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Abstract

Tuberculosis kills more than a million people annually and presents increasingly high

levels of resistance against current first line drugs. Structural information about

Mycobacterium tuberculosis (Mtb) proteins is a valuable asset for the development of

novel drugs and for understanding the biology of the bacterium; however, only about

10% of the �4000 proteins have had their structures determined experimentally. The

CHOPIN database assigns structural domains and generates homology models for 2911

sequences, corresponding to �73% of the proteome. A sophisticated pipeline allows

multiple models to be created using conformational states characteristic of different

oligomeric states and ligand binding, such that the models reflect various functional

states of the proteins. Additionally, CHOPIN includes structural analyses of mutations po-

tentially associated with drug resistance. Results are made available at the web interface,

which also serves as an automatically updated repository of all published Mtb experi-

mental structures. Its RESTful interface allows direct and flexible access to structures

and metadata via intuitive URLs, enabling easy programmatic use of the models.

Database URL: http://structure.bioc.cam.ac.uk/chopin

Introduction

Recent progress in the global fight against tuberculosis

has been modest and the burden of the disease is still

great, with over one million deaths and more than eight

million new infections annually (http://www.who.int/tb/

publications/global_report/en/). One of the major challenges

ahead is tackling the rise of multi-drug resistant strains of

the bacterium, which requires the development of new and

more effective drugs and a better identification and under-

standing of potential molecular targets.

The actions of drugs are determined by their chemical

interactions with macromolecules, particularly proteins,
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and thus the detailed information about them provided by

structural insights is especially valuable for their design.

However, experimental determination of protein structures

is often laborious, expensive and a difficult undertaking,

such that only about 10% of the 4000 protein sequences

that constitute the Mycobacterium tuberculosis (Mtb)

proteome (1, 2) have been structurally determined (3).

Fortunately, recent progress in bioinformatics methods

and computing power, as well as the dramatic growth of

biological data in general repositories, has made the pre-

diction of structures an increasingly viable alternative for

the provision of structural information on a genomic scale,

which can often be useful despite the limitations in accur-

acy and reliability of homology modelling relative to ex-

perimental determination.

There have been various efforts to generate wholesale

models for entire organism proteomes, such as MODBASE

(4) and Genome3D (5), including one for Mtb (6). Their

focus, however, has been to maximize the genome’s cover-

age using a single ‘best’ template, as this is generally suffi-

cient to derive general information about fold and

function, as Anand et al. (7) have done using MODBASE.

What constitutes ‘best’, however, is difficult to determine

objectively, since there are multiple factors that affect a

template’s suitability, such as similarity to the target,

coverage and experimental quality, which require a sub-

jective balancing decision. The use of multiple templates in

modelling helps to take advantage of the information pre-

sent in all of them, but this must be done with care.

Template libraries may include the entirety of the Protein

Data Bank (PDB; 8), or a filtered non-redundant subset

of it, or structures in a processed form, such as individual

domains according to classifications like SCOP (9) or

CATH (10). However, often overlooked is the matter of

the biological context of the templates, such as whether

they are in complexed form with other subunits or bound

with cofactors, drugs or other molecules. This is of rele-

vance since much of the redundancy of sequences in the

PDB is due to the study of multiple forms of proteins,

which manifest in conformational differences according to

context. While some of these might be too subtle to exert

meaningful influence on a homology model, others can be

quite drastic, so it is important to take it into consider-

ation, especially when using multiple templates.

As mentioned above, the development of drug resist-

ance is one of the main reasons for the need for novel drugs

against Mtb, and thus understanding and predicting the

functional effect of polymorphisms on their targets is of

prime importance in their development. As with modelling,

computational methods are increasingly able to step up

and provide insight where more expensive experimental

methods are unable to, with programs such as SIFT (11),

Site Directed Mutator (SDM; 12, 13) and PolyPhen (14)

and mutant Cutoff Scanning Matrix (mCSM; 15) being

developed in recent years.

