then injected with fl uorescein dextran, then the distribution 

of the progeny of the labeled cells at several time points up to 

50%E was analyzed. During embryonic development, blasto-

meres at the animal pole become separated from each other by 

intercalating radially from deeper layers to the more superfi cial 

layers without signifi cant directional migration ( Warga and 

Kimmel, 1990 ). This phenomenon is thought to be mediated by 

E-cadherin – dependent cell – cell adhesion interactions, because 

in  hab  mutants (E-cadherin defi cient), cells intercalate from the 

deeper to the more superfi cial layers but fail to maintain this 

position and often fall back into the deeper layer ( Warga and 

Kane, 2003 ;  Kane et al., 2005 ). We found that progeny of the 

labeled cells gradually dispersed over time in control embryos 

( Fig. 5 C ) and in embryos overexpressing G �  13 a ( Fig. 5 D ). To 

quantify the scattering, we marked the outside edge of the re-

gions containing the labeled cells, and calculated the areas. We 

then determined a scattering factor by comparing the areas at 

different time points to the initial area for each embryo. 1 h after 

injection, the scattering factor for the G �  13 a-expressing em-

bryos was similar to that of control embryos. However, by the 

second and third hour, the ratio in embryos overexpressing 

G �  13 a was signifi cantly greater than that in control embryos 

( Fig. 5, C – E ). These results indicate that overexpression of 

G �  13 a enhanced dispersion in the blastoderm during epiboly, 

which suggests that G �  13 a-expressing cells have a reduced ten-

dency to adhere to one another. These fi ndings provide further 

support for the notion that signaling via G �  13  negatively regu-

lates E-cadherin activity. 

 G �  12/13  regulate actin cytoskeleton 
assembly during epiboly via a 
RhoGEF/Rho-dependent pathway 
 Although embryos with enhanced or decreased G �  12/13  showed 

similar epibolic defects in deep cells as E-cadherin mutant em-

bryos, we noted that G �  13 a-overexpressing embryos exhibited 

additional defects such as a distorted YCL ( Fig. 1 D ), which 

suggests that G �  13 a signaling may contribute to the regulation 

of epiboly via additional mechanisms that are independent of 

 G �  12/13  interact with E-cadherin and inhibit 
cell adhesion 
 To better understand the mechanisms by which G �  12/13  regulate 

E-cadherin activity, we set out to test these two proteins for 

physical interactions in vivo. Because previous studies in cul-

tured cells had shown that mammalian G �  12  or G �  13  can bind the 

cytoplasmic domain of E-cadherin ( Kaplan et al., 2001 ;  Meigs 

et al., 2001 ), we performed the following procedures. First, we 

cotransfected HEK 293 cells with zebrafi sh G �  13 a and a GST-

tagged construct encoding the E-cadherin cytoplasmic terminus 

(E-cad–CyT) or GST only, and performed a GST pull-down 

assay. As shown in  Fig. 5 A , G �  13 a was pulled down by GST – 

 Figure 4.    G �  12/13  signaling modulates the phenotype of  hab vu44   mutant 
embryos.  (A – C) Different phenotypic classes of progeny of  hab vu44/+   par-
ents revealed by  ntl  staining: normal pattern (A), type I (B), and type II (C). 
See text for details. (D) A representative image showing exacerbation of 
epibolic defects of  hab vu44   mutant embryos overexpressing G �  13 a (20 pg; 
see text for details). A dorsal view is shown. AP, animal pole; VP, vegetal 
pole. Bars, 100  μ m. (E) Effects of altered G �  12/13  signaling on distribution 
of the phenotypic classes of progeny from  hab vu44/+   parents. The data were 
generated from at least three separate experiments, with the total number 
of embryos indicated below the graph. Error bars represent mean  ±  SEM. 
*, P  <  0.001; **, P  <  0.05;  † , P  <  0.01; #, P  <  0.001 versus control.   

http://www.jcb.org/cgi/content/full/jcb.200805148/DC1
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EVL and the deep cells move together toward the vegetal pole 

during epiboly. Consistent with previous papers on studies per-

formed in  hab vu44/vu44   mutant embryos, the deep cells exhibited 

impaired epiboly and lagged behind the EVL margin ( Fig. 6 D ); 

whereas the EVL underwent epiboly at a relatively normal rate, 

as revealed by the observation that the distance between the 

EVL margin and the vegetal pole ( Fig. 6 , yellow lines with 

arrows) in the mutant was comparable to that in WT embryos 

( Fig. 6, A and D ;  Kane et al., 2005 ;  Koppen et al., 2006 ). As ex-

pected, embryos with reduced or excess G �  12/13  function dis-

played similar epibolic defects of the deep cells (separation 

from EVL margin), although the defects were more minor than 

those in  hab vu44/vu44   mutant embryos ( Fig. 6, B – D ). However, 

embryos with altered G �  12/13  function exhibited an epibolic de-

lay of the EVL, as the distance between the EVL margin and 

vegetal pole ( Fig. 6 , yellow lines with arrows) was signifi cantly 

increased relative to that in the age-matched uninjected WT em-

bryos ( Fig. 6, A – C ). 

