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ABSTRACT
Background  The population attributable fraction (PAF) 
is an important metric for estimating disease burden 
associated with causal risk factors. In an International 
Agency for Research on Cancer working group report, an 
approach was introduced to estimate the PAF using the 
average of a continuous exposure and the incremental 
relative risk (RR) per unit. This ‘average risk’ approach has 
been subsequently applied in several studies conducted 
worldwide. However, no investigation of the validity of this 
method has been done.
Objective  To examine the validity and the potential 
magnitude of bias of the average risk approach.
Methods  We established analytically that the direction 
of the bias is determined by the shape of the RR function. 
We then used simulation models based on a variety of 
risk exposure distributions and a range of RR per unit. We 
estimated the unbiased PAF from integrating the exposure 
distribution and RR, and the PAF using the average risk 
approach. We examined the absolute and relative bias as 
the direct and relative difference in PAF estimated from the 
two approaches. We also examined the bias of the average 
risk approach using real-world data from the Canadian 
Population Attributable Risk of Cancer study.
Results  The average risk approach involves bias, which 
is underestimation or overestimation with a convex or 
concave RR function (a risk profile that increases more/
less rapidly at higher levels of exposure). The magnitude of 
the bias is affected by the exposure distribution as well as 
the value of RR. This approach is approximately valid when 
the RR per unit is small or the RR function is approximately 
linear. The absolute and relative bias can both be large 
when RR is not small and the exposure distribution is 
skewed.
Conclusions  We recommend that caution be taken when 
using the average risk approach to estimate PAF.

INTRODUCTION
Population attributable fraction (PAF) is an 
important measure for estimating the burden 
of disease in a population that is causally attrib-
utable to an exposure. Since its first introduc-
tion, PAF has received substantial attention 
in the field of epidemiology.1 Many advances 
have been made in different approaches to 

calculating PAF of single and multiple risk 
factors,2–6 in estimating the variance7 8 and 
in the interpretation of PAF.9–11 There have 
also been many comprehensive projects, 
either nationwide or globally, in estimating 
PAF for the burden of disease associated with 
its risk factors.12–22 The International Agency 
for Research on Cancer (IARC) has special-
ised in providing estimates of cancer surveil-
lance and burden of cancer estimates from 
around the world. The IARC Working Group 
23 introduced an approach to estimating 
PAF when the prevalence data on a contin-
uous exposure in the population under study 
are only available as a population average. 
This approach, to be referred to here as the 
‘average risk approach’, estimated the relative 
risk (RR) at average exposure of the whole 
population using the risk of disease per unit 
increase in exposure, and the average level of 
exposure of the whole population. No proof 
was provided at the time that this method was 
proposed. Hence, the purpose of this paper is 
to examine the underlying assumptions and 
validity of this average risk approach when 
estimating PAF for disease burden in a popu-
lation. Specifically, we examined how the 

Strengths and limitations of this study

►► This study examined the assumptions and validity 
of the average risk approach to estimate the popu-
lation attributable fraction, which has not been ex-
plored previously.

►► We used both simulated and real-world data to 
demonstrate the factors associated with the bias of 
the average risk approach.

►► As an empirical study, our simulation could only 
analytically establish the direction of bias of this 
approach and discuss the magnitude of bias using 
a limited number of risk exposure distributions and 
relative risk functions.
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shape of the RR functions and the exposure distributions 
affect the validity of this approach.

METHODS
Description of average risk approach
The average risk approach estimates the RR at an average 
exposure of the whole population using the RR of disease 
per unit increase in exposure along with the average level 
of exposure of the whole population as follows:

	﻿‍ Risk = Exp
[
Ln

(
Risk per unit

)
×average level of exposure

]
= RR

−
x
unit ‍

� (1)

where Risk is the RR at the population average expo-
sure, RRunit is the RR associated with a unit increase in 
exposure, ‍

−
x‍ is the weighted average level of exposure. 

