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Abstract: In this work, an effective thermal conductivity (ETC) for living tissues, which directly affects
the energy transport process, is determined. The fractal scaling and Monte Carlo methods are used to
describe the tissue as a porous medium, and blood is considered a Newtonian and non-Newtonian
fluid for comparative and analytical purposes. The effect of the principal variables—such as fractal
dimensions DT and D f , porosity, and the power-law index, n—on the temperature profiles as a
function of time and tissue depth, for one- and three-layer tissues, besides temperature distribution,
are presented. ETC was improved by considering high tissue porosity, low tortuosity, and shear-
thinning fluids. In three-layer tissues with different porosities, perfusion with a non-Newtonian fluid
contributes to the understanding of the heat transfer process in some parts of the human body.

Keywords: effective thermal conductivity; fractal scaling; Monte Carlo; porous media; non-Newtonian
fluid; power-law model; bioheat equation; human body

1. Introduction

The skin is the largest single organ of the body, enabling protection from the surround-
ing environment. It consists of several layers and plays an important role in thermoreg-
ulation, sensory, and host defense functions [1–3]. The skin is generally described by a
three-layer tissue: epidermis, dermis, and hypodermis (also called subcutaneous) [4–6].
The thickness of these layers varies depending on the location of the skin. The epidermis is
the outer layer (75–150 µm), this layer plays a barrier role between environment and organ-
ism [7,8]. The dermis is much thicker than the epidermis, in this, there are blood vessels,
nerves, lymph vessels, and skin appendages. Dermis performances important functions
in thermoregulation and supports the vascular network to supply the non-vascularized
epidermis with nutrients. This layer is formed by an irregular network with wavy and
unaligned collagen fiber bundles, allowing considerable deformations in all directions. The
hypodermis is composed of loose fatty connective tissue. It is not part of the skin, but
appears as a deep extension of the dermis, and depends on the age, sex, race, endocrine, and
nutritional status of the individual [7–10]. The thermoregulation function of skin is realized
mainly by modifying the blood flow, which is located in a microcirculatory bed, composed
of arterioles, arterial and vein capillaries, and venules (blood perfusion). Blood perfusion
has great effect on the heat transfer process in living tissues [8,11,12]. Heat transfer in
human tissues takes place through different mechanisms, such as heat conduction, blood
perfusion, metabolic heat generation, and external interactions [13,14]. One of the earliest
models of heat transfer in biological tissues was developed by Pennes in 1948 [15], who
proposed a model to describe the effects of metabolism and blood perfusion on the energy
balance within tissue, this model is based on the classical Fourier’s law [15]. Wulff [16]
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questioned the assumptions of the Pennes model and provided an alternative analysis.
He assumed that heat transfer between blood flow and tissue should be modeled propor-
tionally to the temperature difference between these two media and not between the two
temperatures of the blood flow. Klinger [17] consider the convective heat transfer caused
by the blood flow inside the tissue, since this term was neglected by Pennes. Chen and
Holmes [18] assumed that the total tissue control volume is composed of the solid-tissue
subvolume and blood subvolume. They determined an effective thermal conductivity
using the tissue porosity and the local mean tissue temperature, together with a simpli-
fied volume-averaging technique for the solid and tissue spaces. Weinbaum et al. [19,20]
determined an effective thermal conductivity (ETC) based on the hypothesis that small
arteries and veins are parallel and the flow direction is countercurrent, which is a function
of the blood flow rate and vascular geometry. The model included a perfusion bleed-off
term that apparently resembles the Pennes perfusion term. Weinbaum and Jiji [11] derived
a simplified equation to study the influence of the blood flow on the tissue temperature
distribution defining an ETC.

In biological tissues, many body parts reveal anisotropy in heat transport that can not
be explained by the Fourier’s law [6,8]. This leads to formulation of thermal wave bioheat
model based on two main approaches: the Maxwell–Cattaneo approach with heat flux
time lag (also known as the single-phase approach), and the double-phase-lag (DPL) ap-
proach with relaxations in both the heat flux and temperature gradient propagation [21–23].
Various researchers have contributed in this area with analytical and experimental work.
Hobiny and Abbas [24] presented an analytical solution of the hyperbolic bioheat equation
under intense moving heat source. Alzahrani and Abbas [25] also presented an analytical
approach, experimental temperature data, and a time sequential concept to obtain the
thermal damage and temperature in a living tissue due to laser irradiation. Hobiny and
Abbas [26] provided a method to determine numerical solutions for thermal damage of
cylindrical living tissues using hyperbolic bioheat model. Hobiny et al. [27] proposed a
new interpretation to study thermal damage in a skin tissue caused by laser irradiation,
using the fractional order bioheat model. Hobiny et al. [28] presented an analytical method
and experimental verification, to estimate thermal damage and temperature due to laser
irradiation, using skin surface measurement data. Kumari and Singh [29] generated a space-
fractional mathematical model of bioheat transfer to graphically analyze thermal behavior
within living tissue, using a three-phase-lag constitutive relation. Li et al. [30] developed
a generalized model of bioheat transfer to explore heat transport properties involving
different thermal phase lagging effect. Important reviews and articles that the reader
can consult additionally in this context are the following: classical mathematical models
of bioheat [13]; developments in modeling heat transfer in blood perfused tissues [9,31];
bioheat models based on the porous media theory [32]; general heat transfer review [33,34];
concepts, derivation, and experimental versus porous media modeling [35]; and modeling
and scaling of the bioheat equation [3].

Alternatively to continuum models, concepts that consider the tissue matrix, arteries,
veins, and capillary vessels in a porous medium with specific porosity variations, ETC,
and heat dispersion by blood flow have been developed [3,12,13,32,36]. Porous medium
is defined as a material volume consisting of solid matrix with an interconnected pores.
It is characterized by porosity, ratio of the pore space to the total volume of the medium,
permeability, and tortuosity [32]. Khanafer and Vafai [36] remarked that the most appro-
priate treatment for heat transfer in biological tissues is the porous media theory because
of fewer assumptions as compared with other models. Roetzel and Xuan [37] introduced
a two-equation bioheat model in which the biological system is a porous media. It is
divided into two different regions, the vascular and extravascular, without considering
local thermal equilibrium between the two phases, introducing an equivalent ETC in the
energy equations of blood and tissue [37]. Nakayama and Kuwahara [38] developed a
model that consists of two energy equations based on the volume average theory (VAT),
these equations are correct for all cases of thermal non-equilibrium.
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The ETC is one of the most important thermo-physical properties for quantifying
conductive heat transfer of porous media with gas, liquid, and solid phases [39]. The
prediction of the ETC of porous media is essential to many engineering applications,
such as thermally enhanced oil recovery, geothermal energy, and chemical and biological
engineering [40]. With the development of computer technology, many numerical methods,
such as Monte Carlo [41] and lattice Boltzmann [42], have been proposed to study the
conductive heat transfer and evaluate the ETC of porous media. In addition to conventional
methods based on Euclidean geometry, fractal geometry has been shown with evident
advantages for addressing the complexity and multiple scales of porous media [43]. Hence,
the fractal geometry has been successfully applied to characterize structures of transport
processes in porous media [44,45]. Kou et al. proposed a fractal model for ETC of porous
media based on fractal scaling law for water and gas phases in the pores [46]. Extensive
studies have shown that most natural porous media and some synthetic porous media
possess self-similar fractal scaling laws over multiple scales [45]. Therefore, two kinds of
fractal models based on pore and solid phases have been proposed [47]. Fractal scaling
laws can be applied to characterize the geometrical and morphological structures for pore
and solid phases in porous media, respectively.

