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Abstract

Background: A proper balance between different T helper (Th) cell subsets is necessary for normal functioning of
the adaptive immune system. Revealing key genes and pathways driving the differentiation to distinct Th cell
lineages provides important insight into underlying molecular mechanisms and new opportunities for modulating
the immune response. Previous computational methods to quantify and visualize kinetic differential expression data
of three or more lineages to identify reciprocally regulated genes have relied on clustering approaches and
regression methods which have time as a factor, but have lacked methods which explicitly model temporal
behavior.

Results: We studied transcriptional dynamics of human umbilical cord blood T helper cells cultured in absence and
presence of cytokines promoting Th1 or Th2 differentiation. To identify genes that exhibit distinct lineage
commitment dynamics and are specific for initiating differentiation to different Th cell subsets, we developed a
novel computational methodology (LIGAP) allowing integrative analysis and visualization of multiple lineages over
whole time-course profiles. Applying LIGAP to time-course data from multiple Th cell lineages, we identified and
experimentally validated several differentially regulated Th cell subset specific genes as well as reciprocally
regulated genes. Combining differentially regulated transcriptional profiles with transcription factor binding site and
pathway information, we identified previously known and new putative transcriptional mechanisms involved in Th
cell subset differentiation. All differentially regulated genes among the lineages together with an implementation of
LIGAP are provided as an open-source resource.
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Conclusions: The LIGAP method is widely applicable to quantify differential time-course dynamics of many types
of datasets and generalizes to any number of conditions. It summarizes all the time-course measurements together
with the associated uncertainty for visualization and manual assessment purposes. Here we identified novel human
Th subset specific transcripts as well as regulatory mechanisms important for the initiation of the Th cell subset
differentiation.

Keywords: Lineage commitment, Non-parametric analysis, Th cell differentiation, Time-course transcriptomics,
Transcription factor binding
Background
T cells are key regulators of the adaptive immune system
and have a central role in defense against pathogens and
cancer as well as protection from autoimmune diseases.
CD4+ T lymphocytes can differentiate to functionally
distinct effector subtypes, including T helper 1 (Th1),
T helper 2 (Th2) and more recently described T helper
17 (Th17) cells [1]. Th1 cells secrete effector cytokine
IFN-γ and regulate cell-mediated immunity and play a
role in the pathogenesis of autoimmune diseases, such
as multiple sclerosis. Th2 cells in turn produce IL-4,
IL-5, and IL-13 cytokines, and mediate immunity against
extracellular pathogens and allergic reactions. Th17 cells,
characterized by the production of a proinflammatory
cytokine IL-17, regulate inflammatory responses on the
mucosal surfaces. For the overall health in humans and
animals, the proper balance between different effector
T cell types and T regulatory cells is crucial [2,3]. Aber-
rant activation of Th1 and Th17, or Th2 cells can trigger
inflammatory autoimmune diseases as well as asthma
and allergy. Previous studies utilizing genome-wide ex-
pression data and computational modeling have aimed at
revealing the master regulators and regulatory networks
within the differentiating Th1 and Th2 cells [4-9]. How-
ever, studies in human have been less extensive than
in mouse due to the difficulty in collecting sufficient
amount of samples to comprehensively profile T cell dif-
ferentiation over time. In addition, lack of appropriate
computational methods suitable for analyzing large-scale
experimental data from multiple lineages over several
time points spanning the lineage commitment process has
limited the progress on revealing dynamics and molecular
mechanisms underlying multiple lineage commitment.
A number of different time-series analysis approaches

have been proposed to solve large-scale lineage commit-
ment analysis problems. The general purpose F-test [10]
can be used to test the difference between time-series
data sets, but it does not extend to simultaneous com-
parison of multiple lineages and fails to take into account
the correlation between the measurements at different
time points. More recent approaches to analyze time-
series data, including regression, differential expression,
discriminant and clustering methods, are reviewed by
Coffey and Hinde [11]. Methods for differential expression
analysis include e.g. spline-based methods, generalized
F-tests and hierarchical error and empirical Bayes models.
Spline-based EDGE method by Storey et al. [12] is relevant
for our problem because it provides comparisons for mul-
tiple conditions (lineage commitment profiles). Although
EDGE computes a p-value for differential expression, it
does not quantify the differential expression for all lineage
comparisons, such as reciprocal genes (i.e., all lineages be-
have differently). ANOVA-based TANOVA method is
based on the approach where different ANOVA structures
are defined and the optimal one is found by evaluating the
effects and significancies of the factors [13]. Recently,
Stegle et al. [14] proposed an approach based on Gaussian
processes (GP) to determine the time interval when a
gene is differentially expressed. The methodology of Stegle
et al. (2010) was limited to analyzing only two conditions.
Moreover, it is often observed at transcriptional level that
immediately after a treatment, such as activation of T cells
by engagement of T cell receptor and CD28, genes are
highly dynamic for some time but activity of gene expres-
sion decreases at later time points [15,16]. Thus, an ideal
computational method − that does not exist at the mo-
ment − should take into account the temporal correlation,
handle a non-uniform measurement grid, cope with non-
stationary processes, and be able to do a well-defined ana-
lysis of multiple conditions.
Here we developed a computational methodology,

LIGAP (Lineage commitment using Gaussian processes)
which analyzes experimental data from any number of
lineage commitment time-course profiles and analyzed
genome-wide gene expression profiles of human umbi-
lical cord blood T helper cells (Thp) activated through
their CD3 and CD28 receptors and cultured in absence
(Th0) or presence of cytokines promoting Th1 or Th2
differentiation. The results give insight into differences
of the three lineages in the expression landscape and
provide marker genes for lineage commitment identifica-
tion. Key lineage specific, that is, differentially regulated,
genes discovered computationally were validated either
experimentally at protein level or based on the published
literature. Using a module-based analysis, we identified
known and putative regulatory control mechanisms by
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overlaying highly coherent lineage profile clusters with
genome-wide transcription factor (TF) binding predictions
and pathway information. Consistent with the previously
published results on IL-4/STAT6-mediated control of a
large fraction of genes in Th2 program [17], our analysis
revealed a comparable up-regulated and down-regulated
modules, which are suggested to be controlled by STAT6
and other TFs. Interestingly, we also found that the genes
which behave differently between all the lineages studied
exhibit a consistent characteristic pattern, i.e., they are up-
regulated in Th1 polarizing cells, down-regulated in Th2
polarizing cells, and in activated cells (Th0) the expression
levels are between Th1 and Th2 cells. In addition, our
analysis revealed a large set of novel genes, which are spe-
cific for different T cell subsets in human. All the gene ex-
pression data and differentially regulated genes as well as
software implementing our computational analysis are
made publicly available.