An underlying assumption with this method is that a log-
linear relationship exists between the exposure and the 
risk of cancer. The average risk approach then estimates 
PAF as‍‍

	﻿‍ PAF = Risk−1
Risk ‍� (2)

where it was assumed that ‘each individual has expe-
rienced a similar average exposure’, IARC 2007 pg 5). 
Under this assumption, that all population under study 
are exposed at the population average level, formula (2) 
is a simplification of Levin’s formula when the prevalence 
(P) is 100%:

	﻿‍
PAF =

P
(
RR−1

)
1+P

(
RR−1

)
‍�

(3)

The IARC Working Group stated that ‘This formula is 
valid when the risk of cancer per unit of exposure was 
estimated in a model using log transformation. This is the 
case for logistic regression or Poisson regression, which 
are models widely used in case–control and cohort studies 
respectively’, IARC 2007 pg 5). No proof was shown for 
this statement, although the authors went on to acknowl-
edge that ‘the dose–effect relationship is, in fact, rarely 
linear (or log-linear) over the whole range of exposures, 
but this method is considered to be the best approxima-
tion available in this respect. Therefore, the validity of 
the average risk approach has not been fully assessed, 
particularly concerning its sensitivity to departures from 
the assumed dose–response relationship, or concerning 
the impact of the exposure distribution.

When the distribution of a continuous exposure is 
known and no confounding is assumed, a valid method 
to estimate PAF involves integrating across all levels of 
exposure:

	﻿‍
PAF =

´ m
x=0

RR
(
x
)

P
(
x
)

dx − 1´ m
x=0

RR
(
x
)

P
(
x
)

dx ‍�
(4)

where RR(x) is the RR at exposure x; P(x) is the popu-
lation distribution of exposure; and m is the maximum 
exposure level. Note that if there were to be no bias in 
the average risk approach, the following equation would 
have to hold:

	﻿‍

ˆ m

x=0

RR
(
x
)

P
(
x
)

dx = RR
−
x
unit

‍�
(5)

Under the log-linear risk assumption, the left-hand side 
of equation (5) becomes:

	﻿‍

ˆ m

x=0

RRx
unitP

(
x
)

dx
‍�

(6)

Define ‍g
(
x
)
= RRx

unit‍ in which x is a random variable with 
distribution ‍P

(
x
)
‍, (6) is E[g(x)], and the right-hand side 

of (5) is g[E(x)], because ‍g
(
x
)
‍ is strictly convex (ie, a line 

segment connecting any two points on the graph of a 
function lies above the graph) when ‍P

(
x
)
‍ is greater than 

1, the Jensen’s inequality24 determines that:

	﻿‍
RR

−
x
unit ≤

ˆ m

x=0

RRx
unitP

(
x
)

dx
‍�

(7)

According to (7), the average risk approach will not over-
estimate PAF. The magnitude of the bias is determined by 
the extent of the convexity of ‍g

(
x
)
‍ over the effective range 

of x. When ‍RRunit‍ is small (ie, close to 1.00), ‍g
(
x
)
‍ is approx-

imately linear and there is little bias. However, whether or 
not the choice of the exposure distribution ‍P

(
x
)
‍ affects 

the validity of this approach is unexplored. Specifically, it 
is unknown, if the exposure distribution in a population 
is strongly skewed or bimodal, whether or not the average 
risk approach still provides a good approximation to 
the actual PAF. Therefore, we studied the validity of the 
average risk approach under the loglinear RR function 
and a variety of exposure distributions.

In broad terms, when the loglinear function of RR is not 
assumed, the average risk approach can still be generalised 
as equation (2), in which ‘Risk’ is the RR at the population 
average exposure level. It can be reasoned that the curva-
ture of the RR function determines the direction and the 
magnitude of the bias. When RR is a linear function of 
the exposure (ie, ‍RR

(
x
)

= 1 + k · x, x ∈
[
0, m

]
‍), there is no 

bias, because the integral PAF (‍
´m
x=0

(
1 + kx

)
P
(
x
)
dx‍) and 

the average risk PAF (
‍

ˆ m

x=0

(
1 + kx

)
P
(
x
)
dx

‍
 are equivalent. 

When the RR function has a convex form, which indi-
cates a risk profile that increases more rapidly at higher 
levels of exposure, this approach underestimates PAF. In 
contrast, it overestimates PAF with a concave RR function, 
which indicates a risk profile that increases less rapidly at 
higher levels of exposure. To illustrate the latter point, 
we included two examples of simulated concave RR func-
tions and calculated the bias of the average risk approach.

