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g r a p h i c a l a b s t r a c t
� Longitudinal stool multi-omics
profiling reveals molecular alter-
ations of gut ecosystem in COVID-19.

� Gut proteomes were characterized by
disturbed immune, proteolysis and
redox homeostasis.

� A reduction of beneficial bacteria and
an enrichment of bacteria derived
deleterious metabolites were
identified.

� The gut phenome did not restore two
months after symptom onset in many
cases.
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a b s t r a c t

Gut ecosystem has profound effects on host physiology and health. Gastrointestinal (GI) symptoms were
frequently observed in patients with COVID-19. Compared with other organs, gut antiviral response can
result in more complicated immune responses because of the interactions between the gut microbiota
and host immunity. However, there are still large knowledge gaps in the impact of COVID-19 on gut
molecular profiles and commensal microbiome, hindering our comprehensive understanding of the
pathogenesis of SARS-CoV-2 and the treatment of COVID-19. We performed longitudinal stool multi-
omics profiling to systemically investigate the molecular phenomics alterations of gut ecosystem in
COVID-19. Gut proteomes of COVID-19 were characterized by disturbed immune, proteolysis and redox
homeostasis. The expression and glycosylation of proteins involved in neutrophil degranulation and
migration were suppressed, while those of proteases were upregulated. The variable domains of Ig heavy
chains were downregulated and the overall glycosylation of IgA heavy chain constant regions, IgGFc-
binding protein, and J chain were suppressed with glycan-specific variations. There was a reduction of
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beneficial gut bacteria and an enrichment of bacteria derived deleterious metabolites potentially asso-
ciated with multiple types of diseases (such as ethyl glucuronide). The reduction of Ig heave chain
variable domains may contribute to the increase of some Bacteroidetes species. Many bacteria ceramide
lipids with a C17-sphingoid based were downregulated in COVID-19. In many cases, the gut phenome did
not restore two months after symptom onset. Our study indicates widely disturbed gut molecular
profiles which may play a role in the development of symptoms in COVID-19. Our findings also emphasis
the need for ongoing investigation of the long-term gut molecular and microbial alterations during
COVID-19 recovery process. Considering the gut ecosystem as a potential target could offer a valuable
approach in managing the disease.

© 2021 Published by Elsevier B.V.
1. Introduction

The ongoing coronavirus disease 2019 (COVID-19) outbreak
caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) continues to pose a threat to human beings. In addition to
fever and cough, gastrointestinal (GI) symptoms were frequently
observed in patients with COVID-19 [1e3]. We have provided the
first clinical and molecular evidence for GI infection of SARS-CoV-2
with viral RNA detected in both GI tissues (esophagus, duodenum
and rectum) and stool samples [1,4]. Furthermore, viable virus have
been isolated in patient stool samples [5]. Our studies revealed that
11.6% of patients have GI symptoms on admission, and 49.5% of
patients developed GI symptoms during hospitalization [1].
Importantly, 11.6% of patients did not exhibit any imaging features
of COVID-19 pneumonia but only showed GI symptoms. However,
little is known about why and how SARS-CoV-2 affects GI tract.
Current evidence suggests that SARS-CoV-2 uses the host receptor
angiotensin converting enzyme 2 (ACE2) for cell entry and the
transmembrane serine protease 2 (TMPRSS2) for Spike protein (S)
priming [6].

Compared with other organs, gut antiviral response can result in
more complicated immune responses because of the interactions
between the gut microbiota and host immunity. It is known that a
normal gut ecosystem plays an important role in maintaining host
health and immune homeostasis. Gut microbiotamay be associated
with the COVID-19 susceptibility, severity, treatment and outcomes
in many different ways. Metagenomics has revealed that COVID-19
patients had significant altered fecal microbiome compared with
controls [7,8]. A recent study revealed that severe COVID-19
infection is associated with systemic release of bacterial products
[9]. Previous research has demonstrated the gut bacterial trans-
location to the lung in post-stroke pneumonia due to increased gut
barrier permeability [10]. Gut microbiota can also regulate the in-
testinal infection of certain virus such as norovirus [11]. Further-
more, gut microbiome perturbation can alters immunity to
vaccines [12], thus may affect the efficacy of SARS-CoV-2 vaccines.