Results
Experimental data from primary human CD4+ T cells
We used previously published time-course gene expres-
sion measurements of activated primary human T cells
(Th0) and cells polarized to differentiate to Th2 lineage
[17] as well as previously unpublished data set represen-
ting Th1 polarizing cells originating from the same naïve
Th precursor cells as the Th0 and Th2 cells. The gene
expression of Th1 lineage was measured at time points
0, 12, 24, 48 and 72 hours. The measurements from Th0
and Th2 samples were available at the same time points.
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LIGAP: A computational technique to identify condition
specific time-course profiles
The discovery of condition specific genes at the level
of gene expression is an important first step in systems
biology studies. To capture temporal aspects of biolo-
gical processes, such as cell differentiation, gene expres-
sion is commonly measured over time. We developed a
novel model-based method LIGAP for detecting and
visualizing changes between multiple lineage commit-
ment time-course profiles. Briefly, for each gene at a
time, our method carries out all comparisons between
different cell subsets. In the case of Th0, Th1 and Th2
lineages, we assess all 5 alternatives; (i) “Th0, Th1, Th2
time-course profiles are all similar” (hypothesis H1),
(ii) “Th0 and Th1 are similar and Th2 is different” (hy-
pothesis H2), (iii) “Th0 and Th2 are similar and Th1 is
different” (hypothesis H3), (iv) “Th1 and Th2 are similar
and Th0 is different” (hypothesis H4), and (v) “Th0, Th1,
and Th2 are all different from each other” (hypothesis
H5). LIGAP comparisons and quantifications are illu-
strated in Figure 1. The modeling is done using Gaussian
processes, which provide a flexible and nonparametric
approach for estimating smooth differentiation profiles.
With the help of Bayesian statistics, we can quantify dif-
ferences and similarities by assigning posterior probabil-
ities for all the different profile comparisons between
polarizing cell subsets. The problem can be seen as a
model selection problem, where different comparisons
are thought of as different model structures (H1,. . . H5)
and, given experimental lineage commitment profile data
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D, the marginal likelihood P(D | Hj), j=1,. . .,5, is used to
score different models. Using the Bayes’ theorem, the
marginal likelihoods can be converted into posterior
probabilities of different hypothesis. These Bayesian mo-
del scores can be used further to quantify genes, which
are specific for a certain lineage. For example, the pro-
bability of a gene being differentially regulated in Th2
lineage, i.e., score for Th2 is P(“Gene is differentially
regulated in Th2” | D) = P(“Th0 and Th1 are similar and
Th2 is different” | D) + P(“Th0, Th1 and Th2 are all dif-
ferent” | D) = P(H2| D) + P(H5| D). Genes which are dif-
ferentially regulated in each of the conditions can be
found by quantifying the probabilities P(“Th0, Th1, and
Th2 are all different from each other” | D) = P(H5| D) or
the three probabilities of differential regulation. Each
score quantifies the amount of differential regulation,
which refers to distinct temporal behavior from other
lineages. The methodology generalizes to any number of
lineages/conditions. Our method copes with non-uniform
sampling, is able to model non-stationary biological pro-
cesses (where e.g. changes are fast at the beginning of the
Figure 2 A two-dimensional PCA visualization of the differentially reg
differentially regulated gene. The color of the data point indicate the subse
corresponding to different polarizing cell subsets are shown as a reference
experiment and slow at the end), can make comparisons
for paired samples, and can carry out the analysis with dif-
ferent number of replicates and missing data. Importantly,
the method affords comparison of more than two condi-
tions of interest and is widely applicable to different ex-
perimental platforms.

LIGAP identifies signatures of Th0, Th1 and Th2 cell
lineages
We analyzed the genome-wide gene expression time-
course data from Th0, Th1 and Th2 lineages using
LIGAP. For all genes, the method outputs the posterior
probability values for each of the five hypotheses and
also computes the scores for genes being differentially
regulated in the Th subsets. An overview of the differen-
tially regulated genes is shown in Figure 2, where the
four-dimensional data points representing the condition
specificities are projected into a plane using the principle
component analysis (PCA). This demonstrates the con-
venience of the presented method as we are able to reduce
highly complex data into a meaningful four-dimensional
ulated genes among Th lineages. Each point corresponds to a
t specificity as indicated in the figure. Four axes (black arrows)
. The used probability cut-off for each class was 0.9.
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representation using a unified probabilistic framework. In
Figure 2 individual points represent different genes and
every gene is associated with four probabilities: P(“Diffe-
rentially regulated in Th0”), P(“Differentially regulated in
Th1”), P(“Differentially regulated in Th2”), and P(“Th0,
Th1, and Th2 are all different from each other”). Note that
IFNγ has the three probabilities P(“Differentially regulated
in Th0”), P(“Differentially regulated in Th1”), and P(“Dif-
ferentially regulated in Th2”) close to unity because the
probability P(“Th0, Th1, and Th2 are all different from
each other”) is close to unity. We set a criterion (P > 0.9)
for the probabilities to call the differentially regulated
probe sets; this threshold is in accordance with the
Jeffrey’s interpretation of “strong evidence” for the Bayes
factor [18]. In addition, we required a minimum of two-
fold change between a lineage and all other lineages at
some time point during the differentiation for a gene to be
called as differentially regulated. The top 49 and 50 gene
symbols for Th1 and Th2 lineages, respectively, are listed
in Table 1, whereas, the Th0 list includes only 18 genes. In
a Additional file 1: Figure S1 are depicted two additional
examples illustrating the advantage of considering tem-
poral correlation in gene expression and thus improving
the sensitivity of detecting consistent yet subtle changes.
In addition, we repeated the analysis using EDGE [12]
and TANOVA [13] methods using the default parame-
ter values. TANOVA identified almost twice as many
genes (~1,300) to be differentially regulated as LIGAP
or TANOVA (~700). A comparison of the obtained
ranked lists revealed a higher correspondence between
the lists produced by LIGAP and EDGE than with the
list produced by TANOVA (data not shown).
Our results of the Th subset specific genes agree well

with known transcriptional changes during the human
T cell differentiation. IFNγ, a hallmark molecule of Th1
lineage, was found to be one of the most significantly up-
regulated Th1 specific transcripts (Table 1, Figure 3A, and
Additional file 2: Table S1). Furthermore, IL18R1 encoding
the interleukin 18 receptor (IL18R), as well as IL-18 recep-
tor accessory protein (IL18RAP) were among the top Th1
specific genes (Table 1, Figure 3B). Expression of IL18R is
up-regulated specifically on Th1 cells but not on Th2
cells, thus, IL18R can be regarded as a differentiation mar-
ker for Th1 cells [15,19]. In fact, IL-12 and IL-18 can re-
ciprocally up-regulate expression of each other’s receptors
in Th1 cells [15,20] and the IL-18 - IL18R system has a
significant role in the synergistic effect of IL-12 and IL-18
in triggering efficient NF-κB signaling and enhancement
of IFNγ production from human Th1 cells [21]. Intri-
guingly, in the absence of IL-12, IL-18 has also potential
to induce Th2 differentiation and cytokine response
[19,22]. The basic helix-loop-helix transcription repressor
TWIST1 is also known to be expressed in Th1 cells in
IL-12/STAT4, NF-κB and NFAT dependent way and its
role has been proposed to be linked to autoregulation of
inflammatory cytokine production e.g. IFNγ [23]. Seve-
ral studies have shown that CXCR6 is predominantly
expressed in Th1 cells [24,25] and, inversely, in Th2 prone
allergic conditions the expression of CXCR6 was reduced
in allergic patients when compared to healthy individuals
[26]. Also, an important Th1 linked function has been
observed with MAP3K8 as it acts as an upstream activator
of ERK via IL-12 and TCR-dependent signaling, promotes
expression of T-bet and STAT4, and is actually a STAT4
target itself forming a feedback loop in the Th1 cells [27].
Deficiency in MAP3K8 leads to decreased IFNγ produc-
tion in T cells and in vivo impaired host defense against
Toxoplasma gondii [27].
Interestingly, the retinoic acid-related orphan receptor