E-cadherin. Such distortions of the YCL have also been ob-

served in embryos with cytoskeleton abnormalities; e.g., in em-

bryos treated with taxol to stabilize microtubules ( Solnica-Krezel 

and Driever, 1994 ) or in Pou5fl  mutants ( Lachnit et al., 2008 ). 

We have previously shown that, like their mammalian counter-

parts, zebrafi sh G �  12/13  can promote actin stress fi ber formation 

in cultured cells ( Lin et al., 2005 ). Based on these observations, 

we tested whether G �  12/13  can also regulate cytoskeletal func-

tion in zebrafi sh gastrulae. 

 To assess the organization of actin cytoskeleton during 

gastrulation, we visualized actin by whole-mount immunostain-

ing with phalloidin. As shown in  Fig. 6 (A – D) , the confocal im-

ages revealed the periphery of the superfi cial EVL cells and the 

deep cells beneath, as well as two actin rings at the margins of 

the deep cells and the EVL ( Fig. 6, A – D , red and green arrow-

heads, respectively), as reported previously ( Cheng et al., 2004 ). 

In WT embryos, the actin rings adjacent to the deep cells and 

the EVL are closely associated ( Fig. 6 A ), which indicates that 

 Figure 5.    G �  13 a interacts with E-cadherin and inhibits cell adhesion.  (A) G �  13 a interacts with the cytoplasmic domain of E-cadherin. The GST pull-down 
assay was performed on cell extracts from HEK 293 cells cotransfected with G �  13 a and either GST or a GST-tagged cytoplasmic domain of E-cadherin 
(GST – E-cad–CyT). The precipitates were immunoblotted with anti-G �  13  and anti-GST antibodies. The level of G �  13 a expression in the lysates is shown at 
the bottom of the panel. (B)  � -catenin competes with E-cadherin for binding to G �  13 a in a dose-dependent manner. HEK 293 cells were transfected with 
G �  13 a and GST – E-cad–CyT with or without  � -catenin at various doses, and the GST pull-down assay was performed. The expression levels of  � -catenin 
and G �  13 a in the lysates are shown. (C and D) Overexpression of G �  13 a enhances cell scattering in the blastoderm. Shown are representative images of 
labeled cells in the blastoderm of control WT embryos and embryos overexpressing G �  13 a scattering over time. The area of cell scattering is indicated by 
the yellow broken lines, which mark the cells at the outer edge. Bars, 100  μ m. (E) Quantitative data from four separate experiments (eight embryos in each 
group), showing the ratio of the area of cell scattering relative to the starting point, at different time points. Error bars represent mean  ±  SEM. *, P  <  0.05 
versus control.   
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EVL cells in  hab vu44/vu44   mutant embryos were elongated and 

aligned properly (LWR = 1.79  ±  0.54; angle = 64  ±  16 ° C; 171 

cells, 3 embryos; P  >  0.05 vs. WT). In contrast, in embryos 

with reduced or excess G �  12/13  function, the EVL cells were 

signifi cant rounder (smaller LWR; 3MO: LWR = 1.46  ±  0.32, 

379 cells, 8 embryos; G �  13 a: LWR = 1.55  ±  0.44, 342 cells, 

8 embryos; P  <  0.001 vs. control;  Fig. 6, E – H ). In addition, 

these EVL cells were more disorganized and failed to align 

their cell bodies along the direction of epibolic movement, 

with orientations of 52  ±  26 °  or 54  ±  25 °  (P  <  0.001 vs. con-

trol) in G �  12/13 -depleted or G �  13 a-overexpressing embryos, re-

spectively. Moreover, only 41 – 49% of the cells from these 

embryos exhibited an angle within the range of 60 – 120 ° , 

which suggests that most EVL cells in these embryos were 

oriented in random directions ( Fig. 6, E – G and I – K ). Interest-

ingly, the punctate actin accumulation adjacent to the EVL 

margin was markedly reduced in embryos overexpressing 

G �  13 a ( Fig. 6 G ; compare the yellow arrows  Fig. 6, E and G ). 