Currently, there are still large knowledge gaps in the impact of
COVID-19 on gut molecular profiles and commensal microbiome,
hindering our understanding of the pathogenesis of SARS-CoV-2
and the treatment of COVID-19. Here, we investigate the compre-
hensive molecular phenomic signatures, including metaproteome,
glycoproteome, metabolome, and lipidome, to deepen our
comprehension of the gut molecular features related to SARS-CoV-
2 infection.

2. Materials and methods

2.1. Subject details

This study was approved by the Ethics Committee of The Fifth
Affiliated Hospital, Sun Yat-sen University (K161-1). This study
2

involved 13 patients with COVID-19 and 21 healthy controls. The
associated clinical data and metadata are provided in Table S1 and
Fig. 1A. SARS-CoV-2 infection was confirmed by two consecutive
real-time reverse transcription PCR (RT-PCR) tests. These patients
were classified into three groups according to the severity of their
symptoms: mild (mild clinical symptoms without pneumonia
manifestations in CT imaging (7 patients)); moderate (respiratory
symptoms, fever, and imaging features of COVID-19 pneumonia (5
patients); severe (respiratory distress (respiratory rate �30
breaths/min), oxygen saturation �93% and arterial oxygen tension
(PaO2)/fractional inspired oxygen (FiO2) ratio �300 mm Hg (1 pa-
tient)). We collected 53 stool samples from COVID-19 patients with
a range of one to nine longitudinal time-points that occurred 1e94
days post symptom onset (Fig. 1A, Table S1). Stool samples from 21
healthy subjects severed as controls. A total of 74 stool samples
were subjected to multi-omics analysis.

2.2. Metaproteomics sample preparation

Fecal sample (~150mg) was lysed by boiling for 5 min at 95 �C in
800 mL of lysis buffer (6 M Guanidinium hydrochloride (GdmCl),
10 mM tris(2-carboxyethyl)phosphine (TCEP), 40 mM chlor-
oacetamide, 100 mM Tris pH 8.5) in Eppendorf protein LoBind
tubes. The lysate was then sonicated for 15 min using a waterbath
sonicator. The crude protein extract was centrifuged at 16,000 g for
5 minwith the clarified lysate subjected to ultrafiltration (cut off 30
kD, Millipore), diluted 1:10 with dilution buffer (10% (v/v) aceto-
nitrile (ACN), 25 mM Tris pH 8.5) containing 1 mg sequencing grade
trypsin (1/50, w/w), and digested overnight at 37 �C. The digest was
acidified to an end-concentration of 1% trifluoroacetic acid (TFA)
and debris were removed after centrifugation at 16,000 g for 5 min.
Finally, the peptides were desalted on StageTips assembled by
Empore C18 disk, dried using a SpeedVac centrifuge at 45 �C, and
suspended in 2% ACN and 0.1% formic acid (FA).

2.3. Metaproteomics data acquisition

Peptides were trapped onto an Acclaim PepMap 100C18 column
(75 mm � 20 mm, 3 mm, 100 Å, Thermo Scientific) at a flow rate of
8 mL/min and separated using an Acclaim PepMap 100C18 column
(75 mm� 250mm, 2 mm,100 Å, Thermo Scientific) at 300 nL/min on
a Thermo Scientific Dionex UltiMate 3000 RSLCnano LC system.
Mobile phase solvents were 0.1% formic acid in water (A) and 0.1%
formic acid in 80% acetonitrile (B). The separation gradient was as
follows: 15% B rising to 30% B at 130 min, rising to 98% B at 137 min,
and keeping at 98% B for 27min. Finally, the separation columnwas
equilibrated using 15% B for 6 min. The trap column was switched
online with the separation column at 3 min and switched back to
load position at 168 min. Data were acquired on an Orbitrap Fusion
Lumos Tribrid mass spectrometer with a Nanospray Flex ion source
in positive ionization mode with a spray voltage of þ2600 V using



Fig. 1. Overview of the multi-omics characterization of gut ecosystem in COVID-19 patients. A. Longitudinal SARS-COV-2 RT-PCR test results and stool sampling. B. Principle
component analysis of metaproteomic (protein and peptide level), metabolomic, and lipidomic profiles.
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Xcalibur software (Thermo Scientific, San Jose, CA, USA). The ion
transfer tube temperature was 300 �C, the vaporized temperature
was 325 �C, the sheath gas flow was 40 units, the auxiliary gas flow
was 15 arbitrary units, and the sweep gas was 1 unit. Full scan MS
spectra was acquired in the 400�1,600 m/z range with an AGC
target of 5 � 104, a maximum injection time of 50 ms, and a res-
olution of 60 K at m/z 200. MS/MS spectra were acquired using
higher-energy collisional dissociation (HCD) with a normalized
collision energy (NCE) of 30% and a resolution of 15 K with an AGC
target of 5 � 104 and a maximum ion injection time of 22 ms.