gamma (RORC) gene encoding RORγt, the key transcrip-
tion factor in the differentiation program of Th17 cells,
was also identified as a Th1 specific gene by the LIGAP
analysis (Table 1) as its expression was up-regulated at 48
h time point (Figure 3C). In human, small numbers of T
cells producing both IL-17 and IFNγ have been charac-
terized in peripheral blood, in lamina propria of patients
with Crohn’s disease as well as in patients with psoriasis
[28-30], but currently is it not known how such cells are
derived from the naïve precursor cells. Other novel Th1
specific hits identified by the LIGAP include two cytoskel-
eton associated protein-coding genes dystrophin (DMD)
and palladin (PALLD). DMD encodes actin-binding cyto-
skeletal structure molecule, which has been mostly studied
in patients with Duchenne’s muscular dystrophy [31].
These patients develop dystrophin specific autoreactive
T cells [31], however, the biological role for dystrophin or
palladin in differentiating Th cells is not known. Other
genes novel in this context and putatively important for
Th1 cell differentiation and/or function include METRNL,
(meteorin, glial cell differentiation regulator-like), asso-
ciated with rare cases of Mild ring 17 syndrome [32],
GLUL encoding a glutamine synthetase, and associated
with neuronal disorders and atherosclerotic carotid pla-
ques [33,34], MCTP2 (multiple C2 domains, trans mem-
brane 2), BBS12 (Bardet-Biedl syndrome 12), STAG3
(stromal antigen 3), a meiotic gene, as well as PGAP1
(post-GPI attachment to proteins 1). NAPSB coding for
aspartic protease Napsin B is known to be expressed in
human spleen and peripheral blood leucocytes, how-
ever, it is estimated to be only a transcribed pseudogene
[35,36]. Similarly, MIAT (myocardial infarction associated
transcript) is a non-protein coding gene [37], and the rele-
vance of these transcripts in T cell differentiation is not
understood, yet.
The top LIGAP hits of Th2 specific genes included

several genes with very high probability values (Table 1,
and Additional file 2: Table S1) and include a vast num-
ber of genes that are both specifically up-regulated and



Table 1 Differentially expressed genes in T cells polarized towards the Th0, Th1 and Th2 subsets

Top 18 Th0 specific genes Top 49 Th1 specific genes Top 50 Th2 specific genes

Affymetrix
probe ID

Gene
symbol

P(“Th0 specific”) Affymetrix
probe ID

Gene
symbol

P(“Th1 specific”) Affymetrix
probe ID

Gene
symbol

P(“Th2 specific”)

203881_s_at DMD(<2) 0.99967984 206618_at IL18R1(+) 0.999997088 204388_s_at MAOA(+) 1

223435_s_at PCDHA1(<2) 0.999832654 203881_s_at DMD(+) 0.999993101 227006_at PPP1R14A(+) 1

205027_s_at MAP3K8(<2) 0.996290375 210354_at IFNG(+) 0.999987382 205419_at GPR183(+) 1

228055_at NAPSB(<2) 0.996196899 207072_at IL18RAP(+) 0.9999811558 215172_at PTPN20A(+) 1

220225_at IRX4(<2) 0.991324709 213943_at TWIST1(+) 0.999952924 205769_AT SLC27A2(-) 1

205794_s_at NOVA1(<2) 0.984972756 222547_at MAP4K4(<2) 0.999933552 218976_at DNAJC12(-) 1

221035_s_at TEX14(<2) 0.981445323 242809_at IL1RL1(<2) 0.999876515 208510_s_at PPARG(+) 1

210354_at IFNG 0.977204551 206007_at PRG4(<2) 0.999828413 228708_at RAB27B(+) 1

212012_s_at KPNA6(<2) 0.976438534 228055_at NAPSB(+) 0.99973265 45288_at ABHD6(+) 1

219265_at MOBKL2B(<2) 0.974857762 235458_at HAVCR2(+) 0.99959007 229764_at TPGR1(+) 1

212992_at AHNAK2(<2) 0.971558242 225955_at METRIL(+) 0.99954195 235199_at RNF125(+) 1

223727_at KCNIP2(<2) 0.968952518 206974_at CXCR6(+) 0.999495469 203153_at IFIT1(-) 1

200907_s_at PALLD(<2) 0.967031439 206785_s_at KLRC2(<2) 0.99882105 203097_s_at RAPGEF2(-) 1

1570169_at CSMD2(<2) 0.950549266 200648_s_at GLUL(+) 0.997745987 208891_at DUSP6(+) 1

200906_s_at PALLD(<2) 0.940149574 205027_s_at MAP3K8(+) 0.996774094 223159_s_at NEK6(+) 1

216341_s_at GNRHR(<2) 0.933169413 225142_at JHDM1D(<2) 0.996653927 210715_s_at SPINT2(+) 1

222890_at CCDC113(<2) 0.921542966 215672_s_at AHCYL2(<2) 0.996237492 208158_s_at OSBPL1A(+) 1

201283_s_at TRAK1(<2) 0.914512473 219383_at PRR5L(<2) 0.995895316 225752_at NIPA1(+) 1

220603_s_at MCTP2(+) 0.993459782 206638_at HTR2B(+) 1

239533_at GPR155(<2) 0.992909201 205579_at HRH1(+) 1

229603_at BBS12(+) 0.989517632 226508_s_at TNFSF13B(-) 0.999999999

237559_at GPR55(<2) 0.988653639 244413_at CLECL1(+) 0.999999999

204284_at PPP1R3C(<2) 0.988109742 203708_at PDE4B(-) 0.999999999

202625_at LYN(<2) 0.986582272 227438_at ALPK1(-) 0.999999998

223767_at GPR84(<2) 0.984948052 210762_s_at DLC1(+) 0.999999998

209348_s_at MAF(+) 0.983885642 235570_at RBMS3(+) 0.999999997

210448_s_at P2RX5(+) 0.9830704 212077_at CALD1(+) 0.999999997

228057_at DDIT4L(<2) 0.978509028 235301_at KIAA1324L(+) 0.999999997

203129_s_at KIF5C(<2) 0.978078282 209576_at GNAI1(+) 0.999999997

1554190_s_at C10orf81(<2) 0.976976156 1554878_a_at ABCD3(+) 0.999999996

228806_at RORC(+) 0.976176574 205569_at LAMP3(+) 0.999999996

227568_at HECTD2(<2) 0.975089149 205900_at KRT1(+) 0.999999996

219753_at STAG3(+) 0.972731568 210145_at PLA2G4A(+) 0.999999996

223374_s_at B3GALNT1(<2) 0.971777376 227529_s_at AKAP12(+) 0.999999995

205098_at CCR1(<2) 0.969847411 209602_s_at GATA3(+) 0.999999995

200907_s_at PALLD(+) 0.967031845 225566_at NRP2(+) 0.999999995

211122_s_at CXCL11(<2) 0.965307014 1552807_a_at SIGLEC10(+) 0.999999995

227697_at SOCS3(+) 0.965003456 220307_at CD244(<2) 0.999999994

212683_at SLC23A44(<2) 0.960505919 239151_at BMS1P1(+) 0.999999994

213572_s_at SERPINB1(<2) 0.953874496 221241_s_at BCL214(-) 0.999999993

244321_at PGAP1(+) 0.953326576 229625_at GBP5(-) 0.999999992

217127_at CTH(+) 0.947970476 204912_at IL10RA(+) 0.999999999
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Table 1 Differentially expressed genes in T cells polarized towards the Th0, Th1 and Th2 subsets (Continued)