The fractal Monte Carlo method has been applied in different areas to model a porous
media. Yu et al. [48] performed Monte Carlo simulations to predict the permeability of
fractal porous media, their results were verified by comparison with the analytical solution
for the permeability of bi-dispersed porous media. Zou et al. [49] used the Monte Carlo
simulation technique to model the surface topography in a scale-invariant manner with
the fractal nature of rough surfaces. Yu [44] presented a review article summarizing the
theories, methods, mathematical models, achievements, and open questions in the area
of flow in fractal porous media by applying the theory and technique of fractal geometry.
Feng et al. [50] combined the Monte Carlo technique with fractal geometry theory to predict
the thermal conductivity of nanofluids. Xu et al. [51] performed Monte Carlo simulations
of radial seepage flow in the fractured porous medium, where the fractal probability model
was applied to characterize the fracture size distribution. Vadapalli et al. [52] proposed
a permeability estimation method for a sandstone reservoir, which considers the fractal
behavior of pore size distribution and tortuosity of capillary pathways using Monte Carlo
simulations. Xu et al. [53] used fractal Monte Carlo simulations to predict the effective
thermal conductivity of porous media. Xiao et al. [54] employed the fractal Monte Carlo to
simulate the Kozeny–Carman constant of fibrous porous media with the micropore size
characterized by the fractal scaling law. Yang et al. [55] performed Monte Carlo simulations
based on the fractal probability law to understand gas flow mechanisms and predict the
apparent gas permeability of shale reservoirs.

In this work, the calculation of ETC for human skin using the fractal scaling and Monte
Carlo methods is presented. This ETC involves a bundle of tortuous capillaries whose size
distribution follow fractal scaling laws. The power-law model was chosen because of its
simplicity in describing different non-Newtonian fluids by modifying a single parameter,
in the case of blood as a shear-thinning fluid. The heat transfer process in the perfused
tissue is analyzed, and a heat source is applied on the tissue surface for a period of time
without reaching the degradation temperature. The tissue is considered as a uniform
porous medium of one and three layers, which can be assigned different porosity and
conductivity. The temperature profiles, as well as their distribution when modifying the
main variables of the model, are presented. To the authors’ knowledge, there are no studies
that determine an ETC for heat transfer in biological tissues, considering the techniques
mentioned above and especially for non-Newtonian fluids.

2. Heat Transfer in Human Skin

Figure 1 presents the human skin structure, considering three layers; epidermis, dermis
and hypodermis. These layers differ in having their own physical properties such as density,
specific heat, thermal conductivity and porosity.
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Figure 1. Human skin structure.

The first equation that described heat transfer in human tissue and included the effects
of blood flow on tissue temperature on a continuum basis was presented by Pennes [15].
He presented the heat transfer analysis in the human forearm, considering the metabolic
heat rate in the tissue and the perfusion heat source term. This last term has been the focus
of attention since its inception and many researches have found alternative representations
of the effect of blood perfusion on tissue heat transfer. The Pennes equation is given by:

ρtct
∂Tt

∂t
= ∇ · (kt∇Tt) + ρbcbωb(Ta − Tt) + qm, (1)

where ρ, c, T, t, k, qm, and ωb are density, specific heat, temperature, time, thermal con-
ductivity, metabolic heat production, and blood perfusion rate per unit volume of tissue,
respectively. The subscripts t, b, and a refer to tissue, blood, and artery, respectively [15] .

However, some inconsistencies in the Pennes model include the following: the thermal
equilibrium take place in arteries and veins (not in the capillaries, as it assumes); it does
not take into account any vascular architecture; and the most critical assumption is on
the blood perfusion term, which is not a global term—it is local along the capillary and
depends on direction.

3. Mathematical Modeling

Hyperthermia treatment consists of applying heat in a specific area of the human body.
In this work, an external heat source is applied to an area of the forearm, as shown in
Figure 2a. In addition, in Figure 2b, it is described that H is the total thickness of the tissue
and the thicknesses of each layer are HE = 0.04H, HD = 0.48H, and HH = 0.48H. Initially,
the tissue is at a constant temperature, Tc ∼ 37 ◦C, subsequently, a heat source is applied to
an area of the tissue. The area around the heat application area is open to the surroundings,
and generally is a temperature lower than the human body. For this work, the surrounding
temperature is considered to be T∞ ∼ 25 ◦C. Furthermore, Figure 2b shows a mathematical
representation of the hyperthermia treatment, note that the deepest internal temperature is
maintained at the body temperature. According to Weinbaum and Jiji [11], the simplified
two-dimensional governing equation of heat transport in biological tissue is given by:

(
ρCp

)
t
∂T
∂t

=
∂

∂x

(
ke f f

∂T
∂x

)
+

∂

∂y

(
ke f f

∂T
∂y

)
+ qm, (2)

where ke f f is the effective thermal conductivity (ETC) and qm is the metabolic heat.
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According to physical model showed in Figure 2, Equation (2) is subject to the follow-
ing initial and boundary conditions:

T(x, y, 0) = Tc, (3)
∂

∂x
T(0, y, t) = 0, (4)

∂

∂x
T(W, y, t) = 0, (5)

T(x, 0, t) = Tc, (6)

−kt
∂

∂y
T(x, H, t) = h[T∞ − T(x, H, t)],

2
5

W ≥ x ≥ 3
5

W, (7)

−kt
∂

∂y
T(x, H, t) = f ,

2
5

W < x >
3
5

W, (8)

f =

{
qapp = 200

[
W
m2

]
, t ≤ tapp,

h[T∞ − T(x, H, t)], t > tapp,

where W and H are the width and the height of the domain, respectively. The h, qapp, and
tapp are the heat transfer coefficient, applied external heat, and application time, respec-
tively.

Figure 2. (a) Hyperthermia treatment; (b) human skin three-layer model, and the corresponding
boundary conditions.

ETC is an important parameter in Equation (2). Weinbaum and Jiji [11] proposed a
vascular function V(y) that can be constructed knowing the vascular data, which is the
distribution of the arteries, veins, and capillaries. According to Weinbaum and Jiji [11], the
vascular function increases with tissue depth [14]. In this work, the representative elementary
volume (REV), is defined and the fractal scaling method is used to depict the vascular
tissue structure.

3.1. Fractal Scaling Method

We consider a cubic REV as shown in Figure 3, with defined length side L0. All
REV capillaries extend throughout the volume from one side to the other as is showed in
Figure 3.
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Figure 3. Representative elementary volume of human skin.

