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Functional connectivity is one of the most widely used tools for investigating brain changes 
due to schizophrenia. Previous studies have identified abnormal functional connectivity in 
schizophrenia patients at the resting state brain network level. This study tests the existence 
of functional connectivity effects at whole brain and domain levels. Domain level refers to the 
integration of data from several brain networks grouped by their functional relationship. Data 
integration provides more consistent and accurate information compared to an individual 
brain network. This work considers two domain level measures: functional connectivity 
strength and randomness. The first measure is simply an average of connectivities within 
the domain. The second measure assesses the unpredictability and lack of pattern of 
functional connectivity within the domain. Domains with less random connectivity have 
higher chance of exhibiting a biologically meaningful connectivity pattern. Consistent with 
prior observations, individuals with schizophrenia showed aberrant domain connectivity 
strength between subcortical, cerebellar, and sensorial brain areas. Compared to healthy 
volunteers, functional connectivity between cognitive and default mode domains showed 
less randomness, while connectivity between default mode-sensorial areas showed more 
randomness in schizophrenia patients. These differences in connectivity patterns suggest 
deleterious rewiring trade-offs among important brain networks.
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INTRODUCTION

The disconnection hypothesis (1) is an important landmark in 
understanding the underpinnings of schizophrenia. It proposed 
that the brain disconnections in schizophrenia are more of a 
functional nature rather than anatomical. Later studies provided 
validation for the existence of disconnections in the brain of 
schizophrenia patients (2–4). Functional connectivity studies 
using resting state data have provided important insights into 
aberrant functional connectivity patterns of specific brain areas/
networks in schizophrenia compared to healthy controls (5). 
Using a different perspective, aberrations may not necessarily 
be singled out in one brain region or network but may affect 
patterns of connectivity that involve the whole brain. Graph 
measures have been an important tool in revealing aberrant 
patterns of functional connectivity involving nodes distributed 
throughout the brain (6, 7). However, more research is needed 
to relate abnormalities occurring in small specific brain areas/
networks with those observed in whole brain analyses.

Our group has recently refocused attention from single brain 
networks to groupings of brain networks also called domains 
(8–10). This change in focus is achieved through functional 
network connectivity (FNC) analyses in which spatio-temporal 
properties of brain resting state networks (RSNs) are estimated 
for further analysis (11). Nominal FNC analysis assesses the 
relationships between two different RSNs. Previous studies have 
found that schizophrenia affects the FNC of many RSN pairs 
providing details for very specific and localized brain areas 
(5). Yet, results from that work suggest that many areas of the 
brain are similarly affected by schizophrenia in spite of being 
independently analyzed. For example, Figure 2 in Ref. (5) 

shows how the bulk of independent results concentrate in areas 
such as the visual and sensorimotor domains with consistent 
direction of effects. This observation suggests that schizophrenia 
abnormalities might affect in a similar way all RSNs within a 
domain and opens the possibility of studying the domain as a 
group of RSNs with common effects. Our current work follows 
by using methods that can fuse information from several RSNs 
allowing for a stronger RSN group effect. The basic functional 
domain approach considers two subsets of RSNs from a pair of 
functional domains (see Figure 1). Information from all RSNs 
within the domains is then fused to obtain a domain-based 
assessment. The analysis is then performed on all available 
pairs of domains. This approach studies the brain at a middle 
point between coarser whole brain and finer per-RSN analysis. 
Domain analysis has revealed specifics of information exchange 
among domains with strong effects related to schizophrenia on 
audio-visual and sensorimotor (AVSN) domains (8). However, 
FNC in schizophrenia has not been analyzed using a domain-
focused approach.

In this work, we investigated domain FNC (see Figure 1) 
differences between individuals with schizophrenia and healthy 
volunteers. Two different domain FNC measures are examined: 
1) domain connectivity strength, and 2) randomness. Domain 
connectivity strength is the average of all connectivity values 
linking two domains. In Figure 1, this is equivalent to submatrix 
averaging of connectivity strengths between each domain pair. 
Previously, connectivity strength has been used to describe 
whole brain averages as a way of obtaining a single aggregated 
connectivity value for each brain (12). Domain-wise connectivity 
strength is expected to somewhat resemble results previously 
obtained with single connectivity values (5). We have also 