Investigation of validity of average risk approach
To investigate whether or not the validity of the average 
risk approach is affected by the exposure distribution, 
we simulated several exposure distributions where the 
exposure is continuous, ranging between standardised 
values of 0–100, with 0 indicating no exposure and 100 
indicating the maximal level of exposure in the popula-
tion (figure 1). The prevalence distributions were scaled 
so that the prevalence of all exposure levels summed to 
100%. The details of the distributions are summarised in 
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table  1. We calculated PAF using both the average risk 
approach and by integrating across all exposure levels. 
We calculated the absolute bias (‍PAFAvgRisk − PAFIntegral‍) and 
the relative bias ‍

(
PAFAvgRisk − PAFIntegral

)
/PAFIntegral × 100%‍. 

Note that because PAF is often expressed as a percentage, 
their absolute and relative biases are both in percentage 
units. However, the meaning of the former is the 
percentage points, and the meaning of the latter is an 

actual percentage. For example, an absolute bias of −5% 
from the difference of ‍PAFAvgRisk‍ of 15% and ‍PAFAvgRisk‍ of 
20% indicates a relative bias of −25%.

To examine if the magnitude of risk affects the validity 
of the average risk approach, we tested a range of values 
for the RR per standardised unit, from 1.001 to 1.04. 
Using a standardised unit resolves the scaling issue of the 
unit. For example, the RR of standardised unit of body 
mass index (BMI) and the disease associated with obesity 
is the same for the RR of 1 kg/m2 or 5 kg/m2, as long as it 
pertained to a single population. In this study, we refer to 
RR per standardised unit as ‘RR per unit’, unless otherwise 
stated. We also considered that the risk becomes implau-
sible for RR per unit values above 1.04. For example, the 
RR at maximal exposure level would be 132, if the RR per 
unit is 1.05 under the log-linear assumption.

In addition, we illustrated the bias of the average risk 
approach when the RR function is non-linear or loglinear. 
In particular, we used two simulated examples of quadratic 
and cubic spline RR functions, which are both concave 
(online supplemental figure S1). The quadratic RR 
function has a form of ‍RR

(
x
)

= 3 − 2
( x

k − 1
)2

‍, in which 

‍k ∈
[m
2 ,m

]
‍. This quadratic form has RR=1 when x=0, and 

RR has a maximum of 5 when x=k. In the illustrated 
example, we used k=75, that is, 75% of the maximal expo-
sure. The cubic spline RR function is based on simulated 
data, with the function being approximately quadratic in 
the lower exposure range, and approximately linear at 
higher exposures.

1

1
Uniform

1

1

Normal

1

1

Log−normal

1

1
Hypergeometric

1

1

Beta(0.5, 0.5)

1

1

Beta(2, 8)

1

1

Beta(8, 2)

1

1

Bimodal

1

1

Poisson with 
extreme tail

1

1

Power

Figure 1  Probability density curves of selected distributions 
in this study.

Table 1  Description of the exposure distributions used in 
this study

Distribution Note

Uniform Range from 0 to 100

Normal µ=50, σ=10

Log-normal µ=5, σ=0.5

Hypergeometric N=700, K=200, m=200

Beta α=0.5, β=0.5

Beta α=2, β=8

Beta α=8, β=2

Bimodal Constructed by combining the 
lognormal distribution (µ=5, σ=0.5) 
with one-third of beta (8, 2).

Poisson with extreme 
tail

Constructed by applying the 
Poisson distribution (k=0 to 3, λ=1) 
to exposure level 0–3, and 1/10 of 
the Poisson distribution (k=70, 75, 
80, 85, 90, λ=80) to exposure level 
95–99

Power Constructed by rescaling the 
function of 1/x, where x ∈(0.1, 2.5).

All distributions were scaled to ensure that the sum of distribution 
is 100%.

https://dx.doi.org/10.1136/bmjopen-2020-045410
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Finally, we used real-world data of the distribution of air 
pollution (PM2.5) and residential radon exposures, which 
were investigated in the Canadian Population Attribut-
able Risk of Cancer (ComPARe) study. The ComPARe 
study collected national-representative and population-
weighted exposure data of PM2.5 and residential radon 
and used the integral approach to estimate PAF of lung 
cancer for 2015 for Canada.25 26 We compared this PAF 
to that obtained using the average risk approach, to illus-
trate the validity of this approach. We also estimated the 
approximate 95% CI of the PAFs and the bias, assuming 
a fixed prevalence distribution for simplicity and a 
lognormal distribution of the RR. We resampled 10 000 
RRs from this distribution and calculated PAF and bias. 
We used the 2.5% and 97.5% quantiles as the approxi-
mate 95% CI.