The fractal scaling method establishes the relationship between the number and pore
size in the porous medium. The fundamental fractal scaling law is applied to REV cross-
section, as follows [56]:

N(> λ) =

(
λmax

λ

)D f

, (9)

where N, D f , λ, and λmax are the number of capillaries, the fractal dimension, the equivalent
diameter, and the maximum equivalent diameter of the capillaries in the REV cross-section,
respectively. The number of capillaries with equivalent diameter between λ + dλ in the
REV cross-section is:

− dN(λ) = D f λ
D f
maxλ−D f−1dλ. (10)

The total number of pores in the range from λmin to λmax is obtained using Equation (9),
as follows:

NT(≤ λmin) =

(
λmax

λmax

)D f

, (11)

where NT is the total pores. Dividing Equation (10) by Equation (11), we obtain:

− dN
NT

= D f λ
D f
minλ−(D f +1)dλ = f (λ)dλ, (12)

where f (λ) is the probability density function, which satisfies that f (λ) ≥ 0. Accord-
ing to probability theory, f (λ) must satisfy the following normalization relation or total
cumulative probability:

−
∫ λmax

λmin

dN
NT

=
∫ λmax

λmin

f (λ)dλ = 1−
(

λmin

λmax

)D f

≡ 1. (13)

The integration result of Equation (13) shows that it holds if—and only if—the follow-
ing holds: (

λmin

λmax

)D f ∼= 0. (14)

The above equation implies that λmin � λmax, it must be satisfied for fractal analysis
of a porous media. According to Yu et al. [48], Equation (14) can be considered as a
criterion whether a porous medium can be characterized by fractal theory and technique.
If Equation (13) is expressed as:

R(λ) =
∫ λ

λmin

f (λ)dλ = 1−
(

λmin

λ

)D f

, (15)
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then the pore diameter λ can be found as:

λ =
λmin

(1− R)1/D f
=

(
λmin

λmax

)
λmax

(1− R)1/D f
. (16)

On the other hand, the fractal path of the tortuous capillary can be described as
follows [57]:

L(λ) = LDT
0 λ1−DT , (17)

where L(λ), L0, and DT are capillary tortuous length, characteristic length of a straight
capillary (REV side length), and fractal dimension describing the capillary tortuous length,
respectively. An important parameter involved in the ETC is the total pore area, Ac,
determined by Wu and Yu [58]:

Ac = −
∫ λmax

λmin

πλ2

4
dN(λ) =

πD f λ
D f
max

(
λ

2−D f
max − λ

2−D f
min

)
4
(

2− D f

) , (18)

the total cross area, AT , is:

AT = L2
0 =

Ac

φ
, (19)

where φ is the porosity.

3.2. The Fractal ETC of the REV

In order to obtain the ETC and according to Fourier’s law, the total heat flux in the
REV is given by:

QT = ke f f AT
∆T
L0

, (20)

where ke f f is the ETC including the tissue conductivity and convective blood flow in the
capillaries, and ∆T is the difference temperature between two faces in the REV. The heat
flux in a single tortuous capillary of the REV is:

Qc = kb
πλ2

4
∆T

L(λ)
= kb

πλ2

4
∆T

LDT
0 λ1−DT

, (21)

where kb is the blood thermal conductivity. The heat flux corresponding only to the tissue
is expressed by:

Qt = kt At
∆T
L0

= kt(1− φ)AT
∆T
L0

, (22)

where the subscript t refers to the tissue. According to superposition theorem, the total
heat flux QT is the addition of the fluxes as follows:

QT = Qt + Qc. (23)

Substituting Equations (21) and (22) into Equation (23) the following equation is
obtained:

ke f f = kt(1− φ) + kb

φ
(

2− D f

)
λDT+1

LDT−1
0 D f λ

D f
max

(
λ

2−D f
max − λ

2−D f
min

) , (24)

where L0 is determined from Equation (19). According to the work presented by Weinbaum
and Jiji [11], from an energy conservation balance in a countercurrent artery and mean
value theory, derived the effective enhancement of the tissue conductivity. Therefore, by
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comparing the Weinbaum and Jiji ETC to Equation (24), it can be seen that the two equations
have a similar form, proposing the following the expression:

ke f f = kt(1 + Γ(r)ψ(r)), (25)

where Γ is a parameter that depends on conduction or convective heat transport [59], ψ is
related to skin structure (also called dimensionless vascular geometry function) [14], and r
is the position vector. This work focuses on the convective transport of blood. Hence, the
dimensionless ETC for this work is given by:

k∗e f f =
ke f f

kt
=

(1− φ) + Pe2
(

kb
kt

)2 φ
(

2− D f

)
λDT+1

LDT−1
0 D f λ

D f
max

(
λ

2−D f
max − λ

2−D f
min

)
, (26)

where k∗e f f is the dimensionless ETC and Pe is the Peclet number defined as Pe = PrRe =
ρbCbλu/kb; where ρb, Cb, and u are the density, specific heat, and average blood velocity in
the capillary, respectively.

3.3. Fractal Dimensions, D f and DT

Equation (26) is a function of porosity, fractal dimensions, maximum and minimum
diameters, conductivity ratio, and Peclet number, the latter being a function of physical
properties, velocity, and diameter.

There is a relationship between porosity and fractal dimension, D f , according to Yu
and Li [56], is given by:

φ =

(
λmin

λmax

)DE−D f

, (27)

where DE is the Euclidean dimension (DE = 2 and 3, for two- and three-dimensional space,
respectively). Another important aspect of Equation (27), from experimentation, it has been
found that the ratio of minimum and maximum diameter, λmin/λmax, in several natural
porous media, is the order of 10−2 ∼ 10−4, [60]. Feng et al. derived a generalized model
covering a wide range of porosities, for the effective thermal conductivity, based on the fact
that statistical self-similarity exists in porous media [61].

In this work, DT is established manually, taking into account whether DT > 1 the
tortuosity is present and DT = 1 are straight capillaries.

3.4. Non-Newtonian Fractal Velocity

The Peclet number in Equation (26) is defined by:

Pe = PrRe =
ρbCb

kb
λu, (28)

where the velocity u is a function of the microcapillary diameter, is obtained from the non-
Newtonian fluid flow in a single microcapillary, as presented by Zhang [62], as follows:

qc =

[
dp
dL0

L1−DT
0 2DT−1

µb(DT + 1)DT

] 1
n nπ

DT + 3n

(
λ

2

) DT
n +3

, (29)

where qc, p, and µb are the flow rate in a single microcapillary, pressure, and dynamic blood
viscosity, respectively. By considering qc = uAsc, where Asc is the area of a single capillary
and the velocity can be determined as:

u =

[
dp
dL0

L1−DT
0 2DT−1

µ(DT + 1)DT

] 1
n n

DT + 3n

(
λ

2

) DT
n +1

, (30)
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where n is the power-law index of the constitutive equation, when n = 1 the Newtonian
velocity is recovered. For n < 1 and n > 1 describes shear-thinning and shear-thickening
fluid behavior, respectively. Figure 4 presents the average velocity and Peclet number as a
function of the capillary diameter for different values of the power-law index, n, considering
two values of porosity, φ = 0.1 and φ = 0.5. By increasing the pore diameters, the flow
through the tissue is greater for all cases. This effect is magnified when the power-law index,
n, decreases, which indicates a lower resistance to flow, because the viscosity decreases,
which is characteristic of shear-thinning fluids. The opposite case can be seen in this figure
for shear-thickening fluids (n > 1). The number of Peclet is proportional to the velocity,
therefore they have the same tendency. On the other hand, by increasing the porosity,
both u and Pe have a slight increase because the pores are very small. Figure 5 shows the
average velocity and Peclet number as a function of the fractal tortuosity, DT , for different
values of porosity, φ, considering two values of power-law index, n = 1 and n = 0.6. For
this case, the maximum pore diameter was taken into account. Keeping constant porosity
and increasing tortuosity, DT , the velocity and Peclet number both decrease. This is correct
for complex vascular architectures where the flow experiences higher resistance as well as
being very small. For straight or slightly tortuous capillaries—where the highest velocities
and Peclet numbers are found—there is a large increase as the power-law index decrease,
as shown in Figure 5.