In this work, we present CHOPIN, a database built on

an automated, high-throughput modelling pipeline using

multiple templates, annotated according to functional

state. CHOPIN also incorporates an analysis using the

computer programs SDM and mCSM of polymorphisms

that are possibly related to drug resistance. All the infor-

mation, together with an up-to-date compendium of Mtb

structures, is made easily accessible from a web interface.

Methods

An overview of the modelling pipeline is illustrated on

Fig. 1. It begins with the set of FASTA-formatted sequences

from the H37Rv reference genome, as obtained from the

Tuberculosis Database (TBDB) website (16) and outputs a

set of models and alignments, together with a relational

database of the data necessary for the web interface.

The pipeline is based on the Ruffus pipelining module

(17) for Python, which allows most processes to be auto-

mated and parallelized, making the method generally ap-

plicable to the high-throughput modelling of proteomes or

other large sets of sequences.

TOCCATA

TOCCATA (Ochoa-Montaño B, Bickerton R and Blundell

TL, manuscript in preparation, http://structure.bioc.cam.ac.

uk/toccata) is a database of templates developed in conjunc-

tion with CHOPIN, which underlies the template

identification and selection process in the pipeline. The data-

base incorporates all domains from SCOP 1.75A and CATH

3.5, forming a consensus ‘profile’ whenever the domains of a

SCOP family can be reasonably matched to a CATH super-

family, otherwise keeping them in their respective [super]

families. It was decided to pair CATH superfamilies with

SCOP families instead of superfamilies as this leads to more

consistent joint profiles of a manageable size.

Full chains consisting of multiple domains are also

grouped into profiles according to their domain compos-

ition, thus enabling the modelling of multi-domain targets

with a plausible spatial relationship between the domains

by adopting that of a homologue. All PDB files assigned to

a profile are clustered using CD-HIT (18) according to

sequence similarity at different thresholds: 50, 70, 90 and

95%. A representative from each sequence cluster at a cer-

tain threshold is selected from each TOCCATA profile to

generate a FUGUE profile file, which is used by the fold

recognition program FUGUE (19) for homology searches.

The identity threshold is variably adjusted to keep the
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number of sequences included at 25 or less, whenever pos-

sible. This subset of sequences is aligned using BATON, an

in-house, streamlined version of COMPARER (20) and,

in the case of profiles with <25 sequences, it is further en-

riched with sequence homologues using PSI-BLAST (21).

Each chain and domain in TOCCATA is annotated

using the CREDO database (22) with information about

its binding status to biologically relevant ligands and other

chains, and its experimental quality. TOCCATA assigns

a ‘quality score’ (Qscore) based on the combination of

various measures according to the following equation:

1

Resolution
þ 0:1� Rfactorð Þ

� �

� 1�missing residue fractionð Þ

It is similar to the AEROSPACI score used by the

ASTRAL compendium (23), which is also stored, but

Qscore eschews stereochemical checks in favour of con-

sidering missing regions of the structure, which should be

minimized for modelling purposes.

Template identification

The identification of templates for each target achieved

using the program FUGUE (19) on the TOCCATA data-

base of profiles. Target sequences are pre-processed into

a query alignment by searching for homologues using

PSI-BLAST on the UniRef50 (24) database and subse-

quently aligned with MAFFT (25). In the case of sequences

of length over 300, which are likely to contain more than

one domain, a pre-search step is also performed using

HMMER (26) on the PFAM database (27) to determine

probable domain boundaries, if any. Any resulting sub-

sequences are searched individually together with the

full sequences against the set of single-domain profiles.

Whenever there are significant FUGUE hits (i.e. profiles

with Z-scores of at least 4.0) for different sub-sequences

or regions of a sequence, TOCCATA is queried for multi-

domain profiles that include the relevant combination of

domains and the full sequence is then compared against

any available results. Matches that span multiple domains

in this way can then be used to build models that combine

them in a spatially plausible way.