Moreover, these embryos exhibited abnormal formation of ac-

tin bundles in the YCL, although these are rarely observed in 

the yolk cells of WT embryos. This is possibly due to the ag-

gregation or contraction of F-actin, which was absent in some 

areas of the cortical cytoplasmic layer ( Fig. 6, C and G ). 

 Work in mammalian systems has established that G �  12/13  

regulate actin cytoskeleton dynamics to modulate cell shape 

 During epiboly, the constriction of the marginal EVL 

cells leads to dramatic cell-shape changes in the EVL cells, and 

to the elongation of the EVL cells along the animal – vegetal 

axis. Failure of such cell-shape changes has been implicated in 

epibolic defects ( Koppen et al., 2006 ). To further evaluate the 

morphology of the EVL cells in embryos with altered G �  12/13  

function, we took confocal images of phalloidin-stained em-

bryos at higher magnifi cation, and analyzed cell shape (length-

to-width ratio [LWR]) and orientation (the angle of the long 

axis of the EVL cells relative to a line parallel to the EVL 

margin) of the EVL cells near the margin. As shown in  Fig. 6 

(E – H) , there was no signifi cant difference in the intensity of 

F-actin staining in the EVL cells between the uninjected WT 

embryos and embryos injected with 3MO or the G �  13 a RNA. 

However, both the shape and orientation of the EVL cells in 

embryos with reduced or excess G �  12/13  function were signifi -

cantly altered with respect to those in the control embryos 

( Fig. 6 E-G ). In the uninjected control embryos, the EVL cells 

were elongated, with a mean LWR of 1.73  ±  0.3 (220 cells, 

6 embryos), and were orientated at an angle of 67  ±  20 ° . Of 

220 cells counted, 73% aligned their cell bodies at an angle in 

the range of 60 – 120 °  with respect to the EVL margin; this in-

dicates that most of these cells elongate vegetally along a line 

roughly perpendicular to the EVL margin, which is consistent 

with the direction of the epibolic movement. Similarly, the 

 Figure 6.    G �  12/13  regulate cytoskeleton organization during epiboly.  (A – D) Confocal images show phalloidin staining of F-actin in gastrulae. Red and 
green arrowheads indicate the margin of the deep cells and the EVL, respectively; yellow lines with arrows indicate the distance between the EVL margin 
and the vegetal pole (VP; white lines). Pink asterisks indicate the actin bundles in the yolk. (E – G) Representative images of the EVL cells indicated at high 
magnifi cation. The cell boundaries of a few EVL cells of each group are highlighted. Note: the EVL cells in embryos injected with 3MO and embryos over-
expressing G �  13 a are rounder and not correctly aligned. Yellow arrows indicate an actin ring in the vegetal margin of the EVL. Bars, 100  μ m. (H) Quantitative 
data showing the LWRs of the EVL cells close to the margin. Error bars represent mean  ±  SEM. *, P  <  0.05 versus WT. #, P  >  0.05 versus control. (I – K) The 
half-Rose diagrams show the numbers of EVL cells for which the angle of the long axis relative to a line parallel to the EVL margin falls within each sector.   
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 To determine if zebrafi sh G �  12/13  modulate epiboly via a 

RhoGEF-dependent signaling pathway, we fi rst examined the 

effect of Arhgef11 overexpression on epiboly. The overexpres-

sion of Arhgef11 resulted in similar epiboly defects and dis-

tortions in the YCL, similar to those observed for G �  12/13  

overexpression ( Fig. 7 D  and not depicted). Actin staining re-

vealed that embryos overexpressing Arhgef11 also exhibited 

delayed epiboly of the deep cells and the EVL as well as the 

formation of thick actin bundles in the YCL ( Fig. 7 H ). Similar 

defects were observed in embryos overexpressing a constitu-

tively activated zebrafi sh RhoA (data not shown). To test 

whether RhoGEF acts downstream of G �  12/13  in the regulation 

of the actin cytoskeleton, we coexpressed G �  13 a together with 

a dominant-negative form of Arhgef11 lacking the DH and PH 

and migration via a RhoGEF/Rho-dependent signaling path-

way ( Buhl et al., 1995 ;  Gohla et al., 1998 ;  Hart et al., 1998 ;  