FIGURE 1 | The domain functional connectivity approach. Instead of estimating whole brain measures or considering single correlations, the domain approach 
works with the submatrices of the functional network connectivity matrix. The first step 1) is to separate functional connectivity domain submatrices. The second 
step 2) is to aggregate the values using a meaningful measure. The figure shows within domain connectivity indicated by an asterisk on top of the submatrices. 
Notice this set represents connectivity of a domain with itself. Asterisk-marked submatrices are SBC-SBC, AUD-AUD, VIS-VIS, SEN-SEN, COG-COG, DMN-DMN, 
and CER-CER. These submatrices are located in the main diagonal of the whole brain matrix.
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employed the same domains from this previous study because the 
RSN grouping was algorithmically processed to find the optimal 
set of functional domains. Another important concept for the 
research community is the existence of patterns characterizing 
functional brain connectivity. The application of graph theoretical 
measures to whole brain connectivity matrices has revealed the 
presence of such patterns in the functional connectivity matrix 
(13) as well as aberrant patterns in schizophrenia (14). However, 
known graph theoretical measures, such as modularity, are not 
suitable for functional domain connectivity. The reason is the 
existence of many rectangular and non-symmetric connectivity 
submatrices that would not fit the assumptions of a symmetric 
and square matrix used in estimating graph theoretical 
measures (see Figure 1). We employ a different concept known as 
randomness to measure differences in the structure of functional 
connectivity within domain submatrices. The basic idea is to 
estimate the degree of difference between a submatrix of interest and  
a random submatrix.

The word randomness can be conceptualized as the absence of 
predictability. A single valued random variable is undetermined 
and can then assume any value. As corollary, lack of predictability 
generally includes the lack of a recognizable pattern. However, the 
Central Limit Theorem does present us with a pattern of a bell shape 
curve as the number of included variables increases. Describing 
random or unexplained variability of FNC assessments presents 
additional complications because they might not be identically 
distributed (may exhibit different means and variances) and might not 
be independent variables. In practice FNC data are best represented 
in matrix form instead of the single variable representation; thus, our 
study of FNC randomness employs the Random Matrix Theory to 
best characterize the FNC data. A random matrix can be described 
as a matrix array of random variables (15). Related to the Central 
Limit Theorem, Random Matrix Theory focuses on the pattern of 
eigenvalues which in square matrices is described by the Circular 
Law (16). To apply the theory for square and rectangular matrices, 
it is preferable to use the singular value (SV) spectrum which has its 
own predictable pattern (17). Randomness is then assessed through 
the similarity between the typical random SV spectrum and the 
SV spectrum of the matrix of interest. The randomness measure 
(denoted by L) has been defined as the Mahalanobis distance 
between the two SV spectra (10). In this randomness measure, 
large L values suggest the presence of non-random matrix patterns. 
Hypothesis testing can be performed because L follows a chi square 
distribution, after appropriate normalization, and its p value can be 
determined. We examined randomness at the domain connectivity 
level seeking for differences between individuals with schizophrenia 
and controls. The subject group with lower L value will then present 
more random domain connectivity with and less structure of its 
domain matrix representation.

Outcomes for domain-wise randomness are difficult to anticipate 
since this is the first time such analysis is performed. The first clue 
can be found by considering that graph measures are sensitive 
to changes in brain connectivity structure in a similar way that 
randomness is sensitive to structure unpredictability. Previous 
work using graph theoretical measures and a smaller sample (19 
schizophrenia and 19 controls) suggests a set of areas susceptible 
to connectivity structure changes including frontal, parietal, 

occipital, and cerebellar regions (6). Several studies based on 
diffusion tensor imaging indicated abnormalities in white 
matter tracts (18, 19) that might result in a generalized more 
random connectivity in schizophrenia. There is also evidence of 
a hyperactive default mode network in schizophrenia patients 
(20) as well as changes in the spatial location of the network 
(21) suggesting an altered architecture that might be detected 
by the randomness measure. We believe that randomness will 
provide further evidence for the existence of abnormal domain 
connectivity patterns in schizophrenia that might help understand 
this neurodegenerative disease.

MATERIALS AND METHODS

Subjects
This study employed a BOLD fMRI data set from 163 healthy 
controls (HC) along with 151 schizophrenia patients (SZ) 
with similar mean age and gender distribution, collected 
from seven different institutions in the United States (5). The 
HC group consisted of 117 males and 46 females (mean age 
36.9). For statistical analyses, we selected the subset of 119 SZ 
patients for which medication data were available in the form of 
chlorpromazine equivalence scores (CPZ) (5). The final SZ group 
consisted of 90 males and 29 females (mean age 37.7). Prior to 
participation, informed consent was obtained from each subject 
in compliance with the Internal Review Boards of corresponding 
institutions. A neurocognitive profile was obtained from all 
participants using the computerized multiphasic interactive 
neurocognitive system (CMINDS) (22) composed of six domains: 
speed of processing, attention/vigilance, working memory, verbal 
learning, visual learning, and reasoning/problem solving. The 
procedure generally takes less than 1 h and 30 min to complete. 
The CMINDS was developed more than a decade ago and is well 
validated against both the MATRICS battery and the ADASCog 
(23, 24). Positive and negative syndrome scale (PANSS) values 
were also collected from each SZ subject (for sample details see 
Supplementary Table 1).

