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The Paneth cells reside in the small intestine at the bottom of the crypts of Lieberkühn,

intermingled with stem cells, and provide a niche for their neighbors by secreting

growth and Wnt-factors as well as different antimicrobial peptides including defensins,

lysozyme and others. The most abundant are the human Paneth cell α-defensin 5 and

6 that keep the crypt sterile and control the local microbiome. In ileal Crohn’s disease

various mechanisms including established genetic risk factors contribute to defects in

the production and ordered secretion of these peptides. In addition, life-style risk factors

for Crohn’s disease like tobacco smoking also impact on Paneth cell function. Taken

together, current evidence suggest that defective Paneth cells may play the key role in

initiating inflammation in ileal, and maybe ileocecal, Crohn’s disease by allowing bacterial

attachment and invasion.
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INTRODUCTION

Crohn’s disease was originally described and finally established (1) as a chronic ileal inflammation
leading to strictures and finally resection of the involved segment. Over time it became evident
that there was also a form of colonic Crohn’s disease (2) and actually the disease may involve all
parts of the gastrointestinal tract from mouth to anus. The respective localization is remarkably
stable in a given patient whereas the disease behavior may advance from a mere inflammatory
process to strictures as well as fistulas penetrating the gut wall (3). This categorization into ileal,
colonic, and combined, usually ileocecal or ileocolonic localization also has a genetic background
(4). Originally thought to be an autoimmune type of disease, the current view is that the immune
response is directed against and induced by the intestinal microbiome and the gut inflammation
is at least in part a collateral damage of this interaction (5). The separate localization types imply
that if indeed Crohn’s disease was characterized by a defective barrier toward intestinal microbes
(6), the cellular and molecular basis of this defect was likely to be local and differ between ileal and
colonic Crohn’s disease.

One possible explanationmay be provided by the Paneth cell which resides predominantly in the
small intestine, although it may also be induced by inflammation as a metaplastic cell in other parts
of the intestine, such as in the colon. The history of this cell (7) dates back to 1872 when it was first
observed by Schwalbe in Freiburg but described in more detail in 1888 by Josef Paneth in Vienna
(who actually quoted Schwalbe and showed one of his pictures). It took nearly a century to elucidate
the function of Paneth cells: in an exhaustive study on the Paneth cell in gastrointestinal disease
published in 1969 it was still speculated that the granules contained a kind of zymogen, possibly a
peptidase and was therefore involved in digestion (8). Finally, lysozyme was detected in Paneth cells
of the small intestine (9), compatible with their now established role in bacterial killing. However,
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quantitatively and biologically the most important Paneth cell
products are the antibacterial α-defensins, i.e., human defensin
5 (HD5) (10) and, to a lesser degree, human defensin 6 (HD6)
(11). Apparently, the antibiotic peptides secreted form a chemical
barrier preventing bacterial invasion and any defect in Paneth
cell function may therefore compromise mucosal integrity. We
therefore provocatively (and tongue in cheek) renamed this entity
of ileal Crohn’s disease as “Paneth’s disease” (7) and ten years after
it seems appropriate to look at the current state of the Paneth cell
in Crohn’s disease. Paneth cells are Janus-faced: they were given
the title “maestros of the crypt” (12) but they may also be the
culprits in Crohn’s disease, hiding backstage behind the T-cells.

PANETH CELL AND DEFENSIN
PHYSIOLOGY

Located at the base of the crypts of Lieberkühn, the Paneth cells
appear to serve a dual function: support of the surrounding
LGR5 positive stem cells and antibacterial secretion. The first
and quite essential role is based on the local secretion of trophic
factors supporting the stem cell niche of neighboring crypt base
columnar cells, from which all other small intestinal cell lineages
originate (13). The trophic factors include epidermal growth
factor, transforming growth factor α and Wnt3. Coculture of
Paneth cells with stem cells is 10 times more efficient in the
formation of organoids than single type stem cell cultures. This
suggests an important role of this interaction also in vivo.