Given TOCCATA’s conservative grouping of SCOP

and CATH hierarchies and the inherent similarity between

several families, there are often multiple significant

hits corresponding to various closely related profiles. To

avoid the increased redundancy, complexity and resource

requirements, only the hit with the highest Z-score for

every matched region of the sequence was selected for fur-

ther processing; however, exceptions are made if a some-

what lower scoring hit has at least 25% larger coverage

than the better one, since they may include additional

domains or significant secondary structure elements.

For every selected hit, the target sequence is cut to the

matched range for the following steps in the pipeline.

Template selection

Once a TOCCATA profile is selected for a sequence or

part of it, the first step is to determine the similarity of the

target sequence to the representatives of clusters at 95%

sequence identity. To achieve this, the percentage identity

(PID) to each representative sequence is calculated, after

aligning it to the target using FUGUE. All sequences from

Figure 1. Overview of the CHOPIN modelling pipeline.
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the clusters that have a PID more than 20% below the

maximum one are discarded, unless they happen to have

the greatest coverage to the target sequence and have a

PID of at least 50%.

Templates from the remaining clusters are then classi-

fied in different groups according to their TOCCATA

annotation of ligand binding and oligomerization state.

Upto five different groups are populated with the available

templates: liganded-monomeric, liganded-complexed, apo-

monomeric, apo-complexed and any, which includes tem-

plates regardless of their status. For any group that has

more than five templates after this, a pruning procedure is

applied to reduce the number to at most five, by iteratively

removing the template with the lowest similarity to the tar-

get from the pair with the highest similarity between them-

selves. This has the effect of removing the most redundant

templates and preserving the structural diversity.

Template alignment

In the cases where more than one template is available,

they are aligned using BATON. An independent superpos-

ition is then performed on the alignment thus generated

using the program THESEUS (28). This was done to obtain

the transformation matrix for later use, in addition to

the program’s own stated advantages, which include a

maximum likelihood optimisation procedure that ensures

that the variable regions of a structure have a reduced

weight in the superposition.

In the case of the alignments for liganded groups, the

templates are further post-processed to include biologically

relevant ligands in their binding sites, with the goal of ena-

bling their modelling into the target. However, with mul-

tiple templates, it is sometimes the case that they will have

incompatible ligands that cannot all be modelled at the

same time, such that a selection procedure becomes neces-

sary. Since the purpose of a general model is to depict it in

a natural or typical state, the default procedure is to select

the most frequent ligands under the assumption that they

are a common component of the protein family. Given that

a protein may bind more than one copy of a given molecule

at different sites, they need to be discriminated by cluster-

ing them by their geometric centroids in the superposed

structures. Once this is done, the alignment is modified so

that the model will inherit any ligands present in at least

half of the templates.

Modelling and quality assessment (QA)

MODELLER 9v10 is used on all generated alignments

to produce three models with fast refinement and NDOPE

(29) and GA341 (30) assessment methods enabled.

In addition to these built-in methods, the models are

also subjected to processing by MolProbity (31) and an in-

house secondary structure agreement (SSAG) assessment

based on the work by Eramian et al. (32)

While MolProbity is designed to validate structures

generated by experimental methods and is not meant to

establish the accuracy of a theoretical model, it was con-

sidered that the stereochemical evaluation it provides is

nevertheless useful and complementary to the other meth-

ods. In particular, the MolProbity score is designed to pro-

vide an approximation of crystallographic resolution at

which the various parameters would be found, which can

be valuable provided the other estimates are good.

The SSAG assessment is based on the agreement be-

tween the assigned secondary structure of the model with

that predicted from the sequence by PSIPRED, a relation-

ship that has been observed to correlate strongly with the

correctness of the model. SSAG is used in two varieties,

where the scores are referred to as PSIPREDPERCENT and

PSIPREDWEIGHT:

SSAGfrac ¼
PredSSinc

Nres
SSAGweight ¼

XRinc

i¼1
Cið Þ2

Nres

where PredSSINC is the number of incorrectly predicted

residues; Nres is the total number of residues in the se-

quence; Ci is the confidence value (0–9) of the prediction

for residue i, with Rinc being all residues with mismatched

predictions.