Data Collection and Preprocessing
Data from six of the seven sites were collected using a 3T Siemens 
TIM Trio System. A 3T General Electric Discovery MR750 
scanner was used at the remaining site. Resting state fMRI 
scans were acquired using a standard gradient-echo echo planar 
imaging paradigm: FOV of 220 × 220 mm (64 × 64 matrix), TR = 
2 s, TE = 30 ms, FA = 770, 162 volumes, 32 sequential ascending 
axial slices of 4 mm thickness and 1 mm skip. Subjects had their 
eyes closed during the resting state scan.

Data processing was performed using a combination of 
toolboxes (AFNI, SPM, and GIFT) and custom code written 
in Matlab. We performed rigid body motion correction using 
the INRIAlign (25) toolbox in SPM to correct for subject head 
motion followed by slice-timing correction. Next, the fMRI data 
were despiked using AFNI’s 3dDespike algorithm to mitigate the 
impact of intensity outliers. The fMRI data were subsequently 
warped to a Montreal Neurological Institute (MNI) template 
and resampled to 3 mm3 isotropic voxels. Instead of Gaussian 
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smoothing, we smoothed the data to 6  mm full width at half 
maximum (FWHM) using AFNI’s BlurToFWHM algorithm 
which performs smoothing by a conservative finite difference 
approximation to the diffusion equation. This approach has 
been shown to reduce scanner-specific variability in smoothness 
providing “smoothness equivalence” to data across sites (26). Each 
voxel time course was variance normalized prior to performing 
group independent component analysis as this has shown to better 
decompose subcortical sources in addition to cortical networks.

We employed group independent component analysis (gICA) 
as implemented in the GIFT Toolbox (http://mialab.mrn.org/
software/gift/) to obtain a set of maximally independent RSNs 
(27, 28). The gICA in the GIFT toolbox is designed to optimize 
spatial independence thus optimizing spatial segregation. Spatial 
and temporal information were collected as the outcome of the 
GIFT Toolbox. FNC was computed as the pairwise correlation 
between RSN time courses. Time courses were band pass filtered 
using a [0.01–0.15] Hz fifth-order Butterworth filter prior to 
computing FNC. The mean FNC matrix was organized into 
modular partitions, each partition corresponding to a functional 
domain, using the Louvain algorithm of the brain connectivity 
toolbox (https://sites.google.com/site/bctnet/). This RSN grouping 
has been utilized many times before in schizophrenia literature 
being one of the main reasons to pick this configuration (5, 
29–31). The algorithmic originally obtained using algorithmic 
methods underwent human inspection by subject matter experts. 
The functional domains in the FNC matrix are depicted in 
Supplementary Figure 1 and include sub-cortical (SBC) domain, 
auditory (AUD) domain, visual (VIS) domain, sensorimotor 
(SEN) domain, a broad set of regions involved in cognitive control 
and attention (COG), default-mode network (DMN) regions, 
and cerebellum (CER). Spatial maps for this set of domains can 
be found in Ref. (5). We will adopt the previously defined set of 
functional domains in our work.

Connectivity Strength
The set of FNC values, obtained from correlating time courses, 
constitute a detailed description of brain connectivity. These FNC 
values represent the relationships between pairs of spatially localized 
brain areas but do not provide a whole brain level summary. We 
previously reported on connectivity abnormalities in schizophrenia 
after analyzing FNC data (5). In the current work, we emphasize 
on analyzing groups of FNCs. Two different levels of grouping are 
considered: whole brain and domain level. The whole brain level 
is based on assessing the whole brain connectivity strength which 
is computed by averaging all FNC values into one single value per 
subject (12, 14). We use this connectivity strength to study whole 
brain effects. The next step is to restate the connectivity strength 
concept following a functional domain focus previously proposed 
by our group (8, 9). The domain level consists of assessing domain 
connectivity strength as the average correlation over all RSN pairs 
belonging to one or two domains. Within domain connectivity 
occurs when two domains are the same, i.e., the set of FNCs involves 
RSNs within the same domain. Between domains connectivity 
occurs when the FNCs are based on correlations involving RSNs 
from two different domains. This way, we considered all 28 pairs 