Figure 4. (a) Average velocity and (b) Peclet number as a function of capillary diameter for different
values of the power-law index n. In a single microcapillary—continuous lines (φ = 0.1), and dashed
lines (φ = 0.5).

Figure 5. (a) Average velocity and (b) Peclet number as a function of fractal tortuosity DT for different
porosity values. For both in a single microcapillary, continuous lines (Newtonian fluid), and dashed
lines (non-Newtonian fluid).
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3.5. Monte Carlo Method

The Monte Carlo method is used to establish the pore size and the porous medium
distribution, as is shown in Figure 6. Figure 6a,b present one- and three-layer tissue with
different porosities, with φ = 0.1 (one layer) and φ = 0, φ = 0.5, and φ = 0.05 for epidermis,
dermis, and hypodermis, respectively. Yu et al. [48] was the first to propose the fractal
Monte Carlo methodology to simulate the transports in fractal porous media. In Figure 6c
for one-layer tissue and Figure 6d for three-layer tissue show the Monte Carlo simulations,
which are performed in the range of λmin–λmax. Figure 6d shows the pore sizes variation for
dermis and hypodermis layers, since the porosity of the epidermal layer is not considered.
The pore size variation is determined using the Monte Carlo method in Equation (16), as
follows:

λi =
λmin

(1− Ri)
1/D f

=

(
λmin

λmax

)
λmax

(1− Ri)
1/D f

, (31)

where λi is the variation of the pore diameter and Ri are the random numbers between
0− 1. On the other hand, the random numbers also help us to construct the porous medium
presented in Figure 6. Equation (31) is derived from Equation (9), which implies that there
is only one largest pore in the REV cross-section [44]. This is consistent to the pore size
distribution shown in Figure 6.

Figure 6. Two-dimensional pore size distribution for (a) one-layer tissue with φ = 0.1, (b) three-layer
tissue with φ = 0, 0.5, and 0.05 for epidermis, dermis, and hypodermis, respectively. (c,d) The simu-
lated pore sizes by the Monte-Carlo technique in the range of λmin = 5× 10−6 to λmax = 5× 10−4.

3.6. Dimensionless Governing Equation

The dimensionless variables are:

x̄ =
x
H

; ȳ =
y
H

; τ = t
αt

H2 ; θ =
T − T∞

Tc − T∞
, (32)

where αt is the tissue thermal diffusivity. Substituting dimensionless variables of
Equation (32) into Equation (2), the dimensionless governing equation is:

∂θ

∂τ
=

∂

∂x̄

(
k∗e f f

∂θ

∂x̄

)
+

∂

∂ȳ

(
k∗e f f

∂θ

∂ȳ

)
+ Φm, (33)
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where k∗e f f = ke f f /kt is defined in Equation (26) and Φm = qm H2/kt(Tc − T∞) is the
dimensionless metabolic heat generation. Respectively, the dimensionless initial and
boundary conditions are given by:

θ(x̄, ȳ, 0) = 1, (34)
∂

∂x̄
θ(0, ȳ, τ) = 0, (35)

∂

∂x̄
θ(2, ȳ, τ) = 0, (36)

θ(x̄, 0, τ) = 1, (37)
∂

∂ȳ
θ(x̄, 1, τ) = Bi[θ∞ − θ(x̄, 1, τ)],

2
5
≥ x̄ ≥ 3

5
, (38)

∂

∂ȳ
θ(x̄, 1, τ) = f ∗,

2
5
< x̄ >

3
5

, (39)

f ∗ =

{
H

kt∆T qapp, τ ≤ τapp,
Bi[θ∞ − θ(x̄, 1, τ)], τ > τapp,

where Bi is the Biot number defined as Bi = hH/kt, θ∞ is the dimensionless temperature of
the environment, and f ∗ takes the boundary condition according to the dimensionless time
of application τapp.

4. Results

The numerical results presented in this section were generated from a numerical
code developed in the Fortran programming language. Equation (33) subject to boundary
conditions Equations (34)–(39) was solved using an explicit finite difference method.

The values used for the tissue physical properties are: ρt = 1200 kg/m3, Cp,t = 3600 J/kg·◦C,
kt = 0.293 W/m·◦C. When considering three-layer tissue, their corresponding thermal
conductivities are: ke = 0.25 W/m·◦C, kd = 0.45 W/m·◦C, and kh = 0.2 W/m·◦C, for
epidermis, dermis, and hypodermis, respectively. The blood physical properties are:
ρb = 1052 kg/m3, Cp,b = 3800 J/kg·◦C, and kb = 0.582 W/m·◦C [2,63]. The metabolic
heat is qm = 368.1 W/m3 [63]. The heat transfer coefficient due to convection and radia-
tion in surroundings is: h = 5 W/m2·◦C. The environmental temperature was chosen as
T∞ = 25 ◦C. For the three-layer model, the main changes in porosity are considered to be in
the dermis, due to the greater interaction between the tissue and the vascular network [8].
This work does not take into account thermal degradation (thermal damage) in tissue,
which occurs at 44 ◦C and higher [64].

4.1. ETC Analysis

According to Equation (26), ETC depends on the conductivity ratio, porosity, φ, fractal
coefficients, D f , DT , and Peclet number. In this work, both conductivities of tissue and
blood are constant; therefore, the conductivity ratio is also constant. Once the porosity
value is assigned manually, D f can be determined using Equation (27). The Peclet number
depends on the physical properties of the blood, capillary diameter, and velocity, see
Equation (28). An important contribution of this work is that it allows the analysis of blood
as a Newtonian and non-Newtonian fluid. This is possible through the power-law model,
which is immersed in the velocity calculation Equation (30). This equation also depends on
the fractal coefficients, in addition to the viscosity and the power-law index, n. The latter
makes it possible to consider a Newtonian fluid (n = 1) and non-Newtonian fluids such
as shear-thinning fluid (n < 1) and shear-thickening n < 1. The blood is a shear-thinning
fluid described by a power-law index value of n = 0.6, according to Johnston et al. [65].

Figure 7a presents the ETC as a function of the fractal coefficient DT for different
porosity values, in addition for two values of the power-law index n = 1 and n = 0.6.
DT describes the capillary tortuous length, the influence of DT on the ETC is in the range
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of 1–1.3, which is in accordance with that reported by Yu and Cheng [57]. By increasing
the porosity, the ETC also increases, due to higher blood flow through the tissue having a
higher thermal conductivity. An important increase is found in the ETC when considering
blood as a non-Newtonian fluid, since it increases with porosity as mentioned above, but
especially for a shear-thinning fluid such as blood (n = 0.6).

Figure 7b shows the fractal dimension as a function of porosity. When porosity
tends to unity, the fractal dimension tends to two. That for a surface indicates that it is
totally occupied by pores, which corresponds to a fractal dimension of two, it is consistent
according to Yu et al. [66].

Figure 7. (a) Effective thermal conductivity as a function of fractal dimension DT . Continuous lines
(Newtonian fluid) and dashed lines (non-Newtonian fluid). (b) Fractal dimension D f as a function of
porosity, for different ratios λmin/λmax.