The limited population of about 5–15 Paneth cells per crypt is
under strict control by a complex net of differentiation factors,
the most important being the Wnt-factor TCF4 (also known
as TCF7L2) (14). TCF4 drives both a stem cell/progenitor gene
program and a Paneth cell maturation program. Indian hedgehog
is another important mediator, that is secreted by mature Paneth
cells and forms a feedback loop down-regulating differentiation
from Paneth cell precursors (15). Finally, during mouse Paneth
cell development colony stimulating factor-1 is important (16) as
well as other downstream mediators of Wnt (17).

Following differentiation, Paneth cell granule secretion into
the crypt lumen is governed by cholinergic and bacterial factors
(18), probably mediated by NOD2 (19) and TLR9 (20). TLR (toll
like receptor) signals are transferred through MyD88, limiting
microbial adherence and invasion through Paneth cell direct
sensing and antibacterial secretions (21). Interestingly, as shown
in organoids only the apical and not the basolateral surface of
Paneth cells was responsive to lipopolysaccharide or live bacteria
(22). However, even simple molecules like butyric acid or leucine
may induce Paneth cell α-defensin secretion (23). Another factor
involved, especially in maintaining the α-defensin precursor
activating enzyme MMP7 in the starving mouse is mTOR (24).
However, regulation may also be independent of microbiota
such as lymphocyte derived interleukins which trigger Paneth
cells to secrete antibacterial peptide, in this case angiogenin 4
(25). In addition, it was recently shown that also monocytes
may induce Paneth cell defensins, probably via Wnt-factors (26).
Others emphasized the key role of interferon signaling in Paneth
cell function (27), thereby affecting microbial ecology (28). It is

conspicuous that the Paneth cell also seems to be the main source
of IL17 (29) as well as TNF, a major inflammatory cytokine and
therapeutic target in the intestine (30).

Notably, Paneth cells produce a whole array of antibacterial
peptides in addition to the α-defensins and angiogenin, including
lysozyme as mentioned above but also lectins like RegIIIα in
man or RegIIIγ in the mouse as well as type II secretory
phospholipase A2 (12). Nevertheless, the key antibacterials are
the two α-defensins (31), with different main modes of action.
HD5 is a direct antibacterial and, if the human gene is “knocked
into” a mouse, this will then change its commensal microbiome
composition (32) and the mouse becomes resistant to Salmonella
infection (33): thus the host defensins select its commensal
microbiota but also protect against invaders. HD5 peptide in the
intestine is unstable, however, and may be degraded by proteases
into up to 8, 000 new antimicrobial peptide combinations which
dramatically increase the host’s ability to control pathogens
and commensals (34). In contrast, HD6 is rather stable and
predominantly acts by forming peptide nanonets inhibiting
bacterial movement (35) rather than direct killing. Killing is only
observed upon chemical reduction of the peptide (36), similar to
HBD1 (37). It should be noted that these α-defensins are not only
observed in the crypts and lumen of the small intestine but in
the mouse are also transported intact from the small intestine
to the colonic lumen, suggesting an impact also on the colonic
microbiome (38). In this species α-defensins are called cryptdins
also exhibiting strong bactericidal activity (39). However, their
primary function likely is the prevention of bacterial migration
through the ileocecal valve from the colon into and up the small
intestine, resulting in about 1000-fold lower bacterial counts in
the terminal ileum compared to the colon.

PANETH CELL FUNCTION IN CROHN’S
DISEASE

In a first series of ileal Crohn’s disease patients from Germany
both ileal HD5 and HD6 were diminished compared to controls
(40) whereas those with unaffected ileum and colonic disease
exhibited a normal expression. In the colon enhanced expression
of both α-defensins reflected Paneth cell metaplasia. In a
second series of American and German patients combined
low HD5-expression and protein in the affected Crohn’s
ileum was confirmed, and this finding was shown to be
independent of the degree of tissue inflammation, whereas IL-
8 was directly related to inflammation (41). Concomitantly
antimicrobial activity of ileal mucosa was compromised and all
other non-defensin antimicrobial peptides measured including
lysozyme or phospholipase A2 were in the normal range. This
suggested that the relative defensin deficiency was the key to
defective antibacterial activity. However, other antibacterials like
angiogenin (42) may also have important roles.