of domains [SBC-SBC, SBC-AUD, SBC-VIS, SBC-SEN, …, CER-
CER]. If arranged as a matrix, the FNC values from a specific domain 
pair forms a submatrix of the whole brain matrix. Figure 1 displays 
the partition of the whole brain matrix into within and between 
domain submatrices. All within domain submatrices are square 
(same number of rows and columns) and symmetric (a symmetric 
matrix is equal to its transpose). Between domain submatrices can 
be square or rectangular (the number of rows might not equal the 
number of columns), but they are all non-symmetric. Irrespective 
of its size, values within submatrices are averaged to estimate the 
domain connectivity strength of the corresponding submatrix. A 
set of 28 different domain connectivity strength values is estimated 
for each subject.

We tested the relationships between connectivity strength and 
CMINDS scores using linear regression models. The set of tests 
included separate models for whole brain and domain grouping 
levels. Multicomparison correction was performed using the 
false discovery rate (FDR) method. Each model included age, sex, 
mean frame-wise displacement (meanFD), CPZ, and collection 
site as confounding factors of no interest. The meanFD regressor 
was included as a measure of head movement, and it is obtained 
by averaging the backwards difference of realignment estimates 
from each scan (32). Since diagnosis was found to influence 
CMINDS results, we repeated the tests including diagnosis and 
interaction terms along with age, sex, meanFD, CPZ, and site. 
In addition, linear regressions examined relationships between 
connectivity strength and schizophrenia symptom severity 
measures, including general, negative, and positive PANSS 
scores. These analyses included the same confounding variables.

We also performed group test analyses for possible significant 
differences between HC and SZ groups. For the purpose of 
group tests only, all connectivity strength values were first 
orthogonalized with respect to the confounding factors CPZ, 
age, sex, meanFD, and collection site. We included meanFD (33) 
to correct for individual differences in residual motion following 
suggestions in previous publications (34, 35). Finally, two sample 
t-tests comparing connectivity strength between groups was 
performed at the whole brain and at the domain levels. Multiple 
comparison corrections were performed using the FDR method.

Graph Modularity
Graph measures are derived from adjacency matrices representing 
the brain connectivity organization (36, 37). However, two 
characteristics of adjacency matrices are that they exhibit nodal 
symmetry and are composed of weights (with a range between 0 and 
1). A matrix exhibits node symmetry if two edge values are defined 
for every pair of different nodes. If the two edge values are equal, 
the matrix is symmetric; otherwise the matrix is not symmetric. 
Notice that node symmetry requires the matrix to be square, but 
this condition does not comply with most domain connectivity 
submatrices. The main reason is that domain analysis may result in 
rectangular submatrices without node symmetry as illustrated in 
Figure 1. For this reason, graph measures are not applied to domain 
connectivity in this work. We will focus on whole brain FNC matrices 
which are symmetric, and methods to estimate the adjacency matrix 
from FNC matrices are defined in the literature (38).
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Previous studies addressed the topic of graph measures in 
schizophrenia (6, 39), and it is not the purpose of the current study 
to repeat these assessments. However, the purpose of analyzing 
graph modularity in these data is to compare with the other two 
measures (connectivity strength and randomness) included in this 
work. A similar comparison has been previously performed in a 
different data set as it may be helpful in interpreting randomness 
results for domain connectivity (10). In the current case, we 
compare randomness and modularity for whole brain FNC 
only. Modularity values (denoted as Q) were calculated using 
the Newman’s method (40) included in the Brain Connectivity 
Toolbox (https://sites.google.com/site/bctnet/Home) (38). Before 
statistical analysis, we checked for normality and applied the 
square root of Q to pass the Lilliefors normality test (41). The 
Lilliefors method tests the null hypothesis that data come from a 
normally distributed population. This test is useful when the true 
parameters of the distribution (mean and variance) are unknown 
and must be estimated from the given sample data. We repeated 
all linear regression and group analysis tests used for whole brain 
connectivity strength, but applied to modularity.

Randomness Analysis
Randomness analysis of FNC matrices is based on random matrix 
theory (10). The first difference with graph theory is that the matrix 
array is not assumed to describe a graph or an adjacency matrix. For 
example, one of the first applications of random matrices was the 
description of a larger atomic nucleus (42). Just as in connectivity 
strength, the randomness analysis is not based in graph theory and 
the reader should not try to make a strict connection with graph 
analysis. Randomness and graph theory may overlap in the case 
that the matrix of interest can be used to estimate an adjacency 
matrix. In the case of whole brain analysis, a transformation 
from FNC to adjacency is possible; thus, a comparison between 
randomness, connectivity strength, and modularity can be made. 