Figure 8 exhibits the ETC as a function of fractal dimension D f , and the porosity φ; for
two pore diameter values, λ = 4× 10−4 and λmax = 5× 10−4, and by considering straight
capillaries DT = 1 for different values of the power-law index. k∗e f f has an increase by
augmenting the pore diameter, but the main improvement is for shear-thinning fluids, due
to the lower resistance that the fluid experiences in large pores, increasing the velocity and
generating a higher energy dissipation.

Figure 8. Effective thermal conductivity as a function of (a) fractal dimension D f , and (b) porosity φ.
Continuous lines (Newtonian fluid) and dashed lines (non-Newtonian fluid).

4.2. Code Validation

To validate the ETC, the solution of the Weinbaum and Jiji [11] (WJ) is compared
with the present work using a one-layer tissue with porosity φ = 0.05, straight capillaries
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DT = 1, kb/kt = 1.9863, D f is determined by Equation (27) and Newtonian fluid n = 1.
The Peclet number depends on the pore diameter λ and the velocity u, WJ determined
Pe = 20, which is in accordance with this work of Pe = 16.3 for maximum pore size.
Figure 9 shows the comparison of the temperature profile as a function on time and a
function of deep-tissue layer (at τ = 0.09) between WJ model and the present work. The
ETC obtained by Weinbaum and Jiji [11] is as follows:

ke f f ,W J

kt
=
[
1 + Pe2

0V(ȳ)
]
, (40)

where Pe0 = 2ρbcba0u0/kb = 20, V(ȳ) = A + Bȳ + Cȳ2 with A = 6.32 × 10−5, B =
−15.9× 10−5 and C = 10× 10−5. The metabolic heat Φm = qmL2/kt(Tc − T∞) = 0.094.

Figure 9. Comparison of temperature profile between WJ and the present work as a function of
(a) time, and (b) tissue layer depth.

The comparison between WJ and the present work exhibited in Figure 9, for the
temperature as a function of (a) time and (b) deep of the tissue layer, both fit in a good
agreement. The comparison between the temperature distribution of the WJ model (40)
and the present work (26) is shown in Figure 10. The heat source is applied on the central
part of the tissue surface, as shown in Figure 2. The temperature distribution corresponds
to a heat source application dimensionless time of τ = 0.09. The temperature distribution
of the WJ model shows a higher evolution, indicating a higher heat transfer in the tissue.
The difference between models according to temperature contours is less than 2%.

Figure 10. Comparison of temperature distribution between (a) WJ model, and (b) present work at
dimensionless time. Just before the heat source was removed.
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4.3. Dynamical Test Simulations
4.3.1. One-Layer Tissue Analysis

To evaluate the different parameters involved in the ETC, a dynamic test is performed,
which consists of applying a heat source on the tissue surface for a period of time, removing
the source when the thermal relaxation process begins, the scheme and conditions are shown
in Figure 2. This test does not reach the tissue degradation temperature, T < 44 ◦C [8,64].

Figure 11 presents the temperature profile as a function of time and tissue layer depth
for one-layer (at τ = 0.09), by modifying the fractal coefficient DT in the range of 1–1.1,
with porosity φ = 0.1 and Newtonian fluid n = 1. There are no significant changes when
the heat source is applied, at the end of the relaxation process is when there is a difference
between the WJ model and this work. This difference is due to the fact that there is a better
energy transfer process in the present model, but there is no appreciable effect of DT due to
the low tissue porosity.

Figure 11. Temperature profiles as a function of (a) time and (b) tissue layer depth, for different DT

values at τ = 0.09.

Figure 12 shows the temperature profile as a function of time and tissue layer depth
(at τ = 0.09) for one-layer tissue by modifying the porosity φ in the range of 0.01 to 0.5,
with DT = 1.05 and Newtonian fluid n = 1. As the porosity increases, higher temperatures
are reached when the heat source is applied, and lower temperatures are reached at the
end of the relaxation process. This is due to increased perfusion in the tissue, on the
other hand, blood has a higher thermal conductivity which improves heat transfer in the
porous medium.

Figures 13 and 14 exhibit the temperature profile as a function of time and tissue layer
depth (at τ = 0.09) one layer for two porosity values φ = 0.1 and φ = 0.5, respectively.
Modifying the power-law index n in the range of 0.6 to 1 and DT = 1.05. In the case
of porosity φ = 0.1, there are no significant changes when modifying the power-law
index, due to low perfusion through the tissue. For porosity φ = 0.5, blood perfusion is
increased and the effect of the power-law index is reflected both in the application of the
heat source and in the thermal relaxation process. For a shear-thinning fluid n = 0.6, there
is a greater dissipation of energy and therefore it reaches lower temperatures compared
with a Newtonian fluid, in addition to experiencing a higher thermal relaxation due to a
greater influence of the convective condition of the surface, as shown in Figure 14a. The
effect of higher porosity is also reflected in the temperature profile as a function of tissue
depth, as it presents distortions, mainly for the non-Newtonian fluid with n = 0.6, see
Figure 14b.
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Figure 12. Temperature profiles as a function of (a) time and (b) tissue layer depth, for different
porosity φ values at τ = 0.09.

Figure 13. Temperature profiles as a function of (a) time and (b) tissue layer depth for different
power-law index n at τ = 0.09 and porosity φ = 0.1.

Figure 14. Temperature profiles as a function of (a) time and (b) tissue layer depth, for different
power-law index n at τ = 0.09 and porosity φ = 0.5.

4.3.2. Three-Layer Tissue Analysis

The structure of the skin is very complex and is generally considered in three layers—
epidermis, dermis, and hypodermis—as is shown in Figure 1. The thickness of these layers
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varies depending on the location of the skin and many factors, such as age, sex, race,
endocrine, and nutritional status of the individual [7–10].

Figure 15 shows the temperature profile as a function of time and tissue three-layer depth
(at τ = 0.09), each layer with its own conductivity, ke = 0.25 W/m·◦C, kd = 0.45 W/m·◦C and
kh = 0.2 W/m·◦C, for epidermis, dermis, and hypodermis, respectively, [8]. The porosity
φ varies uniformly throughout the tissue in the range of 0.01–0.5, with DT = 1.05 and
non-Newtonian fluid n = 0.6. The shear-thinning effect increases the heat transfer in tissue,
which is reflected in the temperatures reached when applying the heat source and in the
thermal relaxation process. The effect of having three different conductivities can be seen
clearly in the temperature profile as a function of tissue depth, where changes in the slope
of the curve at the layer interfaces are presented, as is shown in Figure 15b. This behavior
has been reported by Xu et al. [2].

Figure 15. Temperature profiles as a function of (a) time and (b) tissue three-layer depth with different
porosities, φ = 0, 0.5, and 0.05 for epidermis, dermis, and hypodermis, respectively.

Figure 16 shows the temperature profile comparison between one- and three-layer
tissue at different depths as a function of time and tissue depth, the properties of the
three-layer tissue are those used in Figure 15. In the case of a one-layer tissue, the uniform
porosity is φ = 0.5, for the case of three-layer tissue the following porosities are assigned
φ = 0, 0.5, and 0.05 for epidermis, dermis, and hypodermis, respectively. These values
were assigned according to the fact that the epidermis has very low porosity, the dermis
contains the highest density of capillaries, and the hypodermis is composed of loose fatty
connective tissue. The other variable values are DT = 1.05 and n = 0.6 [8]. Considering
blood as a non-Newtonian shear-thinning fluid, in addition to different tissue properties,
generates important modifications in the temperature profiles both in time and depth. In
contrast, uniform properties throughout the biological tissue, as shown in Figure 16a,b.