The different scores are combined into a general guide

of the estimated quality rating that ranges from 0–1 (Poor)

to 4 (Great). Models are assigned an initial score of 2 and

either gain or lose points according to their satisfaction of

thresholds of their various scores. For NDOPE, the score is

increased by one point if its value is �0.5 or lower and

decreased if the value is 0.5 or higher, while for GA341,

a point is lost for a value below 0.6 and gained for one

of 0.98 or higher. In the case of MolProbity, a score below

3.0 will increase the score and one higher than 4.2 will

decrease it. Since both varieties of the SSAG score are cor-

related, a single score adjustment is done when either of

their thresholds is crossed. For SSAGFRAC, a point is sub-

tracted if the score is �0.5 or added if it is <0.2, whereas

for SSAGWEIGHT the thresholds are �20 and <10, respect-

ively. For these scores, the thresholds were determined by

analysing a set of 4725 non-redundant high quality struc-

tures [selected from the PISCES (33) culled PDB list with

a resolution <2.5 Å] and setting the value for the subtrac-

tion of points at approximately the 99th percentile (after

rounding) and for the addition at either at two standard

deviations (SSAGWEIGHT) or the average (SSAGFRAC; the

difference being due to their distinct distributions).
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Additionally, to rank models a more detailed adjust-

ment is performed on the combined score by assigning

it fractional bonus points according to a set of more fine-

grained thresholds. The set of thresholds used is presented

in Supplementary Table S1.

Due to this threshold-based approach, it should be

noted that ‘poor’ models should not be taken as necessarily

incorrect as a whole, especially in cases where the FUGUE

Z-score is high, but rather that they have raised flags on

some of the assessment criteria and should be regarded

with care. While a poor rating can be indicative of align-

ment issues, particularly in cases where other states have

higher ratings, it may also be the case that the structures

include some atypical feature (e.g. intrinsically disordered

regions, included ligands, domain swaps or long interact-

ing stretches), such that they fall outside of what the assess-

ment methods are trained to deal with. This can be of

relevance for models in the ‘liganded’ category, since

the introduction of the modelled ligand can influence the

assessment compared with a seemingly equivalent align-

ment on a different category.

Finally, in addition to the fast, locally run QA methods

that constitute the general quality estimate, the website

also allows for the on-demand submission of any model

to the QMEAN server (34), a well-established, top-

performing method at recent Critical Assessment of

Structure Prediction exercises (35).

Mutation analysis

Datasets

Sequences for polymorphisms were obtained from two

sources. The Broad Institute has sequenced the genomes of

several strains of Mtb, including three from Kwazulu-

Natal (KZN, a region in South Africa), which display

a mix of drug sensitivity (DS), multiple drug resistance

(MDR) and extensive drug resistance (XDR) and have

recently been subject to a genomic analysis (36). A total

of 471 polymorphisms between these strains and the

reference one (F11) has been made available on their web-

site (http://www.broadinstitute.org/annotation/genome/

mycobacterium_tuberculosis_spp/ToolsIndex.html). The

TB Drug Resistance Mutation Database (TBDReaMDB;

37) compiles mutations related to drug resistance deter-

mined by validated experimental methods published in

the literature and provide both a complete list as well as a

‘high confidence’ subset. Non-synonymous polymorphisms

leading to residue changes on the KZN strains and the

TBDReaMDB high confidence set were used for further

processing, providing a total of 263 possible mutations.

For the source structural data, experimentally solved

structures were preferentially used when available,

otherwise any models spanning the mutated residue were

utilized. Of all mutations, 147 were found to lie within the

range of available models, of which 36 were in experimen-

tal structures and 111 in homology models.

Since the mutations of the Broad Institute set are ex-

pressed relative to the F11 strain (a common strain in

South Africa), in contrast to the typical H37Rv strain

used in this work and for most structure determination,

it was observed that some of the target residues of the mu-

tations were already part of the models. In these cases, the

reverse mutation was generated and used as ‘wild type’

instead.