2.4. Glycopeptide enrichment

Glycopeptides were enriched using hydrophilic interaction
liquid chromatography (HILIC) cartridges packed with the C18 plug
followed by microcrystalline cellulose resins [13]. The resin was
washed with 300 mL of 0.1% TFA and initialized using 300 mL of 0.1%
TFA in 80% acetonitrile. After loading ~200 mg of peptides in 300 mL
80% acetonitrile/0.1% TFA), the resin was washed with 80% aceto-
nitrile/0.1% TFA three times to remove non-specific peptides. Then
glycopeptides were eluted by 300 mL of H2O, followed by 200 mL of
80% acetonitrile. Peptides were dried using a SpeedVac centrifuge
3

at 45 �C, and suspended in 2% ACN and 0.1% formic acid (FA).

2.5. Glycoproteomics data acquisition

Peptides were trapped onto an Acclaim PepMap 100C18 column
(75 mm � 20 mm, 3 mm, 100 Å, Thermo Scientific) at a flow rate of
8 mL/min and separated using an Acclaim PepMap 100C18 column
(75 mm � 250 mm, 2 mm, 100 Å, Thermo Scientific) at 300 nL/min.
Mobile phase solvents were 0.1% formic acid in water (A) and 0.1%
formic acid in 50% acetonitrile and 40% isopropanol (B). The sepa-
ration gradient was as follows: 5% B at 0e15 min, 20%e30% B at
90e100 min, and 98% B at 107 min and kept for 20 min. Data were
acquired on an Orbitrap Fusion Lumos Tribrid mass spectrometer
with a Nanospray Flex ion source in positive ionizationmodewith a
spray voltage of þ2600 V using Xcalibur software (Thermo Scien-
tific, San Jose, CA, USA). The ion transfer tube temperature was
300 �C, the vaporized temperature was 325 �C, the sheath gas flow
was 40 units, the auxiliary gas flow was 15 arbitrary units, and the
sweep gas was 1 unit. Full scan MS spectra was acquired in the
400�1,600m/z range with a maximum injection time of 50 ms and
a resolution of 60 K atm/z 200. MS/MS spectra were acquired using
HCD with stepped NCE at 20%, 30%, and 40% to generate fragment
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ions of both glycan and peptide of a glycopeptide in a single
spectrum and MS/MS spectra. The resolution of HCD was 15 K with
a maximum ion injection time of 22 ms.
2.6. Metabolomics sample preparation

Metabolite extraction was performed by adding 1 mL of ice-old
80% methanol to ~150 mg stool samples, vortexing for 30 s, and
centrifuging (16,000g) at 4 �C for 10 min. The supernatants were
evaporated to dryness under nitrogen, reconstituted in 150 mL of
0.1% formic acid in 5% acetonitrile, and kept at�80 �C until analysis.
2.7. Metabolomics data acquisition