Such comparison helps provide an interpretative baseline given 
the existence of previous schizophrenia results on the modular 
organization of the brain (39).

A small randomness value L indicates that numbers in a 
connectivity matrix are normally distributed. Besides its known 
statistical properties, randomly drawn numbers do not exhibit a 
particular structure. Thus, non-significant L values are an indication 
of a connectivity matrix with little structure which coincides with 
a low modularity Q value. Significant L values are an indication 
of non-random structures in the connectivity matrix because it is 
unlikely that structure happens by chance. It is reasonable for values 
L and Q to be correlated in spite of coming from different theoretical 
frameworks. The most valuable advantage of randomness is that 
it can be applied to a rectangular matrix (matrices with different 
numbers of rows and columns) which is a common characteristic 
of domain connectivity matrices. More information about the 
randomness measure can be found in the supplement provided.

We estimated randomness for each subject, but given that L 
might have a skewed histogram; we used two transformations 
T{L} (an inverse square for the whole brain matrix and a fourth 
root for the domain submatrices) to increase Gaussianity and 
tested normality using the Lilliefors test (41). We examined 
randomness effects using the same whole brain and domain 
level analysis employed in the Connectivity Strength subsection, 
except that T{L} (the transformed randomness measure) was 
used as the dependent variable instead of connectivity strength.

RESULTS

Whole Brain Analysis
Compared to healthy volunteers, individuals with schizophrenia 
had less random connectivity (higher randomness value L), higher 
modularity, and lower connectivity strength (see Figure 2). Group 
differences in randomness and modularity were significant with 

FIGURE 2 | Whole brain group comparisons for connectivity strength, randomness (L value), and graph modularity (Q value). This figure displays the mean absolute 
measures (no transformations). Statistical tests were performed on normalized data after Gaussian distribution of transformed data was verified using Lilliefors tests.
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p values below 2e−5 for the transformed values. The connectivity 
strength was significantly lower in individuals with schizophrenia 
compared to controls with a p value of the order of 10−14. 
Moreover, the composite CMINDS cognitive performance score 
exhibited positive relationships with whole brain connectivity 
strength (p  <  0.047). In addition, composite and visual learning 
CMINDS scores exhibited negative relationship with Modularity 
Q (p < 0.02). Since the CMINDS scores could have been influenced 
by diagnosis, we further tested a regression model including the 
interaction of diagnosis with CMINDS which showed no significant 
interaction terms. No CMINDS score was significantly related to 
randomness. There was not significant result in any whole brain 
analyses related to PANSS. Details of these results are shown in  
Supplementary Table 2.

The group differences in randomness (L) and modularity 
(Q) exhibited the same direction of effect, similar to prior 
observations that these two measures were moderately correlated 
based on the use of a binary graph of Q (10, 43). An important 
difference in the current analysis is the use of a weighted rather 
than a binary graph. This motivated us to further analyze the 
relationship between connectivity strength (S), L, and Q. This 
relationship is important when interpreting per-domain analyses. 
The correlation between L and Q (Figure 3) based on the use of a 
weighted graph is high (0.59), which is similar to the previously 
reported binary graph assessment (10). The correlations L vs. 
S (−0.32) and Q vs. S (−0.79) were both significantly negative 
(p < 4e−6). Results from group testing and correlations among 
the three measures are consistent on their direction of effect.

Domain Analysis
The partitioning of the whole brain matrix into domain submatrices 
can be found in Figure 1. Domain analysis was independently 
performed on each of the submatrices displayed in the figure. 
There were significant group differences in randomness (L) and 
connectivity strength among domain submatrices (Figure 4). 
Compared to healthy controls, connectivity strengths were 
lower in schizophrenia within and between all AVSN (audio-
visual and sensorimotor) domains (Figure 4 and Table 1). 
Similarly, between domain connectivity strength was lower in 
schizophrenia for COG-AUD, SEN-DMN, and AUD-DMN. 
In contrast, schizophrenia subjects exhibit higher connectivity 

strength in the case of SBC-AUD, SBC-VIS (sensorial input and 
subcortical), and DMN-CER domains.