Kozasa et al., 1998 ). We have shown previously that, like zebra-

fish G �  12/13 , one of the zebrafish RhoGEFs, PDZRhoGEF 

(Arhgef11), can induce stress fi ber formation in HEK 293 cells 

( Lin et al., 2005 ;  Panizzi et al., 2007 ), which suggests that zebra-

fi sh G �  12/13  also function through RhoGEF to regulate actin or-

ganization. Furthermore, we showed that, when coexpressed in 

HEK 293 cells, G �  13 a specifi cally coprecipitated with myc-

tagged full-length Arhgef11, and this interaction was not ob-

served when an Arhgef11 mutant lacking the RGS domain, 

known to be required for target binding, was coexpressed. This 

indicates that G �  12/13  physically interact with PDZRhoGEF via 

the RGS domain ( Fig. 7 J ). 

 Figure 7.    G �  13 a promotes actin assembly via a PDZ RhoGEF-dependent pathway.  (A – D) Nomarski images of live WT embryos (A), embryos over-
expressing G �  13 a alone (B), embryos overexpressing G �  13 a and a dominant-negative mutant zebrafi sh Arhgef11,  � DHPH (C), or embryos overexpressing 
Arhgef11 (D) at 80% epiboly. Bar, 250  μ m. (E – H) Confocal z-projection images show phalloidin staining of F-actin. Red and green arrowheads indicate 
the dcm and the EVL, respectively; pink asterisks show the actin bundles in the yolk. Note the gap between dcm and the EVL, and the lack of actin bundles 
in embryos coinjected with G �  13 a and a  � DHPH-encoding RNA. VP, vegetal pole. Bars, 100  μ m. (I) The percentage of embryos with actin bundles in the 
embryos expressing G �  13 a alone or both G �  13 a and  � DHPH. *, P  <  0.05 versus G �  13 a. (J) G �  13 a interacts with zebrafi sh Arhgef11. Coimmunoprecipita-
tion was performed on cell extracts from HEK 293 cells transfected with G �  13 a or Arhfef11 alone, or with both G �  13 a and myc-tagged Arhgef11 forms 
(WT, dominant-negative mutants lacking the RGS domain [ � RGS], or lacking the DH and PH domains [ � DHPH]). Immunoblotting was performed with the 
indicated antibodies. Error bars represent mean  ±  SEM.   
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coinjection of G �  13 a-RNA exacerbated these phenotypes (un-

published data). The region of E-cadherin that binds G �  12/13  was 

found to be located near the binding site for  � -catenin ( Kaplan 

et al., 2001 ). This is supported by our result showing that  � -catenin 

can compete with G �  13  for E-cadherin binding in HEK cells 

( Fig. 5 B ). Furthermore, it has been hypothesized that the binding 

of G �  12/13  to E-cadherin interferes with the ability of E-cadherin 

to form a complex with  � -catenin. In fact, G �  12/13  overexpres-

sion can cause  � -catenin to dissociate from E-cadherin and to 

translocate from the membrane to the cytosol in cultured cells 

( Meigs et al., 2001 ). We speculate that the competition of G �  12/13  

with  � -catenin for binding to E-cadherin may be one of the un-

derlying mechanisms in embryos. However, we did not observe 

any overt change in expression level or intracellular distribution 

of  � -catenin in embryos overexpressing G �  13 a ( Fig. 3 ). The rea-

son for this discrepancy between studies in cell culture and our 

studies in zebrafi sh embryos is unclear. However, one possibil-

ity is that the levels of G �  12/13  we used were suffi cient to alter 

E-cadherin activity but not to produce detectable changes in 

 � -catenin distribution. 

 Studies from  hab  mutant embryos indicate that E-cadherin 

regulates epiboly in part by impinging on cell – cell adhesion 

( Warga and Kimmel, 1990 ;  Montero et al., 2005 ;  Shimizu et al., 

2005 ). Considering these fi ndings in the light of our biochemical 

and genetic data showing that G �  12/13  functionally interact with 

E-cadherin in zebrafi sh, we propose that G �  12/13  modulate epi-

bolic movement by inhibiting E-cadherin – mediated cell – cell 

adhesion. Accordingly, cells in embryos overexpressing G �  13 a 

during early epiboly scattered across a larger area ( Fig. 5 ). In ad-

dition, we also demonstrated that a larger scattering area in em-

bryos overexpressing G �  13 a is not due to an increase in cell 

number ( Fig. S2 ). However, we cannot rule out the possibility that 

other functions of G �  12/13  could contribute to reduced cohesion or 

abnormal cell movements. 