225962_at ZNRF1(+) 0.944840091 214974_x_at CXCL5(-) 0.999999989

219532_at ELOVL4(<2) 0.937454137 221971_x_at CTGLF10P(+) 0.999999989

222838_at SLAMF7(+) 0.934337899 203853_s_at GAB2(+) 0.999999989

228658 MIAT(+) 0.934243107 222457_s_at LIMA1(+) 0.999999986

206948_s_at PMCH(<2) 0.928324396 213385_at CHN2(+) 0.999999983

232030_at KIAA1632(<2) 0.914780073 205630_at CRH(+) 0.999999979

213596_at CASP4(<2) 0.907680384 207861_at CCL22(+) 0.999999979

219209_at IFIH1(-) 0.999999977

Probe sets that fulfill the two-fold change criterion are marked based on the direction of the expression (+ denotes up-regulation and - denotes down-regulation)
in the given condition. For example, IFNγ expression is enhanced in Th1 compared to Th0 and Th2, whereas expression of SLC27A2 is decreased in Th2 compared
to Th0 and Th1. In addition, probe sets that do not fulfill the fold change criterion are marked in the lists with “<2”. All genes from Th0 and Th1 conditions as well
as the top 50 of the Th2 specific genes are shown.
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down-regulated in Th2 conditions compared to other
Th subsets. Therefore, the list of Th2 specific genes with
highest probability is consistent with the previously pub-
lished results obtained with other computational methods
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Figure 3 A detailed visualization of six differentially regulated genes.
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[17]. Importantly, GATA3, the well characterized master
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highly up-regulated at all time points among the cells
cultured in Th2 polarizing conditions, whereas the ex-
pression profiles in Th0 and Th1 cells exhibited down-
regulation (Figure 3D). In addition to well-known subset
signature molecules, the analysis identified also a number
of poorly characterized molecules in relation to their func-
tion in polarized Th cells. Among the highly expressed
top 50 Th2 hits, the specificity of these transcripts relative
to Th0, but not to Th1, has already been identified at dif-
ferent time points with the standard LIMMA methods
(Smyth, 2005) in the past [17]. One of these Th2 specific
top hits was MAOA, a gene encoding monoamine oxidase
A, whose expression was increasingly up-regulated during
the time course (Table 1, Figure 3E). This enzyme degra-
des amine neurotransmitters, (e.g. dopamine, norepine-
phrine, and serotonin) and was previously found to be
up-regulated in human peripheral blood monocytes after
IL-4 and IL-13 stimulation [39] as well as in Th2 cells
derived from cord blood naïve CD4+ T cells and, im-
portantly, being indirectly controlled by STAT6 [15,17]. It
has been hypothesized that MAOA may act as an anti-
inflammatory mediator by degrading serotonin which
inhibits generation of TNFα from macrophages and up-
regulates phagocytosis [40]. The biological significance of
MAOA in Th2 cells, however, remains to be elucidated.
Another interesting Th2 specific top hit was SPINT2
(Table 1, Figure 3F) encoding a transmembrane serine
A

DUSP6

GAPDH

C Th0 Th1 Th2

Figure 4 Experimental validation of characteristic expression of SPINT
histogram overlay showing SPINT2 expression at protein level on the cell s
activation. (B) SPINT2 secretion from different T helper cells measured with
images showing (C) DUSP6 and (D) PPP1R14A expression on Th cells at 72
presented. A house keeping protein GAPDH is shown as a loading control.
peptidase inhibitor Kunitz type 2 (also called HAI-2 and
placental bikunin). SPINT2 was originally named after its
homology to hepatocyte growth factor activator inhibitor
1 and its first isolation from human placenta [41,42]. The
Kunitz inhibitory domains display potent inhibitory ac-
tivity towards several trypsin-like serine proteases [43] and
mutations in the human SPINT2 gene cause a broad
spectrum of abnormalities in organogenesis [44]. In ad-
dition, SPINT2 may function as a tumor suppressor gene,
as its mRNA levels are down-regulated in several human
cancers (e.g. gliomas, colorectal cancers and liver cancer)
and a deficiency in SPINT2 expression is linked with poor
prognosis of breast cancer [45]. There are no previous
studies where the possible functional role of SPINT2 in
human lymphocytes is unraveled, however, SPINT2 was
recently found to be a STAT6 target in human macro-
phages as well as in human Th2 cells [17,46]. We, hence,
chose to experimentally validate the specificity of SPINT2
in primary human Th2-polarizing cells. We tested the spe-
cificity of SPINT2 expression at protein level on the cell
surface of the Th cells with flow cytometry. At 24 hours
after activation and induction of polarization the Th2 cells
were found to express significantly more SPINT2 than the
Th1 polarizing cells or the activated Th0 cells (Figure 4A).
As some of the human SPINT2 transcripts do not harbor
the coding signal for the transmembrane domain [47], we
therefore also investigated if SPINT2 would be secreted
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h post activation. Representatives of three biological replicates are
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from the Th subsets. The SPINT2 concentrations were
measured from the culture supernatants by enzyme-
linked immunosorbent assay (ELISA) at 48 hours after
activation and polarization, and the Th2 cells were ob-
served to secrete significantly more SPINT2 than Th0 or
Th1 cells (Figure 4B). The Th2 specific hits included al-
so PPP1R14A, a phosphorylation-dependent inhibitor of
smooth muscle myosin phosphatase, involved in regula-
tion of smooth muscle contraction [48] as well as DUSP6
(dual specificity phosphatase 6), responsible for depho-
sphorylation of ERK1/2 [49]. Recently, IL-4 induced RNA
expression of signaling molecules PPP1R14A and DUSP6
have been reported [15,17,50]. As the regulation of phos-
phorylation of the signaling intermediates is known to be
highly important in defining the cell differentiation, we
wanted to experimentally validate the subset specific ex-
pression of these two signaling molecules at protein level.
We detected a clear Th2 specific PPP1R14A and DUSP6
protein expression at 72 hours time point post activation
and initiation of the polarization, and very little or no ex-
pression in Th0 and Th1 lineages (Figures 4C and 4D).