While group differences of domain connectivity strength 
were prominent within sensory processing areas, randomness 
did not exhibit many differences within AVSN domains. 
Instead, there are three significant differences in COG-VIS, 
COG-SEN, and DMN-SEN with more random submatrices 
(lower L) in SZ subjects. In addition, between connectivity in 
DMN-COG and SEN-VIS were less random in SZ (higher L) 
than HC subjects. These results are displayed in Figure 4 and 
Table 2. As described in previous work, a lower value L (more 
randomness) decreases the chance of finding structure in the 
domain connectivity matrices (10). This last statement relates 
to the correlation between modularity and randomness in 
Figure 3 since larger L (less randomness) correlates with larger 
Q (higher modularity structure). The analysis of CMINDS 
effects showed three significant results. Connectivity strength 
was positively associated with the CMINDS Composite score 
in SEN-VIS and SEN-AUD between connectivity domains. 
Randomness value L was negatively associated with the 
CMINDS Verbal Learning score in the within connectivity 
SEN-SEN. These results are displayed in Figure 5. There was one 
significantly negative relationship (p < 0.0011) that passes FDR 
correction between Randomness value L and the interaction 
term Diagnosis X Reasoning Problem Solving CMINDS score 
for the between connectivity of SBC-VIS domains. A complete 
statistical report can be found in Supplementary Table 3 and  
Supplementary Table 4.

DISCUSSION

The current work looks for functional connectivity abnormalities 
related to schizophrenia at whole brain and domain (groups 
of RSNs) levels. Previous studies of resting state functional 
connectivity have found many differences between schizophrenia 
patients and healthy subjects at more granular brain segmentations 
based on RSNs (5). Our results show that granularly localized 
abnormalities affect connectivity at coarser spatial levels. At the 
coarsest level, findings show that average whole brain connectivity 
is lower and modular structure is larger in schizophrenia patients. 
The enhanced connectivity structure in schizophrenia is confirmed 

FIGURE 3 | Correlations among connectivity strength S, randomness L, and modularity Q. The correlation between L and Q is strong (r = 0.591). Each point 
corresponds to a single subject’s whole functional network connectivity (FNC) matrix. L and Q are negatively correlated with the connectivity strength measure S.
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FIGURE 4 | Group mean and differences in connectivity strength and randomness matrices. The first row displays the original FNC matrices for each group and 
the t values comparing the two groups. Domain submatrices are delimited by black lines. Because domain analysis estimates one single value per submatrix, it is 
easier to illustrate each submatrix value using squares of the same size. Thus, submatrix size is ignored in the second and third rows only for illustration purposes. 
The number of submatrix elements for significant results are included in Tables 1 and 2. The last column portrays only significant t values after Gaussianity 
transformation (Lilliefors test) and false discovery rate (FDR) multiple comparison correction. Domains have been named as sub-cortical (SBC), auditory (AUD), visual 
(VIS), sensorimotor (SEN), cognitive control (COG), default-mode network (DMN), and cerebellum (CER). Within domain results are marked by an asterisk.

TABLE 1 | Significant group differences in connectivity strength for within and between domain assessments. Submatrices of each domain pair are displayed in 
Figure 1.

Type (# 
submatrix 
elements)

Number 
of singular 

values

Domain 1 Domain 2 HC mean S SZ mean S Cohen’s D t value p value

SZ > HC
Between (10) 2 SBC AUD −0.05 0.04 0.42 3.48 5.78E−04
Between (55) 5 SBC VIS −0.10 −0.02 0.38 3.13 1.94E−03
Between (16) 2 DMN CER −0.02 −0.01 0.44 3.66 3.03E−04
SZ < HC
Within (1) 2 AUD AUD 0.30 0.11 −0.44 −3.65 3.12E−04
Between (22) 2 AUD VIS 0.25 0.15 −0.78 −6.51 3.48E−10
Between (12) 2 AUD SEN 0.31 0.17 −0.74 −6.16 2.52E−09
Between (26) 2 AUD COG 0.01 0.001 −0.54 −4.50 9.76E−06
Between (16) 2 AUD DMN 0.02 −0.02 −0.38 −3.15 1.83E−03
Within (55) 11 VIS VIS 0.33 0.23 −0.62 −5.17 4.57E−07
Between (66) 6 VIS SEN 0.24 0.13 −0.71 −5.88 1.20E−08
Within (15) 6 SEN SEN 0.40 0.31 −0.34 −2.80 5.50E−03
Between (48) 6 SEN DMN −0.02 −0.07 −0.78 −6.47 4.30E−10
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by both randomness and graph modularity measures. Several 
connectivity results at the domain level were similar to those 
observed at the RSN level specifically the similarity in connectivity 
effects of SBC and AVSN domains (5). However, some observed 
abnormalities were not reported in the previous RSN analysis: 
1) higher connectivity between cerebellum and DMN; 2) lower 
connectivity between cognitive and auditory domains; 3) lower 

connectivity between DMN and sensory input domains (AUD 
and SEN). In addition, schizophrenia subjects exhibit less 
randomness for the between connectivity DMN-COG and SEN-
VIS; and more randomness for some cognitive-sensorial (COG-
VIS and COG-SEN) and DMN-sensorimotor.