In further investigations this diminished Paneth cell defensin
expression was linked to the Wnt system, in particular TCF4
(43), LRP6, and TCF 1 (44). As mentioned above, monocytes
may activate Paneth cells, probably through Wnt factors but
this mechanism was shown to be defective in monocytes from
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Crohn’s disease (26). Thus, there is a direct link between bone
marrow derived and Paneth cells controlling the microbiome.

In a study from Australia low HD5 expression was confirmed
but not independent of inflammation (45). The authors
explained their findings by a loss of surface epithelium during
inflammation, i.e., in ulcerated areas inflammation may indeed
also affect the Paneth cell area. Avoiding problems of varying
biopsy sites an English study quantitated HD5 in ileal effluents
and found these to be reduced in Crohn’s patients. This occurred
without apparent inflammation compared to controls, but levels
were particularly low if there was active disease (46). Moreover,
HD5 in Crohn’s disease gut lumen persisted in a complex of
trypsin and chymotrypsin as well as in an immature precursor
form, probably compromising its antibacterial activity. It is
conceivable that the multiple proteolytic imbalances described
in Crohn’s disease affect the intraluminal degradation of HD5
mentioned above (33). In uninvolved Crohn’s jejunum HD6
expression was diminished but not HD5 (47). More recently
it was demonstrated that the HD5-gene showed a higher
methylation status in Crohn’s disease, regardless of inflammation,
although the number of HD5 positive Paneth cells was normal
(48). Thus, this apparently permanent gene methylation may be
important in silencing the HD5 gene.

In an initial pediatric cohort both HD5 and TCF4 were
low and correlated (49), whereas in another study of children
with Crohn’s disease only ileal TCF4 was diminished but not
HD5 (50). Interestingly, in a very recent large study looking at
a global pattern of ileal gene expression low HD5 expression
was observed specifically in older children of 10 years age and
above while younger children did not exhibit this decrease (51).
Therefore, the authors suggested that this defensin deficiency
may explain the rapid rise of IBD during puberty. Finally, also
in pediatric patients, and independent of the genetic associations
with Paneth cell defects discussed below, a phenomenon related
to autophagy induced crinophagy was described specifically in
ileal Crohn’s disease (52). This was independent of inflammation
and resulted in a significant decrease in the number of secretory
granules. Taken together, despite some inconsistencies and
remaining controversy, the current evidence, independent of the
genetic studies discussed below, relates compromised Paneth cell
function and even morphology to ileal Crohn’s disease both in
(older) pediatric and adult populations. However, to prove a
primary role of such a defect, the genetic basis has to be clarified.

In addition to the changes in α-defensins, interesting
observations suggest that HBD-3 peptide expression (but not
mRNA) is actually increased in ileal Crohn’s disease and it is
relocated from the luminal surface and Paneth cell granules to
the basolateral surface and the lamina propria (53).

THE PANETH CELL AND GENETIC LINKS
TO CROHN’S DISEASE

NOD2 (nucleotide binding oligomerization domain 2) came
into the focus since the revolutionary observation that single
nucleotide polymorphisms in various genes are related to the risk
of Crohn’s disease, in particular ileal Crohn’s disease (54, 55).