Reciprocal regulators of lineage commitment
In context of determination of T cell subset identity, a
key group of genes is the one where the expression kin-
etics differ between all the lineages. The list of these
significantly different genes is shown in Table 2. An il-
lustrative example gene from this list is the well-known
Th1 signature cytokine gene IFNG (Figure 3A) as well as
TBX21 encoding T-bet, a hallmark transcription factor
in Th1 differentiated cells, both of which are also known
to suppress Th2 activity [51]. In addition, MAP3K8,
FAS, IL12RB2, and IL-26, have been identified to play
role in Th1 polarized cells (cf. Table 2). Moreover, Table 2
and Additional file 2: Table S1 contain numerous diffe-
rentially regulated transcripts which are only poorly cha-
racterized or their role in CD4+ Th cells has not been
studied. The novel Th1 specific genes DMD and PALLD,
encoding cytoskeletal associated proteins dystrophin and
palladin, fall into the reciprocally regulated genes in the
Th subsets studied here. Also, Th1 specific putative
pseudogene NAPSB and non-coding transcript MIAT
show reciprocal transcript profiles. Other novel genes in-
clude PRR5L, which has been identified to interact with
a highly conserved protein kinase TOR (target of rapa-
mycin), a central controller of cell growth and apoptosis
[52]. OSBPL10 encodes oxysterol binding protein-like
10, an intracellular lipid receptor that regulates cellular
lipid metabolism [53]. P2RY14 (purinergic receptor P2Y,
G-protein coupled, 14) is a membrane receptor for UDP-
glucose and plays a role in immune responses in human
airway as well as female reproductive track epithelial cells
by stimulating cytokine and chemokine production and
recruitment of neutrophils [54-56]. P2RY14 has also been
identified to function in mouse splenic T cells as a regula-
tor of IL-2 induced proliferation, however, no specific link
to Th1 cells has been observed [57]. Also, the significance
of ATP9A (ATPase, class II, type 9A), LPAR3 (lysopho-
sphatidic acid receptor 3) functioning in G-protein cou-
pled receptor signaling, XRN1 (5'-3' exoribonuclease 1),
BSPRY (B-box and SPRY domain containing), MCTP2
(multiple C2 domains, transmembrane 2) or PTPRO (pro-
tein tyrosine phosphatase, receptor type, O) in Th1 cells is
yet to be studied. Recent data indicate that in B cells,
PTPRO dephosphorylates Syk, a kinase that is critical in
signal transduction of B-cell receptor [58].
The Th2 up-regulated genes, PDE7B, SETBP1, C9orf135,

TPRG1, IGSF3, or PPP1R14A have not been linked to
CD4+ Th cell function, although their IL-4 mediated up-
regulation has been published, and furthermore, SETBP1,
TPRG1 and PPP1R14A have been identified as direct
targets of STAT6 [17]. Interestingly, we observed that most
of the genes whose expression differs between all the
three lineages behave in a similar manner, i.e., they are up-
regulated in Th1 and down-regulated in Th2.
Among the reciprocally regulated genes we found 34

genes up-regulated in Th1 condition and only six genes
behaved in the opposite manner. The hierarchical clus-
tering of the kinetic profiles is depicted in Figure 5A.
This suggests that there are common mechanisms that
induce reverse regulatory behavior. For example, the
genes up-regulated in Th1 condition might be controlled
downstream of IFNγ. This hypothesis is supported by
the clear similarity between the profiles of IFNγ and the
profiles of the clustered genes. We prepared a similar
figure showing the differences in the kinetics of all the
LIGAP identified genes. These results are depicted in
Figure 5B and they show the similarity between the Th0
and Th1 lineages and their dissimilarity between the
Th2 lineage.

Transcription factor binding sites in Th2 lineage
To extend our transcriptional analysis into transcrip-
tional regulation, we decided to systematically analyze
both genome-wide transcription factor (TF) binding site
predictions made in silico and comprehensive literature-
derived information about target genes of selected TFs.
First, we predicted which of the transcription factors
have binding sites in the RefSeq gene promoters (defined
as [−1000,500] bp around TSS) using the ProbTF tool
[76] combined with an empirical p-value computation.
We focused on genes that were identified by the pre-
vious LIGAP analysis and considered all transcription
factors that had known binding specificities (position
specific frequency matrices, PSFMs) in TRANSFAC [77]
(version 2009.3). We did not restrict our analysis only
to those TFs whose transcripts are differentially expres-
sed because, e.g., STAT6 is not differentially expressed



Table 2 The genes whose expression time-courses differ between all the lineages

Affymetrix probe ID Gene symbol Functional annotation* Known characteristics in CD4+ T helper cells

203881_s_at DMD(+) other NR

205027_s_at MAP3K8(+) kinase required for proper IFNg production [27]

228055_at NAPSB(+) unknown NR

210354_at IFNG(+) cytokine positive regulation on T cell proliferation, tyrosine phosphorylation
of STAT1 and production of IL-12 [59]

200907_s_at PALLD(+) other NR

222838_at SLAMF7(+) other expression upregulated in Th1 cells[16]

237322_at MIAT(+) other NR

1555486_a_at PRR5L(+) other NR

209369_at ANXA3(+) enzyme expression upregulated in Th1 cells [15]

230109_at PDE7B(-) enzyme expression upregulated in Th2 cells [17]

205933_at SETBP1(-) other expression upregulated in Th2 cells [17]

216252_x_at FAS(+) transmembrane receptor expression regulated by IFNg, important for T cell activation [60,61]

219073_s_at OSBPL10(+) other NR

221271_at IL21(<2) cytokine important for Th17 and follicular Th cell differentiation, increases
activation of STAT3 [62-64]

223475_at CRISPLD1(+) other expression upregulated in Th1 cells [16]

206999_at IL12RB2(+) transmembrane receptor expression regulated by IFNg, plays a central role in Th1
differentiation [15,65]

200878_at EPAS1(+) transcription regulator expression regulated by STAT6 in Th2 cells [17]

206974_at CXCR6(+) G-protein coupled receptor predominantly expressed in Th1 cells [24,66,67]

206637_at P2RY14(+) G-protein coupled 1receptor NR

212062_at ATP9A(+) transporter NR

210029_at IDO1(+) enzyme NR

236519_at C9orf135(-) other expression upregulated in Th2 cells [17]

214038_at CCL8(+) cytokine selectively expressed on Th2 cells, important for trafficking
of Th2 cells, required for allergic immune response by Th2 cells [68]

229764_at TPRG1(-) other expression upregulated in Th2 cells [17]

231192_at LPAR3(+) G-protein coupled receptor NR

202421_at IGSF3(-) other expression upregulated in Th2 cells [17]

221111_at IL26(<2) cytokine expressed on human Th1 cells, increases activation if human STAT1
and STAT3 [69,70]

227006_at PPP1R14A(-) other expression upregulated in Th2 cells [17]

1555785_a_at XRN1(+) enzyme NR

230110_at MCOLN2(+) ion channel expression upregulated in Th1 cells [16]

222746_s_at BSPRY(+) other NR

220684_at TBX21(+) transcription regulator expression up-regulated by IL-12, regulates the production of
Th1 hallmark cytokine IFNg [71]

220603_s_at MCTP2(+) other NR

210839_s_at ENPP2(+) enzyme used in homing to secondary lymphoid organs [72]

210164_at GZMB(+) peptidase important for TCR-induced cell death in Th2 but not Th1 cells [73]

206126_at CXCR5(+) G-protein coupled receptor Il-4 increases expression of CXCR5, important for homing and
sensitivity of T cells [74,75]