The current results are compatible with the previous ones 
where increments of functional connectivity in schizophrenia 
relative to healthy controls were found between SBC with AVSN 
domains and decrements were found within sensory input and 
motor domains. It is no surprise that Cohen’s D showed medium 
effect sizes among SBC and AVSN results in Table 1. However, 
the results in Figure 4 show an extra set of dysfunctions that were 
likely found due to the averaging of correlations allowing for a 
higher detection power. We can see higher cerebellum-DMN 
connectivity in schizophrenia. Results with the cerebellum-DMN 
exhibited a similar effect size (low to medium Cohen’s D) as that 
found in the subcortical connectivity. While previous RSN-based 
analysis did not report substantial number of differences within 
these domains (5), domain analysis showed there are additional 
connectivity effects in DMN, cerebellum, cognitive control, and 
attention domains related to schizophrenia.

Previous work determined the existence of dysfunctional 
connectivity between thalamus and AVSN RSNs (5). These 
results are consistent with observations in the literature (44), and 
it is possible that the thalamus was the major contributor to the 
subcortical results observed in this work. Notice that the subcortical 
domain includes putamen and caudate in addition to the thalamus 
since we are analyzing the whole subcortical domain as a collection 
of several RSNs. Thus, detected effects are not restricted to the 
thalamus alone but are contextualized to the domain as a group of 
RSNs. An important new finding is the lower connectivity between 
DMN-AUD and DMN-SEN domains in schizophrenia compared 
to control subjects. Effects in aggregated connectivity differ from 
those of pinpointed brain areas. This might be the case of the 
cerebellum area where reports in the literature suggest that some 
cerebellum areas exhibit a decreased connectivity with cortical 
areas (45). However, effects of connectivity strength in our results 
indicate a significant connectivity increment between cerebellum 
and DMN areas. These discrepancies likely characterize the 
difference between testing for one single connectivity measure 
and using the aggregation of connectivity values from a larger 
collection of brain areas.

Random connectivity patterns are a different metric compared 
to correlation-based measures of relationship between two domains. 

TABLE 2 | Significant group differences of randomness for within and between domain assessments. Submatrices of each domain pair are displayed in Figure 1.

Type (# 
submatrix 
elements)

Number 
of singular 

values

Domain 1 Domain 2 HC mean L SZ mean L Cohen’s D t value p value

SZ > HC
Between (66) 6 VIS SEN 4.95 5.41 0.33 2.74 6.51E−03
Between (104) 8 COG DMN 5.47 7.13 0.50 4.15 4.36E−05

SZ < HC
Between (143) 11 VIS COG 10.53 8.37 −0.38 −3.13 1.94E−03
Between (78) 6 SEN COG 9.19 6.96 −0.67 −5.52 7.87E−08
Between (48) 6 SEN DMN 4.00 2.99 −0.37 −3.05 2.54E−03

FIGURE 5 | Significant relationships between randomness, connectivity 
strength, and CMINDS scores. The color scale indicates beta values. Only 
significant regression coefficients are displayed; the non-significant cells are 
white. Within domain results are marked by an asterisk.
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As Figure 3 indicates, graph modularity and randomness are 
highly correlated indicating that randomness and modularity 
share common characteristics. However, both concepts address 
different aspects that can be measured from a connectivity matrix 
(43). In the whole brain adjacency matrix case, it was possible 
to assess this similarity between randomness and modularity 
which showed consistency when comparing against connectivity 
strength. In our data, as connectivity strength decreases, both 
randomness and modularity measures increase. The SEN-VIS 
result is another outcome where lower domain connectivity was 
concurrently observed with less randomness. A full mathematical 
analysis of this effect is not available at the moment and might 
be a topic of future study. While the inverse relationship between 
connectivity strength and graph modularity/randomness could 
appear contradictory, the following example illustrates why 
this is not the case. For example, take a fully connected graph 
where the connectivity matrix is full of ones; thus, the average 
connectivity is 1 but it has a low modularity equal to zero because 
there is only one module. Consider now a connectivity matrix 
with a chessboard pattern of zeros and ones where the average 
connectivity is 0.5 (equal number of zeros and ones) but now 
the modularity measure is equal to 0.5. This example has been 
explored using modularity and randomness (10) and is useful 
illustrating that lower connectivity might result in higher graph 
structure which reflects in randomness and modularity measures. 
The inverse relationships observed in Figure 3 are then reasonable. 
In summary, a larger value L (lower randomness) in schizophrenia 
is similar to a larger modularity (larger Q value) indicating more 
structure in the connectivity data and a lower probability that 
such structure occurred by chance. In the case of domain analysis, 
randomness allowed the observation of changes in connectivity 
structure that cannot be measured using graph measures. As 
explained in the Methods section, domain connectivity matrices 
have properties that do not permit the estimation of an adjacency 
matrix. To interpret the results, we can mention that increments 
in the randomness measure L are associated with a less random 
submatrix structure. Since it has been shown in Figure 3 that 
randomness and modularity are correlated, it is possible to 
argue that randomness allows for the assessment of structure 
within domain connectivity in spite of not being able to employ 
modularity. However, we must keep in mind that modularity is a 
measure of community structure for graphs (40), but randomness 
is not assessing the existence of these communities. Nevertheless, 
it is reasonable to assume that existence of community structure 
correlates with decreased randomness.