Metabolic extracts were separated on a Thermo Scientific Dio-
nex UltiMate 3000 Rapid Separation LC (RSLC) using an ACQUITY
UPLC HSS T3 analytical column (2.1 � 150 mm, 1.8 mm, 100 Å,
Waters) protected by an ACQUITY UPLC HSS T3 VanGuard pre-
column (2.1 � 5 mm, 1.8 mm, 100 Å, Waters). Mobile phase sol-
vents for positive ionization mode were 0.1% formic acid in water
(A) and 0.1% formic acid in acetonitrile (B); mobile phase solvents
for negative ionization mode were 0.01% formic acid in water (A)
and acetonitrile (B). The following gradient elution was used:
0e3 min, 95% A; 5e13 min, 80%e30% A; 15e18 min, 2% A;
18.1e22 min, 5% A. The flow rate was 0.3 mL/min, the injection
volume was 2 mL and the column oven was set at 35 �C. Data were
acquired on an Orbitrap Fusion Lumos Tribrid mass spectrometer
fitted with a HESI source in both positive and negative ionization
modes with an independent run for each polarity and a spray
voltage of þ3500 V and �3500 V, respectively (Thermo Scientific,
San Jose, CA, USA). The ion transfer tube temperature was 300 �C,
the vaporized temperature was 350 �C, the sheath gas flow was 40
units, the auxiliary gas flow was 15 arbitrary units, and the sweep
gas was 1 unit. Metabolite profiling was profiled in full scan mode
using a mass range of m/z 100e1000 with a resolution of 120 K at
m/z 200, an AGC target of 5� 104, and a maximum injection time of
50 ms. For metabolite identification, data dependent MS/MS data
were acquired on quality control samples (QC) containing equally
volumes of all samples used in this study. In-depth MS/MS was
performed using nine staggered gas-phase fractionations (sGPFs) to
allow more homogeneous selection of precursor ions in low, me-
dium, and highm/z ranges [14]. This was achieved in nine separated
LC-MS runs: (run 1) 100e110, 200e210, 300e310, 400e410,
500e510, 600e610, 700e710, 800e810; (run 2) 110e120, 210e220,
310e320, 410e420, 510e520, 610e620, 710e720, 810e820; (run 3)
120e130, 220e230, 320e330, 420e430, 520e530, 620e630,
720e730, 820e830; (run 4) 130e140, 230e240, 330e340,
430e440, 530e540, 630e640, 730e740, 830e840; (run 5)
140e150, 240e250, 340e350, 440e450, 540e550, 640e650,
740e750, 840e850; (run 6) 150e160, 250e260, 350e360,
450e460, 550e560, 650e660, 750e760, 850e860; (run 6)
160e170, 260e270, 360e370, 460e470, 560e570, 660e670,
760e770, 860e870; (run 7) 170e180, 270e280, 370e380,
470e480, 570e580, 670e680, 770e780, 870e880; (run 8)
180e190, 280e290, 380e390, 480e490, 580e590, 680e690,
780e790, 880e890; (run 9) 190e200, 290e300, 390e400,
490e500, 590e600, 690e700, 790e800, 890e900. Each sGPF LC-
MS run was performed twice. Quadrupole isolation window was
1.4 m/z and dynamic exclusion was enabled for 10 s. The stepped
NCE at 10%, 25%, and 40% was employed to obtain information-rich
MS/MS spectra. The run order was the blank first (0.1% formic acid
in 5% acetonitrile), pooled QC samples for DDA-MS/MS, and a
pooled QC every 12 randomized clinical samples.
4

2.8. Lipidomics sample preparation

Extraction of lipids started with the addition of 1 mL of meth-
anol to 150mg of fecal samples and the tubewas vigorously shaken
with a vortex for 30 s [15]. Subsequently, 5 mL of methyl tertbutyl
ether was added, vortexed for another 30 s, and shaken for 20 min
at 200 rpm at room temperature. Next, phase separation was
induced by adding 3mL of ultrapurewaterwith 2.5% trichloroacetic
acid (w/v) and centrifugation for 5 min at 3000 rpm. Thereafter,
1 mL of the upper layer (consisting of methyl tert-butyl ether) was
transferred and evaporated to dryness at 37 �C under a gentle
stream of nitrogen. The residue was sequentially resuspended in
250 mL of chloroform and 650 mL of methanol.

2.9. Lipidomics data acquisition

Lipid extracts (2 mL) were separated on a Thermo Scientific
Dionex UltiMate 3000 Rapid Separation LC (RSLC) using an ACQ-
UITY UPLC HSS T3 analytical column (2.1 � 150 mm, 1.8 mm, 100 Å,
Waters) protected by an ACQUITY UPLC HSS T3 VanGuard pre-
column (2.1 � 5 mm, 1.8 mm, 100 Å, Waters). Mobile phase sol-
vents A and Bwere ACN: H2O (6:4 v/v) and isopropanol: ACN (9:1 v/
v), respectively, both contained 10mM ammonium acetate and 0.1%
acetic acid. The separation was performed at 55 �C with a flow rate
of 0.35 mL/min using the following gradient: 0e3.0 min, 30%e35%
A; 5.0e14.0 min, 65%e98% A; 18.0e18.1 min, 98%e30% A;
18.1e22.0 min, 30% A. Data were acquired on an Orbitrap Fusion
Lumos Tribrid mass spectrometer fitted with a HESI source in both
positive and negative ionization modes with an independent run
for each polarity and a spray voltage of þ3500 V and �3500 V,
respectively (Thermo Scientific, San Jose, CA, USA). The ion transfer
tube temperature was 300 �C, the vaporized temperature was
350 �C, the sheath gas flow was 40 units, the auxiliary gas flowwas
15 arbitrary units, and the sweep gas was 1 unit. Lipid profiling was
profiled in DDA mode using a full MS scan range of m/z 150e2000
(resolution was 60 K at m/z 200) with top ranked precursor ions
subjected to DDA-MS/MS using a maximum injection time of
22ms. The stepped normalized collision energy (NCE) at 25, 30, and
35 was employed to obtain information-rich MS/MS spectra with a
resolution of 15 K at m/z 200. Quadrupole isolation window was
1.6 m/z and dynamic exclusion was enabled for 10s. To promote
lipid identification, in-depth DDA MS/MS of QC sample was per-
formed using the following four sGPFs which was performed in
four separated runs [14]: (run 1) 150e250, 550e650, 950e1050,
1350e1450, 1750e1850; (run 2) 250e350, 650e750, 1050e1150,
1450e1550, 1850e1950; (run 3) 350e450, 750e850, 1150e1250,
1550e1650; (run 4) 450e550, 850e950, 1250e1350, 1650e1750.