Figure 16a shows red dots on temperature profiles used to indicate the time corre-
sponding to the instantaneous temperature distribution presented in Figure 17. This figure
shows the comparison of temperature distribution between the one- and three-layer tis-
sues at different times. In the case of three-layer tissues, the effect of the different tissue
properties on the temperature contours, which show small variations due to porosity de-
pending on the area. In the case of one-layer tissues, the heat transfer is more similar to
homogeneous solids, which have higher thermal conductivity at the top and bottom of
the tissue compared with the three-layer model. Finally, the right half is overlapped on
the left half of the temperature distribution for one- and three-layer tissue to demonstrate
the asymmetry generated by the global effect of all the variables involved in the model, as
shown in Figure 18.
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Figure 16. Temperature profile comparison between one- and three-layer tissue as a function of
(a) time at three different depths of the tissue and (b) depth of the three-layer tissue with different
porosities φ = 0, 0.5, and 0.05 for epidermis, dermis, and hypodermis, respectively.

Figure 17. Comparison of the temperature distribution for one-layer tissue with φ = 0.5 and three-
layer tissue with φ = 0, 0.5, and 0.05 for epidermis, dermis, and hypodermis, respectively. For
different times from top to bottom (a) τ = 0.01, (b) τ = 0.09, (c) τ = 0.2, and (d) τ = 0.45. For a
non-Newtonian fluid, n = 0.6.
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Figure 18. The right half is overlapped on the left half of the temperature distribution for the one-
and three-layer tissue. Temperature distribution was taken from Figure 17 at time τ = 0.09.

5. Conclusions

In this work, the ETC for human skin using the fractal scaling and Monte Carlo
methods was obtained. These methods were used to describe the tissue as a porous
medium, the blood was considered as Newtonian and non-Newtonian shear-thinning
fluid. The numerical code developed was validated by comparing the ETC obtained by
Weinbaum and Jiji [11] and the present work using one-layer tissue with the same porosity,
straight capillaries, and Newtonian fluid. The difference between models according to
temperature contours is less than 2%.

The ETC involves various parameters, such as fractal dimensions DT and D f , porosity,
and the power-law index n; in order to evaluate these parameters, dynamical tests were
performed, which consisted of applying a heat source on the tissue surface for a period of
time—when the heat source was removed, the thermal relaxation process began. The effect
of the main parameters on the temperature profiles as a function of time and tissue depth,
for one- and three-layer tissue, besides temperature distribution, were presented. The main
findings of this work are the following:

• The effect of fractal dimension DT on the ETC was mainly in the range of 1–1.3.
• Higher porosity improves ETC, due to increased blood flow through the tissue, having

a higher thermal conductivity.
• In one-layer tissues of low porosity, no significant changes in ETC were found. In-

creasing porosity, the effect of the power-law index is reflected in both heating and
relaxation processes.

• The Peclet number increases substantially due to the combination of large pore diame-
ters and shear thinning fluids.

• In three-layer tissues with different porosities, perfusion with a shear-thinning fluid
contributes to the understanding of the heat transfer process in some parts of the
human body.

• The ETC involves the main variables of the heat transfer process in human skin;
moreover, it is easy to implement for other case studies.

Author Contributions: Conceptualization, R.O.V. and G.R.-A.; methodology, R.O.V., G.R.-A., J.P.E.
and R.M.-M.; software, R.O.V., G.R.-A., J.P.E. and A.R.-M.; validation, R.O.V. and G.R.-A.; formal
analysis, R.O.V. and G.R.-A.; investigation, R.O.V., G.R.-A., J.P.E., A.R.-M. and R.M.-M.; resources,
R.O.V., G.R.-A., J.P.E., A.R.-M. and R.M.-M.; data curation, G.R.-A.; writing—original draft prepa-
ration, R.O.V., G.R.-A. and J.P.E.; writing—review and editing, R.O.V., G.R.-A., J.P.E., A.R.-M. and
R.M.-M.; visualization, R.O.V., G.R.-A. and J.P.E.; supervision, R.O.V.; project administration, R.O.V.;
funding acquisition, R.O.V. and J.P.E. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors R.O.V. and J.P.E. would like to acknowledge the financial support SIP-20221783
and SIP-20221572.



Micromachines 2022, 13, 424 19 of 21

Acknowledgments: Guillermo Rojas-Altamirano gratefully acknowledges support by the Instituto
Politécnico Nacional of Mexico for the PhD scholarship.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ETC effective thermal conductivity
WJ Weinbaum and Jiji
REV representative elementary volume

References
1. Xu, F.; Lu, T.J.; Seffen, K.A. Skin thermal pain modeling—A holistic method. J. Therm. Biol. 2008, 33, 223–237. [CrossRef]
2. Xu, F.; Seffen, K.; Lu, T. Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Transf. 2008, 51, 2237–2259. [CrossRef]
3. Hristov, J. Bio-heat models revisited: Concepts, derivations, nondimensalization and fractionalization approaches. Front. Phys.

2019, 7, 1–36. [CrossRef]
4. Dai, T.; Pikkula, B.M.; Wang, L.V.; Anvari, B. Comparison of human skin opto-thermal response to near-infrared and visible laser

irradiations: A theoretical investigation. Phys. Med. Biol. 2004, 49, 4861–4877. [CrossRef] [PubMed]
5. Dai, W.; Wang, H.; Jordan, P.M.; Mickens, R.E.; Bejan, A. A mathematical model for skin burn injury induced by radiation heating.

Int. J. Heat Mass Transf. 2008, 51, 5497–5510. [CrossRef]
6. Xu, F.; Wen, T.; Seffen, K.; Lu, T. Modeling of skin thermal pain: A preliminary study. Appl. Math. Comput. 2008, 205, 37–46.

[CrossRef]
7. Xu, F.; Lu, T.J.; Seffen, K.A.; Ng, E.Y.K. Mathematical modeling of skin bioheat transfer. Appl. Mech. Rev. 2009, 62, 1–35. [CrossRef]
8. Xu, F.; Lu, T. Introduction to Skin Biothermomechanics and Thermal Pain, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011.
9. Zolfaghari, A.; Maerefat, M. Bioheat transfer. Dev. Heat Transf. 2011, 153–170. [CrossRef]
10. Liu, K.C.; Wang, Y.N.; Chen, Y.S. Investigation on the bio-heat transfer with the Dual-Phase-Lag effect. Int. J. Therm. Sci. 2012,

58, 29–35. [CrossRef]
11. Weinbaum, S.; Jiji, L.M. A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. J.

Biomech. Eng. 1985, 107, 131–139. [CrossRef]
12. Nakayama, A.; Sano, Y.; Yoshikawa, K. A rigorous derivation of the bioheat equation for local tissue heat transfer based on a

volume averaging theory. Heat Mass Transf. 2010, 46, 739–746. [CrossRef]
13. Charny, C.K. Mathematical models of bioheat transfer. Adv. Heat Transf. 1992, 22, 19–155.
14. Jiji, L.M. Heat Conduction, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2009.
15. Pennes, H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1948, 1, 93–122.