208121_s_at PTPRO(+) phosphatase NR

Probe sets that fulfill the two-fold change criterion are marked with the + and - signs following the gene symbols based on the direction of the expression where
+ denotes up-regulation and - denotes down-regulation of Th1 specific genes. In addition, probe sets that do not fulfill the fold change criterion are marked in
the lists with “<2”. The known associations of genes in Th cell functions or subset specific gene expressions are listed in the table. *) Annotation based on
Ingenuity Pathway Analysis W by Ingenuity Systems. NR, not reported.
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Figure 5 A global-view of the time-course profiles of reverse regulators of T helper cell differentiation and the time-course profiles of
differentially regulated genes. (A) The set of genes that are specific in Th0, Th1, and Th2 are clustered in two clusters. The lower cluster holds
altogether 34 unfiltered genes and the upper cluster contains only six genes. Most of the Th0, Th1 and Th2 specific genes are preferentially
expressed in Th1 cells and have a lower expression level in Th2 cells. (B) The kinetics of the genes LIGAP identified to be differentially regulated
are clustered in five clusters. Information about differential regulation is shown with colored dots. Consistent with (A), majority of the 34 genes
specific in Th0, Th1, and Th2 are assigned to the fifth cluster, whereas the six genes are assigned to the third cluster. (A and B) Clusters are
indicated with different colors on the branches in the dendrogram and with horizontal white lines in the heat maps. Standardized expression
values are shown. The probe set data was standardized across the time points and lineages.
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during the early differentiation although it is a master
regulator in the early differentiation of Th2 cells [17].
An important goal is to identify master regulators of

the lineage commitment processes. Recently, it was found
out that most of the direct targets of STAT6, an important
regulator of Th2 differentiation, were up-regulated in Th2
cells [17]. Here we were interested in identifying TFs
whose binding sites are enriched in the promoter regions
of the genes which are differentially regulated in Th2 con-
ditions, both among the up-regulated and down-regulated
genes. Instead of looking at individual TF binding predic-
tions that are prone to contain false positives, we used the
Fisher’s exact test to search for enrichment of binding
sites, in comparison to randomly selected gene set. The
same analysis was carried out separately for all the diffe-
rentially regulated gene sets and by taking into account
the direction of regulation (repressed or activated).
Using a p-value cut-off of 0.01 for TF binding, we

identified three hits from the enrichment analysis among
Th2 specific up-regulated genes and three among the
Th2 specific down-regulated genes. The results are de-
picted in Figure 6. The different enriched IRF family
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strongest hit within the Th2 up-regulated genes was
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Jurkat cells, a GATA3 binding site on the promoter of
NKX3 gene was identified [79]. Furthermore, in mouse in-
creased expression of Nkx3a was observed to be regula-
ted by IL-4 independently of STAT6 [80]. CDP (CCAAT
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including differentiation, development and proliferation
[81,82]. Interestingly, CDP has been identified as a repres-
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region and plays a role in promoting repressive chromatin
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an open question whether CDP might up-regulate Th2
specific genes or down-regulate the genes in Th0 and
Th1 lineages.
The three TF hits having enriched predicted binding

sites among the Th2 down-regulated genes were the in-
terferon regulatory factor (IRF) family of TFs (p-value =
2.5 e-6), IFN-stimulated genes factor 3 (ISGF3) (p-value =
1.8 e-4) and STAT6 (p-value = 3.5 e-3). IRF family consists
of IRF1 to IRF10 and has been shown to be essential in ex-
pression of type I interferon genes, IFN-stimulated genes
(ISG) and other pro-inflammatory response related cyto-
kines [87]. These genes are maintained down-regulated
during Th2 proliferation and therefore, the results are in
line with the Th2 effector cells characteristics [88]. More-
over, IFNγ-induced expression of IRF1 and IRF2 has
been shown to directly down-regulate IL-4 production by
repressing IL-4 promoter sites [89]. Opposing to other IRF
family proteins, IRF4 has been shown to directly activate
IL-4 promoter and IL-10 regulatory elements and be
essential in Th2 cell differentiation by influencing the
expression of GFI1, a transcriptional repressor in Th2 cells
[90-92]. However, the analysis relying on known TF bin-
ding specificities will not allow segregation of individual
members of the IRF family. Further, an essential regulator
of most ISGs is ISGF3 that is composed of STAT1, STAT2
and IRF9 complex and works in conjunction with IRFs
[93]. Identification of STAT6 as a regulator among the
Th2 down-regulated genes is well in line with our previ-
ously published results, although its effect was observed
to be less profound within Th2 down-regulated genes
than among Th2 up-regulated target genes [17]. Compari-
son analysis of the predicted STAT6 target genes and Th2
up-regulated and down-regulated genes gave 16 and 19
overlapping genes, respectively. The full lists of overlap-
ping genes are in Additional file 3: Table S2. We further
analyzed the correlation between predicted STAT6 target
promoters and experimentally observed promoter asso-
ciated binding sites (Elo et al., 2010), and observed signifi-
cant correlation (p<0.05) between the target sites. The full
list of predicted STAT6 target genes and promoter asso-
ciated STAT6 binding sites identified by ChIP-seq as well
as the overlapping genes are listed in the Additional file 3:
Table S2. The overlapping binding sites included promo-
ters for C14orf177, CISH, HMMR, INO80, MGAT1,
NUDCD2, SOCS1, SPINT2 and ZNF570 genes.

Discussion
Identification of the key T helper cell regulators provides
possible targets for modulation of immune response. To
reveal T cell subset specific genes and their often subtle
differences in expression, we developed a novel compu-
tational method, LIGAP. Traditional ways of identifying
differentially expressed genes, such as the t-test, are pro-
blematic in studying time-series data since there is a
need to carry out hypothesis tests on individual time
points. On the other hand, commonly used statistical
tests for whole time-course, including e.g. F-test, do not
account for the inherent correlation between measu-
rement time points. LIGAP overcomes many problems
that have previously prevented quantitative comparisons
of multiple differentiation profiles, with or without repli-
cates. Among several beneficial features, LIGAP models
correlation between time points and can cope with non-
stationarities and non-uniform measurement grid. Other
methods, such as EDGE, uses splines to estimate smooth
time-course profiles but does not quantify the differ-
ential expression for all lineage comparisons. TANOVA
uses standard regression framework and lacks explicit cor-
relation structure between time points. Our study high-
lights the validity of the method by identifying known and
novel differentially regulated genes and their kinetic diffe-
rences during T helper cell differentiation. In addition, the
non-parametric computational analysis automatically pro-
vides informative illustrations of time-course profiles to-
gether with associated uncertainty.
LIGAP calculated Th0 specific gene set contains only

18 genes and Th1 specific 49 genes compared to 466
genes that are specific to Th2 conditions. Activation of
Thp cells through TCR and CD28 results in induction of
IFNγ, which in turn leads to activation of Th1 signature
genes. Addition of IL-12, however, results in enhanced
induction of these genes and Th1 programming. Con-
sistent with our previous results genes differentially re-
gulated in response to Th1 programming are much more
limited than those detected in response to initiation of
Th2 response [16,94].
Most of the Th1 specific genes encode well-known

Th1 signature molecules. However, also genes new in
this context were discovered. Interestingly, we identified
RORC as one of the Th1 specific genes. Up-regulation of
RORC in Th1 cells and existence of Th17/Th1 cells,
however, remain conflicting as the master regulator of
Th1 differentiation, T-bet, is known to inhibit transcrip-
tion of RORC through RUNX1 [95], and expression of
IL12Rβ2 is down-regulated by IL-17 [96]. It has been
suggested that the high concentration of TGFβ required
for in vitro Th17 polarization would inhibit IFNγ pro-
duction [97], hence, it remains an open question whe-
ther some conditions would drive the differentiation of
IL-17 and IFNγ producing cells from same naïve pre-
cursor T cell. Notably, ex vivo Th17 cells could be in-
duced to develop further into Th17/Th1 cells by the
combined actions of IFNγ and IL-12, and such condi-
tions resulted in permissive chromatin remodeling at the
IL12RB2 locus and loss of repressive histone modifica-
tion at the TBX21 locus [29,98].
As an example of previously uncharacterized differen-