 In addition to the impaired epiboly of the deep cells, al-

tered G �  12/13  signaling resulted in epibolic defects of the EVL 

( Fig. 6 ). This is in contrast to  hab vu44   and maternal-zygotic  cdh1 rk3   
mutant embryos, in which the EVL appears to undergo normal 

epiboly in spite of the fact that the deep cells exhibit severe epi-

bolic defects ( Fig. 6 D ;  Shimizu et al., 2005 ). These results sug-

gest that G �  12/13  may impinge on pathways other than the 

E-cadherin pathway to regulate epiboly in EVL cells. Recent 

evidence indicates that proper organization of the F-actin – based 

cytoskeleton plays critical roles in the normal epiboly of zebra-

fi sh embryos ( Zalik et al., 1999 ;  Cheng et al., 2004 ;  Koppen 

et al., 2006 ). The actin contractile elements in the YSL are nec-

essary for facilitating the proper EVL cell shape changes during 

late gastrulation ( Koppen et al., 2006 ). Notably, in E-cadherin –

 defi cient embryos, actin organization appeared to be normal, 

and EVL cells were elongated and orientated properly ( Fig. 6, D 

and H ;  Shimizu et al., 2005 ), which indicates that E-cadherin 

does not play a signifi cant role in actin organization and EVL 

epiboly in zebrafi sh. 

 In mammalian cultured cells, G �  12/13  are known to be in-

volved in the regulation of actin polymerization and the mainte-

nance of proper cell morphology, which suggests that G �  12/13  may 

affect EVL epiboly by regulating actin cytoskeleton organization 

domains ( � DHPH), which are needed for interacting with 

downstream proteins ( Panizzi et al., 2007 ). We found that 

Arhgef11  � DHPH bound to G �  13  ( Fig. 7 J ) and suppressed both 

the formation of actin bundles in the YCL and the epiboly de-

fects associated with G �  13 a overexpression ( Figs. 1 M and 7 ). 

Although actin bundles were found in 86  ±  5% of the embryos 

overexpressing G �  13 a, only 33  ±  3% of the embryos coex-

pressing G �  13 a and Arhgef11  � DHPH showed this phenotype 

( Fig. 7 I ). However, we observed that coexpression of Arhgef11 

 � DHPH did not fully rescue the epibolic delay in the deep 

cells ( Fig. 7 G ), which suggests that cytoskeletal assembly 

regulated by Arhgef11 only partially accounts for the function 

of G �  12/13  in epiboly. Collectively, these results indicate that 

G �  12/13  can regulate epiboly through a PDZ RhoGEF/RhoA-

dependent signaling pathway to modulate the function of the 

actin cytoskeleton. 

 Discussion 
 In this paper, we demonstrate that G �  12/13  signaling can regulate 

different aspects of epiboly movements by two distinct mecha-

nisms: inhibiting E-cadherin activity and modulating actin cyto-

skeleton organization. 

 Excess or reduced G �  12/13  signaling during gastrulation 

resulted in delayed epiboly of the deep cells and in the splitting 

of the df cell cluster ( Fig. 1 ). Moreover, excess G �  12/13  activity 

led to the detachment of cells from embryonic tissues, which 

suggests that cell adhesion is defective under these circum-

stances ( Fig. 2 ). All of these phenotypic characteristics resem-

ble those observed in  hab  ( cdh1 ) mutant embryos ( Kane et al., 

1996 ;  Kane and Warga, 2004 ), which suggests a possible link 

between G �  12/13  signaling and E-cadherin. Indeed, although al-

tered G �  12/13  expression did not change the expression level and 

cellular distribution of E-cadherin ( Fig. 3 ), our in vivo genetic 

experiments demonstrated that G �  12/13  can inhibit the function 

of E-cadherin. In particular, we found that a reduction in the 

expression of either G �  12  or G �  13  function by MO injection 

partially suppressed, whereas an increase in G �  13  activity exac-

erbated the epibolic defects in  hab  mutant mutants ( Fig. 4 ). 

Interestingly, decreased G �  12/13  function reduced the fraction of 

embryos with a weak epibolic defect, as well as the fraction 

with a strong epibolic delay ( Fig. 4 ). This suggests that reduced 

G �  12/13  function may suppress not only the epibolic defects in 

heterozygous embryos, but also those in homozygous mutants. 

We speculate that such an effect might be caused by the reduced 

inhibition of the maternal E-cadherin protein by G �  12/13  in homo-

zygous mutants ( Babb and Marrs, 2004 ;  Kane et al., 2005 ). 