[CrossRef] [PubMed]
16. Wulff, W. The energy conservation equation for living tissues. IEEE Trans. Biomed. Eng. 1974, 21, 494–495. [CrossRef]
17. Klinger, H.G. Heat transfer in perfused biological tissue I: General theory. Bull. Math. Biol. 1974, 36, 403–415. [PubMed]
18. Chen, M.M.; Holmes, K.R. Microvascular contributions in tissue heat transfer. Ann. N. Y. Acad. Sci. 1980, 335, 137–150. [CrossRef]
19. Weinbaum, S.; Jiji, L.M.; Lemons, D.E. Theory and experiment for the effect of vascular microstructure on surface tissue heat

transfer: Part I: Anatomical foundation and model conceptualization. J. Biomech. Eng. 1984, 106, 321–330. [CrossRef] [PubMed]
20. Weinbaum, S.; Jiji, L.M.; Lemons, D.E. Theory and experiment for the effect of vascular microstructure on surface tissue heat

transfer: Part II: Anatomical foundation and model conceptualization. J. Biomech. Eng. 1984, 106, 331–341. [CrossRef] [PubMed]
21. Yang, W.H. Thermal (heat) shock biothermomechanical viewpoint. J. Biomech. Eng. 1993, 115, 617–621. [CrossRef] [PubMed]
22. Liu, J.; Chen, X.; Xu, L.X. New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating. IEEE Trans.

Biomed. Eng. 1999, 46, 420–428.
23. Tzou, D.Y. Macro- to Microscale Heat Transfer: The Lagging Behaviour, 1st ed., Taylor and Francis: Abingdon, UK, 1997.
24. Hobiny, A.D.; Abbas, I.A. Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source. Int. J.

Heat Mass Transf. 2018, 124, 1011–1014. [CrossRef]
25. Alzahrani, F.S.; Abbas, I.A. Analytical estimations of temperature in a living tissue generated by laser irradiation using

experimental data. J. Therm. Biol. 2019, 85, 1–5. [CrossRef] [PubMed]
26. Hobiny, A.; Abbas, I. Thermal response of cylindrical tissue induced by laser irradiation with experimental study. Int. J. Numer.

Methods Heat Fluid Flow 2019, 30, 4013–4023. [CrossRef]
27. Hobiny, A.; Alzahrani, F.; Abbas, I.; Marin, M. The effect of fractional time derivative of bioheat model in skin tissue induced to

laser irradiation. Symmetry 2020, 12, 602. [CrossRef]
28. Hobiny, A.; Alzahrani, F.; Abbas, I. Analytical estimation of temperature in living tissues using the tpl bioheat model with

experimental verification. Mathematics 2020, 8, 1188. [CrossRef]
29. Kumari, T.; Singh, S.K. A numerical study of space-fractional three-phase-lag bioheat transfer model during thermal therapy.

Heat Transf. 2022, 51, 470–489. [CrossRef]

http://doi.org/10.1016/j.jtherbio.2008.01.004
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.10.024
http://dx.doi.org/10.3389/fphy.2019.00189
http://dx.doi.org/10.1088/0031-9155/49/21/002
http://www.ncbi.nlm.nih.gov/pubmed/15584524
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.01.006
http://dx.doi.org/10.1016/j.amc.2008.05.045
http://dx.doi.org/10.1115/1.3124646
http://dx.doi.org/10.5772/822
http://dx.doi.org/10.1016/j.ijthermalsci.2012.02.026
http://dx.doi.org/10.1115/1.3138533
http://dx.doi.org/10.1007/s00231-010-0619-1
http://dx.doi.org/10.1152/jappl.1948.1.2.93
http://www.ncbi.nlm.nih.gov/pubmed/18887578
http://dx.doi.org/10.1109/TBME.1974.324342
http://www.ncbi.nlm.nih.gov/pubmed/4457191
http://dx.doi.org/10.1111/j.1749-6632.1980.tb50742.x
http://dx.doi.org/10.1115/1.3138501
http://www.ncbi.nlm.nih.gov/pubmed/6513527
http://dx.doi.org/10.1115/1.3138501
http://www.ncbi.nlm.nih.gov/pubmed/6513527
http://dx.doi.org/10.1115/1.2895549
http://www.ncbi.nlm.nih.gov/pubmed/8302050
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.018
http://dx.doi.org/10.1016/j.jtherbio.2019.102421
http://www.ncbi.nlm.nih.gov/pubmed/31657762
http://dx.doi.org/10.1108/HFF-10-2019-0777
http://dx.doi.org/10.3390/sym12040602
http://dx.doi.org/10.3390/math8071188
http://dx.doi.org/10.1002/htj.22316


Micromachines 2022, 13, 424 20 of 21

30. Li, M.; Wang, Y.; Liu, D. Generalized bio-heat transfer model combining with the relaxation mechanism and nonequilibrium heat
transfer. J. Heat Transf. 2021, 144, 031209. [CrossRef]

31. Arkin, H.; Xu, L.X.; Holmes, K.R. Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans. Biomed.
Eng. 1994, 41, 97–107. [CrossRef]

32. Khaled, A.R.; Vafai, K. The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf.
2003, 46, 4989–5003. [CrossRef]

33. Goldstein, R.; Ibele, W.; Patankar, S.; Simon, T.; Kuehn, T.; Strykowski, P.; Tamma, K.; Heberlein, J.; Davidson, J.; Bischof, J.; et al.
Heat transfer—A review of 2003 literature. Int. J. Heat Mass Transf. 2006, 49, 451–534. [CrossRef]

34. Goldstein, R.J.; Ibele, W.E.; Patankar, S.V.; Simon, T.W.; Kuehn, T.H.; Strykowski, P.J.; Tamma, K.K.; Heberlein, J.V.R.; Davidson,
J.H.; Bischof, J.; et al. Heat transfer—A review of 2005 literature. Int. J. Heat Mass Transf. 2010, 53, 4397–4447. [CrossRef]

35. Yang, X.; Liang, Y.; Chen, W. A spatial fractional seepage model for the flow of non-Newtonian fluid in fractal porous medium.
Commun. Nonlinear Sci. Numer. Simul. 2018, 65, 70–78. [CrossRef]

36. Khanafer, K.; Vafai, K. Synthesis of mathematical models representing bioheat transport. Adv. Numer. Heat Transf. 2009, 3, 1–28.
37. Roetzel, W.; Xuan, Y. Bioheat equation of the human thermal system. Chem. Eng. Technol. 1997, 20, 268–276.
38. Nakayama, A.; Kuwahara, F. A general bioheat transfer model based on the theory of porous media. Int. J. Heat Mass Transf.

2008, 51, 3190–3199. [CrossRef]
39. Shen, Y.; Xu, P.; Qiu, S.; Rao, B.; Yu, B. A generalized thermal conductivity model for unsaturated porous media with fractal

geometry. Int. J. Heat Mass Transf. 2020, 152, 119540. [CrossRef]
40. Zhao, C. Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transf. 2012,

55, 3618–3632. [CrossRef]
41. Belova, I.V.; Murch, G.E. Monte Carlo simulation of the effective thermal conductivity in two-phase material. J. Mater. Process.