This first and relevant link is an intracellular receptor for bacterial
derived muramyldipeptide (MDP)and is expressed in several cell
types including monocytes and, notably, the Paneth cell (19).
After binding to MDP, NOD2 oligomerizes and binds to the
serine-threonine kinase RIP2 and finally the complex mediates
the signal to the IKK complex which then activates NFκB.
Expression of NOD2 and the NOD2/RIP2 complex is enhanced
in Crohn’s disease (19, 56) and, somewhat paradoxically, NOD2
may actually suppress HD5 and HD6 formation in cultured
Caco2 cells differentiated to Paneth like cells through action of
FGF9 (57). On the other hand, MDP-NOD2 stimulation induced
the defensin HNP-1 (human neutrophil peptide 1) in Caco-2
cells (58) and hBD2 (human ß-defensin-2) in several epithelial
cells (59). In the latter study induction with a mutated NOD2
failed to induce HBD2. This fits the concept that the NOD2
mutations in Crohn’s disease share a signaling defect, the most
pronounced occurs in the frameshift mutation 1007fs. Quite
strikingly, NOD2 is also a directly active antibiotic and this
action is also compromised by these mutations (60). However,
the relevance of this mechanism in vivo is unclear.

When ileal α-defensins were related to the NOD2 status of
the patients, in a first study (40) their expression was particularly
low in those with mutations. In a second study these results
were confirmed in a different cohort and the most pronounced
effect was noted in the patients with the frame shift mutation
(41). This was not observed in an Australian study (45) and
also not in the pediatric study comparing the older and younger
children (47). On the other hand, in the ileostomy patients
(46) HD5 levels in the effluent of NOD2 homozygotes and
compound heterozygotes were the lowest observed in the cohort.
Looking at Paneth cell morphology, Crohn’s patients carrying
at least two NOD2 mutations exhibited an increased number
of abnormal granules in Paneth cells (61). Finally, following
small bowel transplantation, with 35% of the patients possessing
NOD2 polymorphisms, rejection was characterized by decreased
expression of Paneth cell antimicrobial peptides in the NOD2
mutant recipients, prior to the onset of inflammation (62).
Finally, it has been repeatedly demonstrated that the NOD2
genotype impacts on the ileal microbiome in Crohn’s disease
(63). It seems likely but is unproven that this alteration is
mediated by defensins. Unfortunately, in experimental animals
the findings are similarly controversial (64, 65) and NOD2−/−

mouse organoids were not impaired in α-defensin expression
(66). In contrast, in NOD2 deficient mice helicobacter hepaticus
induced ileal granulomatous inflammation and this was reversed
by transgenic expression of α-defensins in Paneth cells (67). Thus,
NOD2may well be important for Paneth cell defensin expression
or secretion in mouse and man but the issue is not yet resolved.

Another risk gene identified in genome wide association
studies is ATG16L1 (68) and this moved autophagy into the
limelight. Autophagy is a process of degradation and recycling
of cellular components, reducing cellular stress, but also of
degrading bacterial components upon entry into the cell. It
operates through the encapsulation of organelles and cytoplasm
as well as bacteria within a membrane-bound organelle, termed
the autophagosome (69). In a similar sequence of events to
NOD2, next it was demonstrated that ATG16L1 and ATG5,
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another autophagy protein, play key roles in intestinal Paneth
cells (70). ATG16L1 and ATG5 deficient or defective Paneth cells
in both mouse and man exhibited striking abnormalities in the
granule exocytosis pathway. During an infection lysozyme may
be rerouted via secretory autophagy as an alternative secretory
pathway and this is also affected in the ATG16L1 mutated mouse
(71). At the same time some injury signals like acute phase
reactants and adipocytokines were enhanced. When combined
with a murine norovirus there was enhanced pathology following
administration of toxic dextran sodium sulfate (72). Finally,
the group succeeded in introducing the defective human
Atg16L1 T300A variant gene into the mouse and again observed
abnormalities in Paneth, but also in goblet cells (73). In human
epithelial cells the variant impaired autophagy of S. typhimurium
(74). Most importantly, however, it was demonstrated in Crohn’s
disease patients that genetic variants synthesize to produce
Paneth cell phenotypes of Crohn’s disease: i.e., the granule defects
were more pronounced it the patient carried multiple NOD2
and ATG16L1 risk genes (61). Moreover, high proportions of
abnormal Paneth cells were associated with shorter time to
disease recurrence after surgery. The additive action of these
genes is not surprising because NOD2 recruits ATG16L1 to
the plasma membrane at the bacterial entry site and mutant
NOD2 fails in this regard (75). Quite surprisingly, in Japanese
patients there was a similar number of defective Paneth cells
as in American patients, but this phenomenon was related to
LRRK2 rather than ATG16L1 polymorphisms (76). LRRK2 is
known to help sort lysozyme in cooperation with NOD2 and is
also suppressor of autophagy: both processes may affect Paneth
cell morphology (77).