Patient or public involvement
No patients involved.

RESULTS
First, we examined the bias of the average risk approach 
under the loglinear RR function with the exposure distri-
butions we selected in table 1. The results at RR per unit 
of 1.001, 1.01 and 1.03 were illustrated in table 2 and the 
results with a range of RR per unit from 1.001 to 1.04 were 
shown in figure 2. At RR of 1.001, the absolute and rela-
tive biases were very small and the average risk approach 
can be regarded unbiased. At RR of 1.01, the absolute 
bias remained small for all tested distributions although 
the relative bias started to increase substantially in the 
power distribution and in the Poisson distribution with 
an extreme tail (table 2). At RR of 1.03, large absolute 
and relative biases were observed in several distributions. 
However, the normal and hypergeometric distributions 
were more robust than the Poisson with extreme tail 
and power distributions with the increase in RR (table 2, 
figure 2). For some distributions (uniform, beta (0.5, 0.5), 
beta (8, 2) and bimodal), the largest absolute and relative 
bias occurred at an intermediate value of RR (figure 2). 
As RR increases, the bias becomes smaller, because the 
PAF estimates approaches 100%. Regardless of the expo-
sure distribution and the magnitude of RR, the direction 
of the bias is underestimation in the case of loglinear RR.

We then illustrated the direction of the bias when the 
RR function is concave. Table 3 showed the resulting bias 
of the two RR functions in online supplemental figure 
S1 when the exposure distributions were as reported 
in table 2. With concave RR functions, the direction of 
the bias in the average risk approach is overestimation. 
Similar to the loglinear RR function, we observed little 
bias in normal, hypergeometric, and beta(8, 2) distri-
butions, whereas substantial bias was observed in power, 
Poisson with extreme tail, and beta(0.5, 0.5) distributions.

Finally, we explored the bias of the average risk 
approach using real-world data for air pollution (PM2.5) 
and residential radon. Epidemiologic studies support a 

loglinear RR function between exposure to residential 
radon and lung cancer.27 28 A loglinear dose response 
between PM2.5 and lung cancer risk was less consistent. 
The loglinear relationship was supported by several 
studies,29–32 while two studies reported some deviation 
from it.33 34 The 2019 Global Burden of Disease Study of 
87 risk factors suggested that PM2.5 has a loglinear rela-
tion with lung cancer in low exposure range (0–50 ug/
m3) and a linear relation in high exposure range (>50 
ug/m3).16 We assumed a loglinear relation for PM2.5 
because the level is typically below 20 ug/m3 in Canada. 
We found that both exposures had skewed distributions 
(online supplemental figure S2). The PM2.5 distribution 
had a long left tail, while the distribution of residential 
radon has a long right tail. We standardised the exposure 
levels of PM2.5 and radon to 0.14 ug/m3 and 7.4 Bq/m3 
per unit, so that the maximal exposure level is 100 units. 
The RR per unit of PM2.5 associated with lung cancer was 
1.0012 (95% CI 1.0008 to 1.0016). The PAFs of PM2.5 
using the integral and the average risk approach were 
6.89% (95% CI 4.71% to 8.98%) and 6.87% (95% CI 
4.70% to 8.95%), respectively, indicating very small bias 
in the average risk approach (−0.02%, 95% CI −0.03% to 
−0.01%). The RR per unit of radon associated with lung 
cancer was 1.011 (95% CI 1.005 to 1.016). The PAFs of 
radon using the integral and average risk approach were 
6.87% (95% CI 3.33% to 10.52%) and 6.37% (95% CI 
3.21% to 9.37%), respectively. The bias was larger than 
that seen in PM2.5. The absolute bias was −0.5% (95% CI 
−1.2% to −0.1%) and the relative bias was −7.3% (95% 
CI −11.0% to −3.5%), indicating slight to moderate bias. 
The observations were consistent with the simulations, in 
that small RRs yield little bias (PM2.5), and moderate to 
large RRs could produce bias with some skewed exposure 
distributions (radon).