Technol. 2004, 153, 741–745. [CrossRef]
42. Song, Y.; Youn, J. Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume

finite element method. J. Carbon 2006, 44, 710–717. [CrossRef]
43. Mandelbrot, B. The Fractal Geometry of Nature; Freeman: New York, NY, USA, 1982.
44. Yu, B. Analysis of flow in fractal porous media. Appl. Mech. Rev. 2008, 61, 050801. [CrossRef]
45. Xu, P.; Mujumdar, A.S.; Sasmito, A.P.; Yu, B.M. Multiscale Modeling of Porous Media, 1st ed.; Taylor and Francis: Abingdon, UK,

2019.
46. Kou, J.; Liu, Y.; Wu, F.; Fan, J.; Lu, H.; Xu, Y. Fractal analysis of effective thermal conductivity for three-Phase (unsaturated)

porous media. J. Appl. Phys. 2009, 106, 054905. [CrossRef]
47. Xu, P. A discussion on fractal models for transport physics of porous media. Fractals 2015, 23, 1530001. [CrossRef]
48. Yu, B.; Zou, M.; Feng, Y. Permeability of fractal porous media by Monte Carlo simulations. Int. J. Heat Mass Transf. 2005,

48, 2787–2794. [CrossRef]
49. Zou, M.; Yu, B.; Feng, Y.; Xu, P. A Monte Carlo method for simulating fractal surfaces. Physica A 2007, 386, 176–186. [CrossRef]
50. Feng, Y.; Yu, B.; Feng, K.; Xu, P.; Zou, M. Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte

Carlo simulations. J. Nanopart. Res. 2008, 10, 1319–1328. [CrossRef]
51. Xu, P.; Yu, B.; Qiao, X.; Qiu, S.; Jiang, Z. Radial permeability of fractured porous media by Monte Carlo simulations. Int. J. Heat

Mass Transf. 2013, 57, 369–374. [CrossRef]
52. Vadapalli, U.; Srivastava, R.P.; Vedanti, N.; Dimri, V.P. Estimation of permeability of a sandstone reservoir by a fractal and Monte

Carlo simulation approach: A case study. Nonlinear Process. Geophys. 2014, 21, 9–18. [CrossRef]
53. Xu, Y.; Zheng, Y.; Kou, J. Prediction of effective thermal conductivity of porous media with fractal-Monte Carlo simulations.

Fractals 2014, 22, 1440004. [CrossRef]
54. Xiao, B.; Zhang, X.; Jiang, G.; Long, G.; Wang, W.; Zhang, Y.; Liu, G. Kozeny–Carman constant for gas flow through fibrous

porous media by fractal-Monte Carlo simulations. Fractals 2019, 27, 1950062. [CrossRef]
55. Yang, J.; Wang, M.; Wu, L.; Liu, Y.; Qiu, S.; Xu, P. A novel Monte Carlo simulation on gas flow in fractal shale reservoir. Energy

2021, 236, 121513. [CrossRef]
56. Yu, B.; Li, J. Some fractal characters of porous media. Fractals 2001, 9, 365–372. [CrossRef]
57. Yu, B.; Cheng, P. A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Transf. 2002, 45, 2983–2993.

[CrossRef]
58. Wu, J.; Yu, B. A fractal resistance model for flow through porous media. Int. J. Heat Mass Transf. 2007, 50, 3925–3932. [CrossRef]
59. Shen, H.; Ye, Q.; Meng, G. Anisotropic fractal model for the effective thermal conductivity of random metal fiber porous media

with high porosity. Phys. Lett. A 2017, 381, 3193–3196. [CrossRef]
60. Qin, X.; Cai, J.; Xu, P.; Dai, S.; Gan, Q. A fractal model of effective thermal conductivity for porous media with various liquid

saturation. Int. J. Heat Mass Transf. 2019, 128, 1149–1156. [CrossRef]
61. Feng, Y.; Yu, B.; Zou, M.; Zhang, D. A generalized model for the effective thermal conductivity of porous media based on

self-similarity. J. Phys. D Appl. Phys. 2004, 37, 3030–3040. [CrossRef]
62. Zhang, B.; Yu, B.; Wang, H.; Yun, M. A fractal analysis of permeability for power-law fluids in porous media. Fractals 2006,

14, 171–177. [CrossRef]

http://dx.doi.org/10.1115/1.4053414
http://dx.doi.org/10.1109/10.284920
http://dx.doi.org/10.1016/S0017-9310(03)00301-6
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.11.001
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.05.005
http://dx.doi.org/10.1016/j.cnsns.2018.05.014
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.05.030
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119540
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.03.017
http://dx.doi.org/10.1016/j.jmatprotec.2004.04.191
http://dx.doi.org/10.1016/j.carbon.2005.09.034
http://dx.doi.org/10.1115/1.2955849
http://dx.doi.org/10.1063/1.3204479
http://dx.doi.org/10.1142/S0218348X15300019
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.02.008
http://dx.doi.org/10.1016/j.physa.2007.07.058
http://dx.doi.org/10.1007/s11051-008-9363-6
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.10.040
http://dx.doi.org/10.5194/npg-21-9-2014
http://dx.doi.org/10.1142/S0218348X14400040
http://dx.doi.org/10.1142/S0218348X19500622
http://dx.doi.org/10.1016/j.energy.2021.121513
http://dx.doi.org/10.1142/S0218348X01000804
http://dx.doi.org/10.1016/S0017-9310(02)00014-5
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.02.009
http://dx.doi.org/10.1016/j.physleta.2017.08.003
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.09.072
http://dx.doi.org/10.1088/0022-3727/37/21/014
http://dx.doi.org/10.1142/S0218348X06003167


Micromachines 2022, 13, 424 21 of 21

63. Xu, F.; Wen, T.; Lu, T.; Seffen, K.A. Skin biothermomechanics for medical treatments. J. Mech. Behav. Biomed. Mater. 2008,
1, 172–187. [CrossRef]

64. Kumar, S.; Damor, R.S.; Shukla, A.K. Numerical study on thermal therapy of triple layer skin tissue using fractional bioheat
model. Int. J. Biomath. 2018, 11, 1850052. [CrossRef]

65. Johnston, B.M.; Johnston, P.R.; Corney, S.; Kilpatrick, D. Non–Newtonian blood flow in human right coronary arteries: Steady
state simulations. J. Biomech. 2004, 37, 709–720. [CrossRef] [PubMed]

66. Yu, B.; Cai, J.; Zou, M. On the physical properties of apparent two-phase fractal porous media. Vadose Zone J. Fractals 2009,
8, 177–186. [CrossRef]

http://dx.doi.org/10.1016/j.jmbbm.2007.09.001
http://dx.doi.org/10.1142/S1793524518500523
http://dx.doi.org/10.1016/j.jbiomech.2003.09.016
http://www.ncbi.nlm.nih.gov/pubmed/15047000
http://dx.doi.org/10.2136/vzj2008.0015

	Introduction
	Heat Transfer in Human Skin
	Mathematical Modeling
	Fractal Scaling Method
	The Fractal ETC of the REV
	Fractal Dimensions, Df and DT
	Non-Newtonian Fractal Velocity
	Monte Carlo Method
	Dimensionless Governing Equation

	Results
	ETC Analysis
	Code Validation
	Dynamical Test Simulations
	One-Layer Tissue Analysis
	Three-Layer Tissue Analysis


	Conclusions
	References