2.10. Metaproteomics data analysis

Peptide identifications were performed using the search engine
PEAKS DB combined with PEAKS de novo sequencing [16] (De Novo
ALC(%) threshold was 15). False discovery rate (FDR) was set to 1%
using the decoy fusion approach. Raw files were refined by pre-
cursor ion mass correction and resolving chimeric MS/MS spectra.
The precursor mass tolerance was set to 15 ppm and the fragment
mass tolerance to 0.03 Da. Enzyme specificity was set to trypsin and
up to three missed cleavage sites were allowed. The maximum
number of variable posttranslational modifications per peptidewas
three, including acetylation of protein N-terminus, carbamidome-
thylation of Cys, oxidation of Met, deamidation of Asn and Gln as
well as Pyro-glu from Gln. PEAKS PTM search tool [17] was used to
search for peptides with unspecified modifications (313 built-in
post-translational modifications), and the SPIDER [18] search tool
was used for exploring novel peptides that are homologous to
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peptides in the protein database.
Database search was performed using a comprehensive meta-

database containing human, microbial, and dietary organism se-
quences [19]. The gut microbial protein database was generated by
combining the following parts: (1) the integrated gene catalog of
1,267 human fecal metagenomes [20]; (2) the 1,520 reference ge-
nomes of >6,000 cultivated human fecal bacteria isolates [21]; (3)
the genomes of 215 human fecal bacteria isolates [22]; (4) all
Archaea, Bacteria, and Fungi sequences in NCBI RefSeq (Release 90)
and UniProtKB (Release 2017_06). The microbial database was
appended by the SARS-COV-2 protein sequences [23], an UniProt
human reference proteome (downloaded on 2017_06), and a food
database of common dietary organisms. A total number of
130,975,891 non-redundant sequences were obtained after der-
eplicating at 100% amino acid identity using USEARCH v11.0.667
(efastx_uniques) [24]. Proteins identified by at least one unique
peptides (1% false discovery rate (FDR) using the decoy fusion
approach) was considered for further analysis. Label-free quantifi-
cation of protein groups was performed based on the number of
peptide spectrum matches (PSM).

2.11. Taxonomy and functional analysis of gut microbiota

Taxonomy and functional analysis of peptides was performed
with UniPept (version 4.3.7) [25] based on the lowest common
ancestor (LCA) algorithm using the following parameters: Equate I
and L, Advanced missing cleavage handling. Peptide functional
annotations were performed using Gene Ontology (GO) terms and
Enzyme Commission (EC) numbers. The relative abundance of
microbial taxonomic and functional groups were determined using
the normalized number of corresponding peptides. Functions of the
unannotated microbial proteins were predicted using protein-
protein BLAST (BlastP, https://blast.ncbi.nlm.nih.gov/Blast.cgi)
against the non-redundant protein sequences (nr) with an E-value
threshold of 1e-10.

2.12. Glycoproteomics data analysis

High-confidence identification of intact N-glycopeptides was
performed by pGlyco 2.0 [26]. Sequences of proteins identified in
the above metaproteomics analysis as well as the SARS-COV-2
protein sequences were used in glycopeptide identification. The
precursor mass tolerance was set to 10 ppm and the fragment mass
tolerance to 20 ppm. For N-glycopeptide analysis, a FDR of 5% at the
glycan level and a FDR of 1% at the peptide level was used. Match
between run and intensity based label-free quantification was not
supported by pGlyco. To calculate the frequency of N-glycosylation
at a specific site, any sample containing a glycopeptide bearing an
N-glycan at that site was considered positive regard less of the
variations of glycopeptide sequences and glycans. To calculate the
frequency of a specific N-glycan at a specific site, any sample con-
taining a glycopeptide bearing that glycan at that site was consid-
ered positive regard less of glycopeptide sequence variations. The
frequencywas defined as the number of positive samples relative to
the total number of samples in each group (18 for the control and
49 for the COVID-19 groups, respectively).