Next, the focus turned from autophagy in Paneth cells
to endosomal stress. This leads to accumulation of unfolded
proteins within the endoplasmic reticulum (ER) lumen and
a response directed by the receptor inositol-requiring enzyme
1 (IRE-1) which double-cleaves mRNA for XBP-1 (X-box
binding protein 1) synthesis (78). This splicing activates XBP-
1 to induce the unfolded protein response and, if it fails,
cellular apoptosis is induced. For example, ischemia/reperfusion
or obesity may lead to ER stress but there is also evidence
that inflammatory bowel disease mucosa is “ER-stressed” (79).
Moreover, the group reported that XBP-1 knockout mice exhibit
loss of Paneth and goblet cells, reduced antibacterial activity
and spontaneous enteritis. To complete the picture, and similar
to NOD2 and ATG16L1, there was a clear-cut genetic link of
hypomorphic XBP-1 polymorphisms to IBD. In elegant studies
with single or double ATG and/or XBP-1 knockout mice it was
demonstrated that both pathways affect and partly compensate
each other. The combination of these genetic defects in the
single mouse at last established the Paneth cell as a site of
origin for intestinal inflammation (80). Further evidence that
both pathways are interlinked is based on the observation that
defective ATG16L1-mediated removal of IRE1α drives Crohn’s
disease like ileitis in the mouse (81). Finally, both pathways are
involved in interleukin-22 signaling (82), a classical epithelial-
protective cytokine. Novel findings now suggest that IL-22
actually orchestrates a pathological endoplasmic reticulum stress
response and may also have deleterious facets (83).

Other genetic links of relevant Paneth cell genes to Crohn’s
disease are KCNN4 (84) and theWnt factors TCF4 (85) and LRP6
(86). In addition, an unbiased genetic screen may well unravel
further links as demonstrated recently (76).

THE PANETH CELL AND NON-GENETIC
LINKS TO CROHN’S DISEASE

Another important role in Paneth cell survival is played
by caspase-8 which, if knocked out, induces TNFα-induced
epithelial necroptosis and terminal ileitis. Its knock-out is also
associated with lack of Paneth cells and reduced numbers of
goblet cells (87). Accordingly, caspase-8 is essential to maintain
intestinal barrier function and restrict pathogen colonization
during S. typhimurium infection (88). Interferon lambda was
recently shown to promote Paneth cell death in mice and is
increased in inflamed ileal tissue in patients with Crohn’s disease
(89). Interestingly, glucocorticoids and tofacitinib, in current use
in IBD, prevented Paneth cell death. Recently, it was described
that also patients with inherited caspase-8 deficiencymay develop
intestinal inflammation but the role of caspase 8-genetics in
Crohn’s disease is not fully established (90).

An overarching factor affecting inflammatory response, amino
acid metabolism, autophagy and also endoplasmic reticulum
stress is ATF4 (activating transcription factor 4). Its levels were
significantly decreased in inflamed mucosa of IBD patients and
its deletion in mice was associated with diminished Paneth cell
defensins (91). It should be emphasized, however, that although
non-genetically deleted animal-models of terminal ileitis like the
SAMP1/YitFc mouse also exhibit Paneth cell alterations (92),
not all Paneth cell defects lead to spontaneous inflammation.
In some models of ileitis the defective antibacterial system may
be secondary to dysbiosis (93). In a very recent report, it was
elucidated elegantly that even the Paneth cell specific knockout
of prohibitin 1 triggers Paneth cell defects and ileitis in the
mouse (94). Prohibitin 1 is not genetically linked to IBD but
mitochondrial dysfunction and low levels of this mitochondrial
protein have been observed. Interestingly, some species like the
pig, not the cleanliest animal on earth, appear to perform quite
well without Paneth cells.