Software

Mutations were analysed by the programs SDM and

mCSM, which consider complementary features that pre-

dict the likely effect that a point mutation will have on a

given structure in terms of stability (or in binding to other

macromolecules, in the case of mCSM). The stability of a

protein is typically quantified in terms of the free energy

of unfolding, so the predicted changes in stability are ex-

pressed as estimates of the DDG between the native and

the mutant forms of the proteins.

SDM is based on a statistical potential energy function

developed by Topham et al. (12), which uses environment-

specific substitution frequencies in families of homologous

proteins to determine a stability score, from which a DDG

value can be derived. SDM requires a model of the mutant

protein for its operation, so the program Andante (38)

was used to perform the mutation in silico. Andante uses

environment-specific libraries of rotamers in conjunction

with optimisation algorithms to address the issue of

side-chain placement in comparative models, while limit-

ing the problem of the explosive combinatorial complexity

of rotamer conformations. In this case, it was used for its

mutation function, which is designed for the replacement

of individual residues.

mCSM (15) extends the concepts used on Pires et al.

(39) to generate a signature encoding the interatomic dis-

tance patterns and local environment of a particular muta-

tion in a structure. Based on a machine-learning model

built from the application of this signature on a training

dataset, a DDG estimate can be generated.

Web interface and API

A very important factor for the usefulness of a database

is the accessibility and user-friendliness of its interface.

A clean and versatile web interface and RESTful API for

CHOPIN was developed according to modern web stand-

ards and is available at http://structure.bioc.cam.ac.uk/

chopin/.
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The main results can be accessed through its ‘Browse’

section, with all processed sequences colour-coded from

red to cyan according to the confidence of their best

FUGUE predictions (red for Z-scores <3.5; orange <4.0;

yellow <6.0; green <15.0 and cyan �15.0). The list can

be filtered on the fly according to keywords. The page for

each gene includes basic information about the sequence

along with links for more detailed annotation from TB

Database (http://www.tbdb.org; 16), TubercuList (http://

tuberculist.epfl.ch; 40) and WebTB (http://www.webtb.

org) and UniProt (http://www.uniprot.org; 41). Any

FUGUE hits for the protein are displayed with their signifi-

cance and the covered range of the sequence. Additionally,

if there exist any experimental structures for the protein,

they are displayed and linked to, along with some essential

information such as number of chains in the PDB, experi-

mental method, crystallographic resolution (if available)

and range of coverage.

Each hit has a page with an overview of the different

alignments and models that were generated according

to the various conformational states of any available

templates. This includes information such as the length,

coverage and PID of the alignment, template names and

estimated quality of the models. The alignments can

viewed directly in JOY (42) format or downloaded in both

JOY and PIR, but also have their own detailed page where

models can be individually downloaded or viewed inline

in 3D, coloured according to the predicted quality of each

region, as estimated by DOPE, and further information

about the template and the models is displayed, such as

details of the quality assessment.

In addition to a persistent search field that allows find-

ing a sequence quickly according to various known identi-

fiers, the interface also provides an advanced search form

to display a filtered list of sequences and results according

to various criteria such as FUGUE scores, model quality,

PID, coverage, length, homologous families and conform-

ational state.

Another feature of CHOPIN is a comprehensive and

automatically updated registry of all published experimen-

tal structures of Mtb with their associated gene names,

basic information about the structure and function and dir-

ect download links. Annotation for ligands and structural

interactions are also available via CREDO.

The results of the mutation analysis are available in

their own section, where they can be filtered according to

any criteria or the models viewed with the mutated residue

conveniently highlighted for illustration.

Finally, models and their metadata are available for dir-

ect or programmatic access using RESTful URLs. In its

simplest form, the best model in terms of coverage and

quality and the complete metadata for a given sequence

are made available to the user, giving priority to any avail-

able experimental structures. Additionally, it is possible

to specify a particular residue that should be covered by

the model or a specific template conformational state,

to obtain a different model. Metadata for the models is

provided in JSON format. The details about the API imple-

mentation are available at the website.