Global identification of both O-glycopeptides and N-glycopep-
tides were performed using PEAKS. Acetylation (protein N-term),
carbamidomethylation, deamidation (NQ), pyro-glu from Q,
oxidation (M), HexNAcylation (ST), Hex1HexNAc1, Hex1HexNAc2,
Hex2HexNAc2, Hex3HexNAc2, Hex1HexNAc(3), Hex(2)HexNAc(3),
Hex(3)HexNAc(3), Hex(4)HexNAc(2), Hex(6)HexNAc(2), Hex(7)
HexNAc(2), Hex(8)HexNAc(2), Hex(9)HexNAc(2), and dHexHex(3)
HexNAc(2)were set as variable posttranslational modifications. The
precursor mass tolerance was set to 10 ppm and the fragment mass
5

tolerance to 0.02 Da. The PEAKS output file gave the mono-
saccharide composition of the attached glycan. Label-free quanti-
fication was performed using match between runs with a mass
error tolerance of 20 ppm and a retention time shift tolerance of
1 min.

2.13. Metabolomics data analysis

Metabolomics features were extracted, aligned, identified and
quantified using Compound Discoverer (v3.1, Thermo Fisher Sci-
entific). The analysis employed the following major steps and pa-
rameters: retention time alignment (alignment model ¼ adaptive
curve, mass tolerance ¼ 5 ppm, maximum shift ¼ 2 min), unknown
compound detection (mass tolerance ¼ 5 ppm, intensity
threshold ¼ 30%, S/N threshold ¼ 3, minimum peak
intensity ¼ 1 � 106, adducts ions ¼ [MþH]þ1, [M þ HeH2O]þ1,
[M þ HeNH3]þ1, [MþK]þ1, [MþNa]þ1, [M þ NH4]þ1, [2 M þ H]þ1,
[2 M þ K]þ1, [2 M þ Na]þ1, [2 M þ NH4]þ1, [Mþ2H]þ2, [M � H]�1,
[M � 2H]�2, [M-H þ HAc]�1, [M-H-H2O]�1, [M � H þ FA]�1,
[MþCl]�1, [2M � H]�1, [2M-H þ HAc]�1), compound grouping
(mass tolerance ¼ 5 ppm, RT tolerance ¼ 0.2 min), prediction of
elemental compositions (mass tolerance ¼ 5 ppm, maximum
element counts ¼ 90 � C, 190 � H, 10 � N, 15 � O, 5 � S and 3 � P),
filling gaps across all samples (mass tolerance ¼ 5 ppm, S/N
threshold ¼ 1.5), chemical background subtraction (using blank
samples), identifying compounds by searching ChemSpider (by
formula or mass, https://www.chemspider.com/), mzVault and
mzCloud (by MS and MS/MS data, precursor mass
tolerance ¼ 10 ppm, fragment mass tolerance ¼ 10 ppm, match
factor threshold ¼ 60, https://www.mzcloud.org), and QC-based
batch normalization (regression model ¼ Cubic Spline). The
mzCloud and mzVault match were performed base on Similarity
Forward method and HighChem-HighRes search algorithm,
respectively. Extracted ion chromatogram (EIC) and MS/MS spectra
of all metabolites of interests were manually inspected.

2.14. Lipidomics data analysis

Raw data files were processed using the LipidSearch software
(version 4.1) (Thermo Fisher Scientific) to identify and quantify
lipid molecular species. Peak detection was performed as follows:
Recalc Isotope, on; RT interval (min), 0.01. Lipid identification was
as follows: Search type, Product; Exp type, LC-MS; Precursor
tolerance, 10 ppm; Product tolerance, 10 ppm; Intensity threshold,
1.0%; Target class, ALL lipid classes; Ion adducts (positive ion mode)
of þH, þNH4, þNa, þHeH2O, and þ2 H; Ion adducts (negative Ion
mode) of eH,þHCOO,þCH3COO,þCl, and�2H; Top rank filter, On;
Main node filter, Main isomer peak; m-Score threshold, 5.0; FA
priority, On. ID Quality Filter, Check A, B, C, D (A: lipid class and FA
are identified, B: lipid class and some FA were identified, C: Lipid
class or FA were identified, D: Lipid identified by other fragment
ions (H2O loss, and other non-specific neutral losses). Quantitation
was performed using am/z tolerance of�/þ 5.0 ppm and a RT range
of �0.5/þ 0.5 min. Peak alignment was performed using the
following parameters: Alignment Method, Max; RT Tolerance,
0.25 min; Calculate unassigned peak area, On; Filter type, New
filter; Top rank filter, On; Main node filter, Main isomer peak; m-
Score threshold, 5.0; ID quality filter, A, B and C.