 Our biochemical studies support the notion that G �  12/13  

can interact with E-cadherin. We showed that zebrafi sh G �  13 a 

was pulled down with the CT fragment of zebrafi sh E-cadherin 

(E-cad–CyT) in HEK cells ( Fig. 4 ), which is consistent with the 

physical interaction between mammalian G �  12/13  and E-cadherin 

shown previously ( Kaplan et al., 2001 ;  Meigs et al., 2001 ). The 

E-cad–CyT has been shown to act as a dominant-negative pro-

tein ( Sadot et al., 1998 ). Accordingly, we observed that embryos 

expressing this fragment exhibited cleavage defects, and the de-

tachment of blastodermal cells during early development and 

http://www.jcb.org/cgi/content/full/jcb.200805148/DC1
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epiboly and C & E defects but gave rise to defects associated 

with ciliated epithelia ( Panizzi et al., 2007 ). We speculate that 

Arhgef11 and G �  12/13  may act in both overlapping and different 

signaling pathways during gastrulation. These results further 

support the idea that G �  12/13  regulate actin organization and cell 

adhesion via distinct mechanisms. 

 In summary, our studies establish G �  12/13  as novel regula-

tors of epiboly in zebrafi sh. Our data indicate that G �  12/13  may 

regulate different aspects of epibolic movements by two distinct 

pathways. In the deep cells, G �  12/13  bind the intracellular do-

main of E-cadherin and inhibit its activity to modulate epiboly; 

in the EVL and the yolk cell, G �  12/13  promote actin cytoskeleton 

assembly through RhoGEF/RhoA in order to regulate epibolic 

movement of the EVL. It has been shown that G �  12/13  can trans-

mit signals from different GPCRs and suggested that different 

GPCRs may activate distinct signaling pathways through G �  12/13  

( Riobo and Manning, 2005 ). It will be interesting to determine 

if zebrafi sh epiboly involves different extracellular signals acting 

through distinct GPCRs via G �  12/13  to specify distinct cell behav-

iors in different cell types. G �  12/13  are oncogenes with trans forming 

potential and growth-promoting activity ( Chan et al., 1993 ; 

 Voyno-Yasenetskaya et al., 1994 ;  Radhika and Dhanasekaran, 

2001 ). Furthermore, the down-regulation of E-cadherin is associ-

ated with tumor metastasis and cancer progression ( Behrens, 

1999 ). Thus, our fi ndings on the in vivo role of G �  12/13  in epiboly 

may have signifi cant implications for the mechanisms whereby 

G �  12/13  function during tumorigenesis and metastasis, as well as 

during other morphogenetic processes in multicellular systems. 

 Materials and methods 
 Zebrafi sh strain and maintenance 
 WT, transgenic  Tg [ gsc:GFP ] ( Doitsidou et al., 2002 ), and  hab vu44   mutant 
strains of zebrafi sh were maintained as described previously ( Solnica-
Krezel et al., 1994 ). Embryos were obtained by natural mating and staged 
according to morphology as described previously ( Kimmel et al., 1995 ). 

 Generation of a GST-tagged cytoplasmic fragment of E-cadherin 
 The cytoplasmic domain of zebrafi sh E-cadherin (708-864AA) was cloned 
by PCR using the  cdh1  cDNA as a template ( Babb et al., 2001 ). The GST 
sequence was inserted in front of the 5 �  end of the fragment, and the con-
struct was verifi ed by sequencing and by its expression (as ascertained by 
immunostaining with anti-GST antibody). 

 mRNA and antisense MO injections, in situ hybridization 
 Capped sense mRNAs were synthesized using the SP6 mMessage machine 
(Applied Biosystems). The injection of synthetic mRNAs encoding G �  13 a 
(60 pg), G �  13 -CT (800 pg), myc-tagged PDZ RhoGEF (Arhgef11, 2pg), the 
dominant-negative mutant Arhgef11 ( � DHPH, 600 pg), constitutively activated 
RhoA (10 pg), and antisense MOs targeting zebrafi sh  gna12 ,  gna13a , and 
 gna13b  transcripts (4 ng each) has been described previously ( Lin et al., 
2005 ). Whole-mount in situ hybridization using an antisense  ntl  RNA probe 
was performed as described previously ( Thisse and Thisse, 1998 ), except 
that BM Purple (Roche) was used for the chromogenic reaction. 