The main outcomes of randomness analysis were centered on 
the DMN, COG, VIS, and SEN domains. The first result worth 
mentioning is a less random relationship between COG and DMN 
domains. Based on this result, we can argue that connectivity between 
these two domains tends to have a less random structure in SZ 
patients. Since connectivity strength was not significantly different 
in the COG-DMN domains, we can argue that the main dysfunction 
between COG and DMN areas is related to its connectivity pattern 
instead of its strength. This outcome is in line with the hypothesis 
that dysfunctional DMN could intrude in cognitive functioning of 
the brain (46). Since the group test shows less randomness in COG-
DMN for SZ patients, this result could indicate a dysfunctional 

restructuring of connectivity affecting cognition in schizophrenia. 
This structuring could also be a compensation trade-off between 
the decrement of randomness in COG-DMN against the increment 
of randomness between VIS-COG, SEN-DMN, and SEN-COG 
domains. The next outcome to mention is the decreased randomness 
in SEN-VIS domains accompanied by reduced connectivity 
strength. In this case we argue that connectivity decrements are 
different for each RSN pair resulting in an uneven reduction effect 
through the SEN-VIS submatrix. As observed in Figure 4, the DMN 
seems to be more sensitive to dysfunctions related to schizophrenia 
since it suffered lower connectivity strength with AUD and SEN 
domains, as well as altered randomness behavior with respect to the 
connectivity with SEN and COG domains.

Findings in this study were possible because the focus was 
domain connectivity, which is not too coarse as whole brain 
analysis or as fine as single RSN analysis which might be spatially 
constrained. This focus on a relatively intermediate spatial resolution 
has the strength of revealing abnormalities of functionally related 
brain areas that might not be strong unless analyzed as a group. 
Observations in this study were consistent with previous per-
RSN analysis (5) confirming that strong effects at a finer RSN 
resolution effectively translates into effects of functionally grouped 
RSNs. Furthermore, the main advantage of domain analysis was 
its sensitivity to domain effects that were not previously observed. 
The main limitation of the method is the difficulty in identifying 
a specific brain area for effects, since results pertain to grouped 
RSNs. This limitation is a trade-off for detection power since the 
aggregation of several connectivities allowed observing effects not 
seen for individual RSNs. This limitation can be overcome simply 
by turning to consider individual functional connectivities. For 
example, studying individual connectivities allowed identifying 
the thalamus as the subcortical area with stronger and significant 
effect (5) albeit missing many of the domain effects reported here. 
Applying modularity was another limitation when analyzing 
domain connectivity. In this work, we tried overcoming this 
limitation indirectly by using randomness as a measure highly 
correlated to modularity. Another important limitation is the short 
fMRI scanning time of 5 min. There is current controversy through 
the literature whether this is too short or appropriate (47, 48). There 
is a recent warning of increased probability of entering sleepiness 
near 7 min (49, 50). Resting state experiments have been criticized 
regarding the existence of these sleep states (51). However, our data 
have a large probability of avoiding contamination by sleep states 
staying within 5 min. Another limitation in our data is the spatial 
resolution set by the 4 mm slice thickness of the fMRI scanning 
protocol. It is likely that signals from small brain structures 
were not resolved. A new pattern of aberrant dysfunctions was 
observed from the randomness analysis. These effects would not 
have been possible to be measured using modularity only because 
of its mathematical restrictions with respect to the connectivity 
matrices involved.

CONCLUSION

Analyzing functional connectivity using a domain framework 
confirmed several effects observed in schizophrenia and identified  
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