Results and discussion

As displayed on Fig. 2, FUGUE was able to find significant

hits for 2911 of the 4008 sequences in the proteome, cor-

responding to roughly 73%. Of those, 759 (19%) had high

confidence hits (FUGUE Z-Score �6, <15) and 1832

(46%) very high confidence (FUGUE Z-Score �15) ones.

No reliable hits were found for 1097 of the sequences.

Table 1 details the statistics from the modelling results

further. There were 5268 significant hits across all pro-

teins, as many of them had more than one non-redundant

hit (i.e. covering a different region of the sequence), indi-

cating the existence of multiple domains. The distribution

of conformational states is illustrated on Fig. 3. About

10% of these hits, 523, corresponded to multi-domain

profiles from TOCCATA, suggesting that the proteome

contains combinations of domains either not yet published

or classified, or not detected by FUGUE.

A total of 16 420 alignments was constructed, although

only 13 169 were unique, since in some cases the state-free

alignment would be the same as one of the others. In 43%

(7026) and 19% (3187) of all alignments, the best models

generated were assigned a ‘great’ or ‘good’ quality rating,

respectively, and 14% (3187) and 24% (2269) falling

under the ‘fair’ and ‘poor’ categories. When considering

only the best model per hit (i.e. independently of state), the

1,832
46%

759
19%

320
8%

940
23%

157
4%

Highest FUGUE Z-Score per Mtb sequence (total=4,008)

Z-Score ≥ 15

6 < Z-Score < 15

4 < Z-Score < 6

Z-Score < 4

No hits

Figure 2. Distribution of the best FUGUE Z-Scores for all sequences of

Mtb proteome. Blue (Z-Score� 15), green (6<Z-Score< 15) and yellow

(4<Z-Score< 6) correspond to very high, high and reasonable confi-

dence matches, respectively, whereas red indicates non-significant hits.
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percentages are 53, 19, 13 and 15% for ‘great’, ‘good’,

‘fair’ and ‘poor’ models, respectively, suggesting that the

choice of template and alignment can make a significant

difference in model quality. On a per sequence basis, the

percentages are 60, 16, 12 and 12%.

Table 2 shows the 44 mutations predicted by either

SDM or mCSM to be ‘deleterious’ (defined as having

an absolute DDG value >2 kJ/mol) on models of at least

‘fair’ quality. Of those, 11 correspond to mutations that

are either of the high confidence TBDReaMDB set or only

on the MDR or XDR ones, while the rest correspond to

mutations present in all strains. The full list of mutations

and the analysis results is on Supplementary Table 2 and

on the website.

However, there are various mechanisms of resistance to

a drug: of these SDM and mCSM estimate the effect of a

mutation on the structural stability of the protein, which

in turn may affect drug binding. Mutations that generate

resistance by directly interfering with the binding of a drug

molecule can detected noting their location with respect to

the drug-binding site; quantitative methods trained using

the database Platinum (Pires D, Ascher D and Blundell TL,

under review) and graph signatures are under development

and will be incorporated later.

An example of resistance-conferring mutations that act

through disrupting the stability of a protein can be found

in Rv2043c/pncA. This gene encodes for the nicotinami-

dase/ pyrazinamidase responsible for the conversion of the

pro-drug pyrazinamide into its active form pyrazinoic acid,

such that disrupting either the function or stability of the

enzyme would lead to preventing the drug from becoming

active. Indeed, various mutations across the gene, includ-

ing deletions, truncations and frame shifts, have been

shown to confer resistance to pyrazinamide (43). In par-

ticular, Petrella et al. (44) have shown structurally how a

number of mutations that lead to a loss of stability affect

the catalytic activity of the enzyme. None of the nine muta-

tions on the TBDReaMDB high-confidence PZA set are

part of the active site as proposed on their paper, but seven

out of them were predicted to be deleterious by at least

one of the programs.

Conclusion and future perspectives

The CHOPIN database provides a resource for structural

information on Mtb, including a flexible and user-friendly

repository of high quality homology models and domain

annotations, as well as up-to-date experimental structures.