 Western blotting 
 Embryos at 80% epiboly stage were manually deyolked and homogenized 
in lysis buffer ( Chen et al., 2004 ) to prepare embryo extracts. Equal 
amounts of protein were used for Western blot analysis. The following pri-
mary antibodies were used: anti – E-cadherin antibody (1:10,000;  Babb 
and Marrs, 2004 ), anti-G �  antibody (1:5,000; Santa Cruz Biotechnology, 
Inc.), and anti –  � -catenin antibody (1:250; Sigma-Aldrich). 

 GST pull-down and coimmunoprecipitation assays 
 HEK 293 cells were transiently cotransfected with cDNAs encoding G �  13 a 
and GST or the GST-tagged CT fragment of E-cadherin; or zebrafi sh G �  13 a 

and/or function. Although there is no signifi cant change in the 

organization of fi lamentous actin of EVL cells in embryos with 

altered G �  12/13  signaling, these cells displayed defects in cell 

shape and orientation ( Fig. 6 ), which may contribute to the epi-

bolic defects of the EVL. In addition, in embryos with excess 

G �  12/13  signaling, the punctate F-actin ring adjacent to the EVL 

was signifi cantly reduced ( Fig. 6 G ), and abnormal thick actin 

bundles, separated by F-actin – free regions, were frequently 

found in the yolk ( Fig. 6, C and G ). We speculate that the thick 

actin bundles may cause abnormal  “ contractile ”  forces that dis-

rupt the YCL; alternatively, these forces may create resistance to 

vegetal pulling of the EVL. Altogether, the changes in actin ar-

chitecture resulting from altered G �  12/13  activities could prevent 

the EVL from undergoing active cell rearrangement and shape 

changes, ultimately affecting normal EVL epiboly. In E-cadherin 

mutants, in contrast, the abnormal actin fi bers are not observed, 

and thus they are unlikely to be caused by a decrease in E-cadherin 

function. Interestingly, although the deep cells in embryos with 

altered G �  12/13  signaling displayed severe defects in epiboly, 

they did not exhibit corresponding changes in F-actin organiza-

tion and cell shape (unpublished data). This further underscores 

the notion that epiboly of the deep cells might involve distinct 

mechanisms. However, we cannot exclude the possibility that in 

the deep cells, G �  12/13  also infl uence epiboly by modulating the 

actin cytoskeleton. Indeed, in differentiated leukocyte-HL60, 

G �  12/13  were shown to infl uence the actomyosin network during 

retraction of the trailing edge ( Xu et al., 2003 ). It will be inter-

esting in the future to investigate how cell migration contributes 

to epiboly in zebrafi sh. Furthermore, in  Xenopus laevis , it has 

been shown that two G protein – coupled receptors (GPCRs; the 

phospholipid lysophosphatidic acid [LPA] receptor and Xfl op) 

that couple to G �  12/13  in some cell types ( Ishii et al., 2004 ) can 

regulate expression of a calcium-dependent EP-cadherin and 

modulate the assembly of cortical actin ( Lloyd et al., 2005 ;  Tao 

et al., 2005 ,  2007 ). Therefore, it will be important in the future 

to investigate if LPA functions in a similar manner in zebrafi sh. 

 In addition, we found that embryos overexpressing G �  13  

exhibited microtubule organization defects similar to those ob-

served for F-actin, showing thick bundles of microtubules sur-

rounded by areas devoid of microtubules ( Fig. S3 ). However, 

embryos with reduced G �  12/13  do not show signifi cant defects in 

microtubule organization (unpublished data), which suggests 

that at their normal expression levels, G �  12/13  do not play an es-

sential role in microtubule stabilization in zebrafi sh. 

 G �  12/13  are known to regulate cytoskeletal function via a 

Rho-dependent signaling cascade. Several observations indicate 

that G �  12/13  appear to operate through the same signaling path-

way to regulate actin organization during EVL epiboly. First, 

coexpression of a dominant-negative zebrafi sh PDZ RhoGEF, 

Arhgef11, with G �  13  signifi cantly reduced the formation of ac-

tin bundles, and suppressed the epiboly defects in the EVL 

( Figs. 1 M and 7 ). Conversely, overexpression of Arhgef11 or a 

constitutively active RhoA resulted in similarly abnormal actin 

organization in the yolk, and impaired epiboly ( Fig. 7, D and H ; 