tially regulated genes, we validated the expression of
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Th2-associated phosphatases DUSP6 and PPP1R14A on
protein level. PPP1R14A was shown in human pancre-
atic and melanoma tumor cell lines to positively regulate
Ras/MAPK signaling [99], which are also involved in
IL-4 induced signaling cascades. In T cells, the ERKs are
activated though TCR stimulation and a TCR-mediated
activation of Ras/MAPK signaling is required in differen-
tiating murine Th2 but not in Th1 cells [100]. Further-
more, the Ras/MAPK cascade was shown to enhance
the stability of GATA3 protein [101] as well as STAT6
independent CD3 and CD28 induced initial IL4 pro-
duction [102]. DUSP6 on other hand is known to nega-
tively regulate members of the mitogen-activated protein
(MAP) kinase superfamily associated with cellular prolife-
ration and differentiation [103]. More specifically, DUSP6
expression was shown to be induced by ERK1/2 signaling
in differentiating mouse embryonic cell line and in human
retinal pigment epithelial cells [104,105] and it was hy-
pothesized that DUSP6 is an essential part of a negative
feedback loop of ERK1/2 signaling [106]. However, the T
cell associated functions of both PPP1R14A and DUSP6
are completely unknown. Therefore, their significance in
the signaling cascades of differentiating Th2 cells remains
a highly interesting area of future research.
SPINT2 was recently identified as a direct STAT6 tar-

get in differentiating human Th2 cells [17] and in this
study we are the first to show that SPINT2 is upregu-
lated in Th2 cells at protein level as compared to other
Th cell subsets. We found SPINT2 to be specifically
expressed on Th2 cell surface as well as secreted into
the culture medium, suggesting presence of a multiple
transcripts of which some may lack the anchoring trans-
membrane domain [47]. Human SPINT2 (HAI-2) is a
physiological inhibitor of matrix cleaving proteases and
decreased expression of SPINT2 has been linked to
progression of several cancers [107-109]. Up-regulated
expression of extracellular proteases is crucial for pro-
cancerous pathways as this enables efficient remodeling
of the extracellular matrix as well as cleavage and activa-
tion of growth factors and their receptors. Interestingly,
a truncated and secreted SPINT2 may act as an inhibitor
for the activator of hepatocyte growth factor (HGF) and
HGF is prominently expressed in lung tissue and is
linked to reduced expression of Th2 cytokines and TGFβ,
reduction of allergic airway inflammation, airway hyperre-
sponsiveness and remodeling as well as reduced recruit-
ment of eosinophils to the site of allergic inflammation
in vivo [110,111]. This suggests that SPINT2 might en-
hance Th2 response in allergic airway inflammation by
inhibiting HGF signaling.
The LIGAP method elegantly identified the recipro-

cally regulated genes within the Th0, Th1 and Th2 con-
ditions. Essentially, the list included genes encoding the
hallmark Th1 specific transcription factor T-bet and
cytokine IFNγ as well as the transmembrane receptor
for IL-12. This list also included few cytoskeleton asso-
ciated proteins, such as dystrophin (DMD), and palladin
(PALLD), of which there is no current knowledge for
their function in differentiating T helper cells. The ob-
servation suggests differences in cellular structures or
putatively in the interaction of APC with the Th cell
subsets as rearrangement of the cytoskeleton in T cells
plays an important role in the organization of the im-
munological synapse (IS) and Th1 and Th2 cells are
known to form morphologically distinct ISs [112,113].
In addition to MAP3K8, molecules that participate in
phosphorylation signaling cascades e.g. P2RY14, LPAR3,
PPP1R14A, and PTPRO suggest their potential role for
initiation or regulation of differentiation cascades. Im-
portantly, the results presented here enable opportun-
ities for further data mining and follow-up studies
addressing the functions and importance of the novel Th
subset specific genes.
The identification of STAT6 as the most significant

TF regulating Th2 specific enhancement of transcription
by the TF binding analysis is well in line with our previ-
ous STAT6 ChIP results [17]. Furthermore, the analysis
between the predicted STAT6 target gene promoters and
experimentally observed promoter associated binding sites
showed statistically significant correlation. Interestingly,
the overlapping STAT6 targets included INO80, which has
been identifies as a part of a chromatin remodeling com-
plex [114] and may hence, be involved in Th2 specific
epigenetical regulation of Th cell differentiation. STAT6
specific regulation of Mannosyl (alpha-1,3-)-glycoprotein
beta-1,2-N-acetylglucosaminyltransferase (MGAT1), a
N-glycan-processing enzyme [115], may on one hand
be involved in modifying the Th2 cell specific surface
glycoprotein structures [116]. The overlapping target
sites included also the promoter for SPINT2. The number
of predicted STAT6 binding sites, however, was much lar-
ger than the experimentally observed binding sites, which
may reflect the typically observed high false positive rate
of computational binding predictions and the cell type
specific state of chromatin as well as other competing
factors affecting binding in vitro. The data created here
also further suggests novel control mechanisms involving
GATA3 regulated NKX3A as well as chromatin modi-
fication associated CDP. Only less than 10% of the Th2
down-regulated genes were reported to be direct targets
of STAT6 by Elo et al., (2010) suggesting other major
regulatory mechanisms play role among the IL-4 induced
down-regulated genes. We found enrichment of IRF fam-
ily and ISGF3 binding motifs in promoter regions of genes
that are repressed in Th2 polarizing conditions, indicating
that these TFs may play a significant role in the suppres-
sing undesired gene expression in differentiating Th2 cells.
Indeed, several IRF family members have been identified
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as differentially expressed during Th cell differentiation
and necessary for both Th1 and Th2 polarization. As the
IRF family proteins, excluding IRF1, share the same bin-
ding specificity model in TRANSFAC, the individual re-
gulatory role for these factors is, however, difficult to
postulate based on in silico TF binding site analysis.

Conclusions
The proposed LIGAP method can quantify a well-defined
probabilistic specificity score for each gene and for each
condition promoting a certain lineage commitment. In
addition to grouping and ranking genes based on their
dynamics, LIGAP summarizes all time-course measure-
ments, together with the associated uncertainty, in an
illustrative summary plot for visualization and manual as-
sessment purposes. While here we have demonstrated the
utility of LIGAP in analysis of gene expression dynamics,
the LIGAP method is widely applicable to many types of
datasets including quantitative time-course experiments
and generalizes to any number of conditions.

Methods
Human CD4+ T cell purification and culturing. The
human naïve umbilical cord blood CD4+ T cells were
isolated as previously described [17]. Briefly, umbilical
cord blood was collected from healthy neonates born in
Turku University Hospital, Finland. Mononuclear cells
were separated with Ficoll-Paque gradient centrifugation
(#GEHE17-1440-3, Amersham Biosciences) and CD4+ T
cells were then isolated with magnetic beads (Dynal
CD4 Positive Isolation Kit, #113-31D, Invitrogen). After
isolation the CD4+ cells were pooled to prepare cell cul-
tures consisting cells from several neonates. The same
pooled cells as utilized for Th0 (activated) and Th2 (acti-
vated and IL-4 stimulated) culture conditions by Elo et al.
(2010) were used parallel for Th1 polarizing cultures. For
activation, the cells were treated with plate-bound anti-
CD3 (500 ng/24-well culture plate well, #IM1304, Im-
munotech) and soluble anti-CD28 (500 ng/ml, #IM1376,
Immunotech) in density of 2-4 × 106 cells/ml of Yssel’s
medium (Iscove modified Dulbecco medium, #31980-048,
Invitrogen) supplemented with Yssel medium concentrate
[117], 1% human AB serum (#C11-011, PAA) and 100 U/
ml Penicillin and 100 μg/ml Streptomycin (#P0781,
Sigma) at 37°C in 5% CO2. For induction of Th1 cell
polarization, IL-12 (2.5 ng/ml, # 219-IL, R&D Systems)
was added to the cultures. At 48h after activation, IL-2
was added (17 ng/ml, #202-IL, R&D Systems) to all the
cells and the polarizing conditions were maintained
throughout the culture. The polarizing Th cells were har-
vested at time points 0, 12, 24, 48 hours in three replicates
and at 72 hours in two replicates.
All the data included in this manuscript has been