Its homology recognition step has helped in enriching the

functional annotation of the proteome (45) and its models

assisted in elucidating the mechanism of action of potential

drugs (46). Its focus on providing a variety of models based

on specific conformational states of the templates is, as far

as we know, unique and should prove valuable to applied

researchers in the field, despite the necessary simplifica-

tions that were adopted to deal with the highly complex

topic of conformational variability. We aim to perform

updates following those of the underlying profile and

template database, TOCCATA, which itself relies on

the SCOP and CATH release schedule of every year or so.

Table 1. General statistics of CHOPIN pipeline results

Category Count

Sequences w/ FUGUE Z-Score �15 1832

Sequences w/ FUGUE Z-Score �6, <15 759

Sequences w/ FUGUE Z-Score �4, <6 157

Sequences w/ FUGUE Z-Score <4 759

Sequences without FUGUE hits 157

Number of significant hits (Z-Score �4) 5268

Unique TOCCATA profiles among hits 2009

Number of multi-domain hits 523

Number of alignments 16 420

Number of unique alignments 13 169

Alignments w/apo-form templates 6071

Alignments w/liganded templates 5133

Alignments w/complexed templates 6365

Alignments w/monomeric templates 4839

Alignments w/templates in any state 5216

Average template PID (%) 24.21

Total number of models 49 218

Top models w/ ‘great’ quality rating (¼4) 7026

Top models w/ ‘good’ quality rating (�3, <4) 3187

Top models w/ ‘fair’ quality rating (�2, <3) 2269

Top models w/ ‘poor’ quality rating (<2) 3931

Figure 3. Venn diagram of number of alignments according to conform-

ational state of templates. Alignments in apo-form are in yellow tones;

liganded in blue tones; monomeric in teal and complexed in magenta.

State-free alignments, where templates can be in any state, are shown

in the white centre.
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Table 2. Mutations predicted to be deleterious to protein stability according to SDM and mCSM

Sequence ID Mutation Strain/Source Sequence Description SDM DDG

(kJ/mol)

mCSM DDG

(kJ/mol)

Rv0006 A74S FLQ DNA gyrase subunit A gyrA �2.29 �1.15

Rv0006 D94A FLQ DNA gyrase subunit A gyrA 2.04 �0.79

Rv0006 G247S DS,MDR,XDR DNA gyrase subunit A gyrA �3.28 �1.29

Rv0237 A240V DS,MDR,XDR Lipoprotein lpqI 2.18 �0.71

Rv0319 G69D DS,MDR,XDR Pyrrolidone-carboxylate peptidase pcp �1.57 �2.31

Rv0404 P478H DS,MDR,XDR Fatty-acid-CoA ligase fadD30 1.38 �2.10

Rv0655 V144A DS,MDR,XDR Ribonucleotide transport ATP-binding protein ABC

transporter mkl

�1.53 �2.38

Rv0667 L456S DS,MDR,XDR DNA-directed RNA polymerase beta subunit rpoB �4.11 �2.66