2.15. Statistical analysis

The raw quantification data matrix of different omics was im-
ported to MetaboAnalyst [27] for further processing and analysis.
Data filtering was performed using interquantile range (IQR) to
remove baseline noises. Missing values were imputed using KNN.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.chemspider.com/
https://www.mzcloud.org


Fig. 2. Disturbed host proteome homeostasis in COVID-19 patients. A. The abun-
dance changes of global protein expression of IGHV3-64D, IGLL1, CEACAM5, CELA3A,
SERPINB6, SOD1, ALPI, and PLA2G2A in the control and COVID-19 samples. Significance
is indicated by: (Wilcoxon's rank sum test, *q < 0.05, **q < 0.01). B. The longitudinal
changes of IGHV3-64D, IGLL1, CEACAM5, CELA3A, SERPINB6, SOD1, ALPI, and PLA2G2A
in patients 5, 11, 12 and 13.
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Quantile normalization and pareto scaling were employed. Unsu-
pervised multivariate data analysis was performed using principal
component analysis (PCA) and hierarchical cluster analysis (HCA).
Significantly differentiated omics features between COVID-19 and
control groups (should present in at least 50% of samples) were
detected using Wilcoxon's rank sum test (FDR adjusted p value
(q) < 0.05). Microbial taxonomic and functional groups were
normalized by total abundance. Statistical significance of microbial
taxonomic groups was calculated using Mann-Whitney U test (p
value < 0.05). Protein-microbiome and metabolite-microbiome
correlations were determined using Pearson correlation
(q < 0.05) using R. The association between differentiating omics
features with categorical confounding variables (gender and med-
icine) were determined using Wilcoxon's rank sum test. The asso-
ciation between differentiating omics features with continuous
confounding variables (age and Body Mass Index (BMI)) were
determined using Pearson correlation.

3. Results

We collected a total of 53 stool samples from 13 COVID-19 pa-
tients with a range of one to nine longitudinal time-points that
occurred 1e94 days post symptom onset (Fig. 1A, Table S1). Stool
samples from 21 healthy subjects severed as controls. Positive RT-
PCR results for SARS-COV-2 were observed in stool and/or peri-
anal swab samples even 3 months post symptom onset in a patient
with diabetes (patient 1). Furthermore, SARS-CoV-2 viral RNA can
persist in stool and/or perianal swab samples long after respiratory
samples have tested negative in patients 1, 4, 6, 7, 8, and 9, high-
lighting the susceptibility of GI tract to SARS-CoV-2 infection.

Multi-omics profiling was performed on each sample to study
the alterations of molecular phenomics of the gut ecosystem in
COVID-19. Principal component analysis (PCA) showed partially or
largely separated multi-omics profiles between COVID-19 patients
and controls (Fig. 1B). Quality control (QC) samples of different
omics data closely clustered together indicating reproducible MS
measurements. Samples from the same patients tended to cluster
together indicating greater individual similarity even in the pres-
ence of the SARS-COV-2 perturbation.