DISCUSSION
Since being introduced by the IARC Working Group in 
2007, the average risk approach has been used in several 
PAF estimation projects.12–15 35 In addition to the cancer 
burden study in France,15 the ComPARe study in Canada,35 
a study of attributable causes in China,12 and two studies 
in Brazil13 14 have used this method. We illustrated that 
the direction of bias of the average risk approach is deter-
mined by whether the RR function is convex or concave, 
while the magnitude of bias is affected by the degree of 
convexity or concavity, as well as the exposure distribu-
tion. When the RR per unit is small under a loglinear 
RR function, the magnitude of bias is also small and the 
average risk approach is approximately valid. With larger 
RR and increased convexity, the validity of the average 
risk approach would also depend on the exposure distri-
bution. We demonstrated that under some circumstances 
(eg, Poisson distribution with extreme tail, power distri-
bution), the approach could potentially lead to moderate 
to severe bias.

https://dx.doi.org/10.1136/bmjopen-2020-045410
https://dx.doi.org/10.1136/bmjopen-2020-045410
https://dx.doi.org/10.1136/bmjopen-2020-045410
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The average risk approach has an implicit assump-
tion that the minimal risk exposure value is 0. When 
the minimal risk exposure value is not 0, this approach 
generates invalid estimates. To offer a simplified 
example, overweight and obesity defined as BMI ≥25.0 
kg/m2 is associated with postmenopausal breast cancer. 
The minimal risk exposure value of BMI is 25.0 kg/m2. 
Assuming a log-linear relationship between BMI above 
25.0 kg/m2 and the risk of breast cancer and that a post-
menopausal female population has a normal distribution 
of BMI at a mean and SD of 25.0 and 5.0 kg/m2. The 
average risk approach yields a PAF of 0 in this popula-
tion, because the population average risk exposure is 
25.0 kg/m2, which has a RR of 1.0. Although it is possible 
to recode the exposure so that the minimal exposure is 
zero, a new average of the recoded exposure must be 
estimated, which requires the information of the expo-
sure distribution. On the other hand, the prerequisite of 
applying the average risk approach is that such informa-
tion is only available as a population average. In practice, 
many natural or physiological exposures have a non-zero 
minimal risk exposure value and the estimation of PAF 
for such exposures requires additional considerations.36 
Therefore, this implicit assumption is a substantial limita-
tion of this approach. For the same reason, the average 
risk approach cannot be applied in the framework of 
generalised impact fraction, in which the impact of partial 
reduction of exposure is considered.

Our study has some limitations. First, this study is an 
empirical examination of the validity of the average risk 
approach. We have mathematically demonstrated the 
direction of the bias in this approach. However, we only 
qualitatively discussed the magnitude of the bias associ-
ated with the RR function and the exposure distribution. 
We illustrated the magnitude of the bias through several 
RR functions and exposure distributions. However, this 
pragmatic approach could not cover all RR functions 
and distributions. Second, we compared the average risk 
approach to the integral approach under the assumption 
of no confounding. The integral approach is an exten-
sion of Levin’s formula, which is biased in the presence 
of confounding.1 11 Ideally, the validity of the average risk 
approach should be tested against the integral form of 
Miettinen’s formula, which is based on the prevalence 
of exposure among the cases and is valid in the pres-
ence of confounding.6 However, because the average 
risk approach was developed under the framework of 
Levin’s formula, we considered that a comparison of two 
approaches under the same framework would be more 
appropriate. Nevertheless, it should be noted that the 
validity of the average risk approach is also prone to the 
presence of confounding, just like Levin’s formula.

In conclusion, we have shown that the average risk 
approach has some utility, but nonetheless carries the 
risk of bias. This approach should not be used when 
the minimal exposure level is not zero. We recommend 
using approaches with smaller risk of bias, such as the 
integral approach, to estimate PAF when the information 

Figure 2  The absolute and relative bias of the average risk 
approach under the selected distributions and a range of 
RR per unit. Both absolute and relative bias are presented 
as a percentage. The absolute bias is the difference in PAF 
percentage, and the relative bias is the difference in PAF over 
the PAF using integration and expressed as a percentage. 
PAF, population attributable fraction; RR, relative risk.
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regarding the RR function and the exposure distribution 
data are available.
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