and unpublished data). Notably, embryos expressing Arhgef11 

did not exhibit the detachment of cells from the embryo surface 

(unpublished data), and Arhgef11 LOF did not result in obvious 

http://www.jcb.org/cgi/content/full/jcb.200805148/DC1
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and a myc-tagged full-length Arhgef11, or myc-tagged Arhgef11 mutants 
lacking the RGS domain ( � RGS) or DH and PH domains ( � DHPH;  Panizzi 
et al., 2007 ). After serum starvation overnight, cells were washed twice 
with serum-free medium and lysed in PBS containing 1% Igapal, 0.2% de-
oxycholate, and protease inhibitors. For the GST pull-down assay, protein 
extracts were incubated with glutathione – Sepharose beads (GE Health-
care). The presence of G �  13 a in the lysates and precipitate was detected 
by anti-G �  13  antibody (1:1,000;  Lin et al., 2005 ). For coimmunoprecipita-
tion of G �  13 a with myc-tagged WT and mutant Arhgef11, the lysates were 
incubated with mouse anti-myc antibody (1:100; Santa Cruz Biotechnol-
ogy, Inc.) overnight at 4 ° C. Protein-A – Sepharose was then added for 2 h 
at 4 ° C. Immunoprecipitates were immunoblotted with anti-G �  13  (1:1,000) 
and anti-myc (1:1,000; Fitzgerald) antibodies to detect the presence of 
G �  13 a and the myc-tagged proteins. G �  13  antibody was provided by 
D. Manning (University of Philadelphia, Philadelphia, PA). 

 Whole-mount immunostaining 
 Embryos were fi xed at appropriate stages in 4% PFA/PBS/4% sucrose at 
4 ° C overnight. For F-actin staining, Alexa Fluor 546 phalloidin (1:100; 
Invitrogen) was used as described previously ( Koppen et al., 2006 ). In addi-
tion, the following primary antibodies were used: anti – E-cadherin (1:1,000; 
 Babb and Marrs, 2004 ), anti –  � -tubulin (DM1A, 1:300; EMD), and anti –
  � -catenin (1:250; Sigma-Aldrich). Embryos were then mounted in 75% 
glycerol in PBS for analysis by microscopy. 

 Quantifi cation of cell shape and alignment 
 Confocal images of EVL cells in Phalloidin-stained embryos were collected 
using a 20 × /0.8 NA objective lens (Carl Zeiss, Inc.). LWRs (a ratio of the 
longest to shortest axis of the cell) and the angle of the long axis of the cells 
relative to a line parallel to the EVL margin were determined using Object-
Image software. The angle of the long cell axes relative to the EVL margin 
was plotted in a half-Rose diagram (Vector Rose; PAZ software). 

 Cell scattering assays in vivo 
 At the 256-cell stage, a single cell at the animal pole was injected with 
0.5% rhodamine-dextran ( Warga and Kane, 2003 ). Embryos were 
mounted on bridged slides fi lled with 2% methylcellulose, incubated at 
28 ° C, and photographed every hour for 3 h to monitor the scattering of the 
labeled cells. To measure cell scattering, we exported the images to 
Object-Image. The exterior-most outlines of the labeled cells were marked 
and the areas encompassing the dispersed cells were calculated. 

 Microscopy 
 Live embryos for still photography were mounted in 1.5 – 2% methylcellu-
lose at 28.5 ° C, whereas fi xed embryos were mounted in 75% glycerol/
PBS. Embryos were photographed using 5 – 20 ×  objectives on an Axio-
phot2 microscope or a Stereomicroscope (Stereo Discovery V12) equipped 
with an Axiocam digital camera (all from Carl Zeiss, Inc.). Axiovision 
software was used to capture the images. Confocal images were collected 
on a laser scanning inverted microscope (LSM 510; Carl Zeiss, Inc.) using 
a 40 × /1.30 NA oil objective with zoom 2 or a 20 × /0.8 NA objective 
using the LSM 510 software. The acquired images were exported and 
edited using Photoshop (Adobe), and then compiled in Illustrator soft-
ware (Adobe). 

 Statistical analysis 
 Data are presented as the mean  ±  SEM. Statistical analyses were per-
formed using unpaired Student ’ s  t  tests with 2 tails, unequal variance. 

 Online supplemental material 
 Fig. S1 shows that the distribution of  � -catenin and  � -catenin is not changed 
in cells expressing G �  13 a. Fig. S2 shows that G �  13 a overexpression does 
not promote cell proliferation. Fig. S3 shows the microtubules in WT control 
embryos and embryos overexpressing G �  13 a revealed by anti –  � -tubulin 
staining. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200805148/DC1. 
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