THE PANETH CELL AND ENVIRONMENTAL
RISK

In a recent review of metaanalyses several environmental risk
factors for Crohn’s disease were reevaluated and confirmed
including smoking, antibiotic exposure, and vitamin D deficiency
(95). All of these three factors impact on Paneth cell function and
this link may represent a plausible mechanism of risk increase.
For example, exposing mice to intragastric smoke condensate
leads to alterations of ileal Paneth cell granules, antimicrobial
peptide production and a reduction of bactericidal capacity (96).
In Crohn’s disease patients the combination of tobacco smoking
and the ATG16L1 polymorphism combine to trigger Paneth cell
defects and apoptosis (97).
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FIGURE 1 | Overview of mechanisms regulating Paneth cell function and morphology. Those defective in ileal Crohn’s disease were labeled in red.

Acute antibiotic treatment is known to decrease the protein
level of lysozyme and of RegIIIγ as well as the mRNA level of α-
defensin 5 (98). However, the long-term effects of “earlier in life”
antibiotic treatment are unknown and therefore the analogy to
patients with antibiotics in childhood and later Crohn’s disease is
speculative. Also, in animal models vitamin D deficiency together
with high-fat feeding reduces α-defensin 5 and its activator
MMP 7, similar to vitamin D receptor knockouts (99). Obese
individuals exhibit decreased jejunal levels of HD5 and lysozyme,
whereas Paneth cell numbers were unchanged (100). Thus,
Paneth cell problems are not necessarily specific for Crohn’s
disease. Finally, chronic ethanol feeding also reduced α-defensin
5 in the mouse intestine (101) and possibly zinc deficiency plays a
negative role in this context (102). Remarkably, in some of these
circumstances (99, 101) oral administration of HD5 reversed the

pathological changes. However, at least alcohol consumption is

not an established risk factor for Crohn’s disease, whereas zinc

and vitamin D deficiency may well occur.

Finally, the microbiome may play a major role because

bacteria (103), Listeria and Salmonella in particular (104, 105),

as well as parasites like toxoplasma (106) and even viruses

(107) all interact with Paneth cell physiology. It is common that

patients report on an episode of gastrointestinal infection prior

to developing IBD but this is not, to the best of our knowledge,

an established link. Innate host defense, of course, is opposed

to these infections but also “sculpts” the local commensal
microbiome (30): as a consequence, Paneth cell defects may

induce dysbiosis (108–110). However, it still remains an open
question whether this dysbiosis is the hen or the egg, or both,
with respect to the inflammatory process (6, 111). A detailed
discussion of these host vs. microbiome issues is beyond the scope
of this review but it is quite conspicuous that adherent-invasive
E. coli associated with Crohn’s disease are resistant to both α- and
ß-defensins (112).

CONCLUSION

After the first hints of a Paneth cell role in ileal Crohn’s
disease (19, 40), the Paneth cell as the key cell of defensin
production in the small intestine proved to be an exciting
focus of IBD-research, in recent years and in many respects.
The various defects of this specialized cell in ileal Crohn’s
disease (Figure 1), in particular the (necessarily primary) genetic
defects, have convinced many in the field that deficient defensins
may represent one of the key events in triggering the disease
(7, 113). The microbiome directed immune response and the
stable localization over time is unlikely to be explained by a
mere T-cell overresponse and, therefore, unlikely to represent
an autoimmune disease (107). Future studies on the regulatory
network of Paneth cells, maybe like those reported recently, using
transcriptomics approaches may delineate additional complexity
in these already remarkably versatile cells (114). Finally, and
this is what counts for the patients: if the chance to substitute
for mucosal defensins by systemic or oral administration, as
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mentioned above, really works out, this originally unlikely
hypothesis may lead to a promising new therapy both in
Crohn’s disease (115, 116) as well as in intestinal graft vs. host
disease (117).
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