acquired under the permission from the Ethics Committee
of the Hospital District of Southwest Finland approving
the anonymous collection of cord blood samples after a
parental consent, and the permission being in compliance
with the Helsinki Declaration
Microarray studies. The preparation of samples for mi-

croarray detections was done as described in [17]. Essen-
tially, total RNA (RNeasy Mini Kit, Qiagen) was extracted
from the cultured cells and cRNA hybridized on Affyme-
trix GeneChip HG-U133 Plus 2.0 arrays (Affymetrix,
Santa Clara, USA). All the microarray samples included in
this study have been prepared at Finnish DNA Microarray
Centre, Turku. The raw microarray data were processed
using robust multi-array average normalization and log2-
transformed in R (version 2.12.0) using the Bioconductor
affy package (version 1.28.0).
Flow cytometry. The Th0, Th1 and Th2 condition cells

at 24 hours were stained for SPINT2 expression studies.
Purified anti-SPINT2 (8.7 μg/ml, #HPA 011101-100UL,
Sigma-Aldrich) was used as primary antibody followed
by staining with FITC-conjugated F(ab’)2 anti-rabbit
IgG secondary antibody (1:1000 dilution, #11-4839-81,
eBioscience). The stainings were analyzed with LSR II
flow cytometer (BD Biosciences) and Flowing Software
(www.flowingsoftware.com).
ELISA. The cell culture supernatants (at 48 hours)

from Th0, Th1 and Th2 conditions were assayed for
SPINT2/HAI-2 secretion by ELISA (# DY1106, R&D)
according to the manufacturer instructions.
LIGAP. We construct our model-based lineage commit-

ment comparison and visualization methodology, called
LIGAP, using non-parametric GP regression similar to
that in [14], extend the methodology to any number of
conditions and propose to use a non-stationary neural
network (NN) covariance function k(xp,xq) = σ*asin
(xp '*diag(l-2)*xq / sqrt[(1+xp'*diag(l-2)*xp)*(1+xq'*diag
(l-2)*xq)]). The vectors xp and xq are augmented by an
extra bias unit value entry and the parameter l defines the
length-scale and σ controls the signal variance [118]. A
non-stationary covariance function is chosen because
often after cell activation or other stimulation the effects
on temporal behavior of gene expression are very active
and dynamic right after the stimulation but they mellow
down over time and, thus, the observed behavior is non-
stationary. For each gene at a time, LIGAP makes all com-
parisons between different cell subsets over the whole
time-course data sets. In our application, the multiple
hypotheses Hj are defined by the different partitions of
the cell lineages. For example, if there are only two dif-
ferent lineages, then there are two different partitions
(or hypothesis): H1 denotes that lineages are similar and
H2 denotes that lineages are different. In our application
consisting of three lineages, Th0, Th1 and Th2, we have 5
alternative hypotheses; (i) “Th0, Th1, Th2 time-course
profiles are all similar” (hypothesis H1), (ii) “Th0 and Th1

http://www.flowingsoftware.com
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are similar and Th2 is different” (hypothesis H2), (iii) “Th0
and Th2 are similar and Th1 is different” (hypothesis H3),
(iv) “Th1 and Th2 are similar and Th0 is different”
(hypothesis H4), and (v) “Th0, Th1, and Th2 are different
from each other” (hypothesis H5). LIGAP comparisons
and quantifications are illustrated in Figure 1. In general,
the total number of different partitions of N lineages is
known in literature as the Bell number Bn (e.g., B1 = 1,
B2 =2, B3 = 5, B4 = 15, etc.) [119].
Bayes factor is commonly used to see the evidence of

the two alternative hypotheses; differentially expressed or
not within a given time interval. To extend this to mul-
tiple lineages, we use the marginal likelihood p(Di | Hj) to
define the posterior probabilities of the different hypoth-
eses Hj. For each of the hypothesis Hj, the data Di for the
ith gene is split according to the partitioning. For example,
for our application containing three lineages, hypothesis
H1 corresponds to grouping data from all lineages, hy-
pothesis H2 corresponds to splitting the data so that Th0
and Th1 time-course profiles are grouped together and
time-course profiles from Th2 forms its own subset of
data, hypothesis H3 corresponds to splitting the data so
that Th0 and Th2 time-course profiles are grouped to-
gether and Th1 forms its own subset of data, etc.
For each hypothesis, non-parametric regression is

carried out separately for each subset of the data. For
example, for the hypothesis H3 we fit a GP to the combin-
ation of Th0 and Th2 time-course profiles and another
GP to the Th1 time-course profiles. Following the stan-
dard GP regression methodology [118], the marginali-
zation is done over the latent regression function and the
hyperparameters are estimated using type II maximum
likelihood estimation with a conjugate gradient based op-
timization algorithm initiated with ten randomly chosen
hyperparameter values. Under the assumption of Gaussian
likelihood and noise, the marginal likelihood can be writ-
ten out analytically, and thus its value can be easily evalu-
ated [118]. The marginal likelihood of a certain hypothesis
(i.e., partitioning) is the product of the marginal likelihood
of the separate subsets. The key idea behind the modeling
is to find the marginal likelihood of the data under differ-
ent hypotheses and thus have a probabilistic score to ob-
jectively compare different hypotheses.
Using the Bayes’ theorem and assuming unbiased,

equal prior probabilities for different hypotheses (i.e.,
P(Hk) = P(Hl) for all k and l), we can write the pos-
terior probabilities for the ith gene as P(Hj | Di) = P
(Di | Hj)P(Hj)/C, where C = Σj P(Di | Hj)P(Hj) is a nor-
malizing constant. Finally, these quantities can be com-
bined to quantify the score of differential regulation for
each gene. For example, the probability of the ith gene
being differentially regulated in Th2 lineage can be quanti-
fied as P(“Gene is differentially regulated in Th2” | Di) = P
(H2 | Di) + P(H5 | Di) .
ProbTF. ProbTF [76] method is used to make TF bin-
ding predictions on promoters of all RefSeq genes. Se-
quence specificities of TFs are taken from the TRANSFAC
database [77] version 2009.3. All non-redundant PSFMs
associated to human were taken, totaling 248 matri-
ces. Promoters are defined as the [−1000,500] bp region
around TSS. To assess statistical significance, we con-
struct a TF specific null distribution by randomly sampling
50000 genomic locations of size 1501 nucleotides, against
which the p-values of TF binding are computed.
Hierarchical clustering. The hierarchical clustering in

Figure 5 was done using complete linkage and Euclidean
distance metric.
Data access. The data discussed in this publication

have been deposited in NCBI's Gene Expression Omni-
bus [120] and are accessible through GEO Series acces-
sion number GSE 32959 (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE32959).
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