Rv0667 I1112T XDR DNA-directed RNA polymerase beta subunit rpoB �4.53 �2.43

Rv0721 A105V DS,MDR,XDR 30. ribosomal protein S5 rpsE 2.18 �0.25

Rv0790c F83S DS,MDR,XDR Hypothetical protein �2.20 �2.66

Rv1001 T281M DS,MDR,XDR Arginine deiminase arcA 2.39 �0.31

Rv1039c A67T DS,MDR,XDR PPE family protein �2.48 �0.92

Rv1240 G306R DS,MDR,XDR Malate dehydrogenase mdh 3.41 �0.97

Rv1276c Q79E DS,MDR,XDR Hypothetical protein �0.31 �2.48

Rv1569 A171G DS,MDR,XDR 8.Amino-7-oxononanoate synthase bioF1 �2.24 �1.39

Rv1600 S271A DS,MDR,XDR Histidinol-phosphate aminotransferase hisC1 2.85 �0.50

Rv1605 G145V DS,MDR,XDR Cyclase hisF 2.55 �0.41

Rv1638 S908I DS,MDR,XDR Excinuclease ABC subunit A (DNA-binding

ATPase) uvrA

3.02 0.11

Rv1825 P181S DS,MDR,XDR Hypothetical protein �0.81 �2.03

Rv1870c D123G DS,MDR,XDR Hypothetical protein 2.51 �0.38

Rv1878 S296F DS,MDR,XDR Glutamine synthetase glnA3 3.03 �0.90

Rv1933c V196A MDR,XDR Acyl-CoA dehydrogenase fadE18 �2.73 �2.53

Rv2000 L275P XDR Hypothetical protein �6.18 �0.95

Rv2043c A3P PZA Pyrazinamidase/Nicotinamidase PncA (PZase) �3.35 �0.51

Rv2043c Q10P PZA Pyrazinamidase/Nicotinamidase PncA (PZase) �2.32 �0.49

Rv2043c C14H PZA Pyrazinamidase/Nicotinamidase PncA (PZase) �4.49 �1.44

Rv2043c C14R PZA Pyrazinamidase/Nicotinamidase PncA (PZase) �3.76 �0.63

Rv2043c L19P PZA Pyrazinamidase/Nicotinamidase PncA (PZase) �2.48 �1.46

Rv2043c V21G PZA Pyrazinamidase/Nicotinamidase PncA (PZase) �4.20 �1.60

Rv2043c Y34S PZA Pyrazinamidase/Nicotinamidase PncA (PZase) �2.47 �2.96

Rv2122c A88D DS,MDR,XDR Phosphoribosyl-ATP pyrophosphohydrolase hisE �2.70 �0.82

Rv2161c G105A DS,MDR,XDR Hypothetical protein 2.23 �0.47

Rv2197c P112S DS,MDR,XDR Conserved transmembrane protein 2.77 �0.56

Rv2250c A119T DS,MDR,XDR Hypothetical transcriptional regulatory protein �2.02 �0.68

Rv2464c A99T DS,MDR,XDR Hypothetical DNA glycosylase �2.84 �1.35

Rv2886c V153A DS,MDR,XDR Hypothetical resolvase �2.73 �2.48

Rv2887 S2G DS,MDR,XDR Hypothetical transcriptional regulatory protein 2.58 �0.24

Rv3032 Q310L DS,MDR,XDR Hypothetical transferase 3.07 �0.33

Rv3174 L42R DS,MDR,XDR Hypothetical short-chain type dehydrogenase/

reductase

�2.32 �1.56

Rv3545c I359T DS,MDR,XDR Cytochrome P450 125 cyp125 �2.20 �2.79

Rv3591c F30S DS,MDR,XDR Hypothetical hydrolase �3.05 �1.96

Rv3606c L172P DS,MDR,XDR 2.Amino-4-hydroxy-6- hydroxymethyldihydropteri-

dine pyrophosphokinase folk

�2.74 �1.45

Rv3719 R310T DS,MDR,XDR Hypothetical protein �2.20 �1.80

DS (Drug Sensitive), MDR (Multiple Drug Resistant) and XDR (eXtensively Drug Resistance) refer to the KwaZulu-Natal strains sequenced by the Broad

Institute, with residue numbers given relative to the F11 reference strain. PZA and FLQ indicate to various high-confidence pyrazinamide or fluoroquinone

resistant strains, respectively, as identified on TBDreaMDB, with residue numbers relative to the H37Rv strain
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We intend to hone our methods to provide more refined

and flexible results, such as fully modelled complexes and

specific ligands.

The structural analysis of polymorphisms, while cur-

rently limited in scope, should also be of interest to re-

searchers in drug discovery. Our group is currently

working on further methods to expand and improve the

predictions of the effect of structural changes, and as better

databases of polymorphisms become available (47, 48),

we aim to expand our database with their analysis.

Supplementary Data

Supplementary data are available at Database Online.
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