3.1. Disturbed host proteome

Using untargeted metaproteomics, a total of 16279 protein
groups (including 268 human proteins) with at least one unique
peptide and a total of 435632 peptides were identified. No SARS-
COV-2 protein was detected due to the sensitivity limitation of
metaproteomics. Metaproteomics revealed suppressed expression
of host proteins involved in immune regulation in COVID-19
(q < 0.05, Fig. 2A, Table S2), including IGHV3-64D (immunoglob-
ulin (Ig) heavy variable 3-64D), IGHV3-74 (Ig heavy variable 3e74),
and IGLL1 (Ig lambda-like polypeptide 1). Meanwhile, two mem-
bers of the carcinoembryonic antigen-related cell adhesion mole-
cule (CEACAM) family that belong to the immunoglobulin
superfamily (CEACAM5 and CEACAM6), were also down-regulated
in COVID-19. Significant reduction of CEACAM 5 has been reported
in intestinal epithelial cells (IECs) from inflammatory bowel disease
(IBD) patients and this defect correlated with the inability of IBD
IECs to activate CD8þ T cells [28e30], the main T cell population
that can kill virus-infected cells. Hence, the reduced CEACAM 5 in
COVID-19 may impair cytotoxic CD8þ T cell response in GI tract.
Serpin B6, an inhibitor of chymotrypsin-like proteases decreased in
COVID-19, while proteases CELA3A (chymotrypsin-like elastase
familymember 3A), CTRC (Chymotrypsin-C), andMEP1A (Meprin A
subunit alpha) increased in COVID-19 (Fig. 2A, Tables S2 and S3).
Serpin B6 can prevent cathepsin G-dependent neutrophil death
6

[31] and protect dendritic cells from cytotoxic T lymphocyte
induced apoptosis [32]. Serpin deficiency may lead to high
inflammation via cathepsin G and gasdermin D. In contrast, intes-
tinal alkaline phosphatase (ALPI), which inhibits host inflammatory
responses by detoxifying gut bacterial lipopolysaccharide [33], and
PLA2G2A (phospholipase A2, membrane associated), which par-
ticipates in host antimicrobial defense and inflammatory response,
were upregulated in COVID-19. These differentiating host proteins
did not exhibit significant associations to other typical confounding
variables (e.g. age, gender, and medicine, Table S2), suggesting they
represented COVID-19-associated gut pathologies.

We then investigated the longitudinal changes of these altered
proteins in patients 5,11,12 and 13, who had serial stools displaying
positive to negative stool SARS-CoV-2 infection. Overall, all patients
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showed considerable protein abundance variations, indicating an
unstable gut proteome during the disease course of COVID-19
(Fig. 2B). In many cases, the protein abundance did not restore to
the normal levels even several weeks after symptom onset. For
patient 5, IGHV3-64D, IGLL1, CEACAM5, and CELA3A showed
similar trajectory changes, whose abundance reached a high level
38e40 days after symptom onset but reduced dramatically on day
49. For patient 11, IGHV3-64D and CELA3A elevated on day 37 but
decreased sharply on day 40. The longitudinal proteome changes of
patient 13 were characterized by a steep fall of IGHV3-64D on days
37 and 39 and a gradually increase of CELA3A, ALPI, and PLA2G2A.

3.2. Glycosylation insight into mucosal immunological
pathogenesis

To further investigate the phenomics alterations of COVID-19,
we studied the protein glycosylation which plays a key role
immunological regulation [34] by HILIC based enrichment
(Tables S3 and S4). We first analyzed the intact N-glycopeptides
using pGlyco 2.0 because this search engine improves the identi-
fication accuracy by comprehensive quality control at all three
levels of glycans, peptides, and glycopeptides [26]. In total, 4960
glycopeptide-spectrum matches (GPSMs) derived from 54 human
proteins were identified with a 1% GPSM FDR (combing peptide
FDR and glycan FDR) (Table S4.1). Only 3 microbial N-glycopeptides
were identified probably because of the lower abundance of mi-
crobial glycoproteins compared with the dominant human glyco-
proteins (such as IgA) and the incomplete microbial N-glycan
database of pGlyco 2.0 (currently only for human and mouse gly-
cans). With the less stringent criteria (1% peptide FDR and 5%
glycan FDR), we retrieved significantly more glycosylation features
with 8423 GPSMs corresponding to 486 distinct site-specific N-
glycans on 177 glycosylation sites from 83 human glycoproteins
(Table S4.1). Frequency is important to understand the pathology of
the different post-translational modifications (PTMs). The glyco-
sylation frequency (merged from different glycan types (Fig. 3A,
Table S4.2) or calculated separately (Fig. 3B, Table S4.2)) of major N-
glycosylated sites of proteins involved in neutrophil degranulation
(including ANPEP, AZU1, MGAM, CEACAM6, CEACAM8, LCN2,
OLFM4, and SERPINA1) and neutrophil migration (GP2) were
decreased by up to 81.6% in COVID-19. The N-glycosylation of
mucins was dominated by Hex1Fuc1, the frequency of which
reduced by approximately 25% (Fig. 3B). The N-glycosylation of
proteases was dominated by Hex1Fuc1 and Hex3HexNAc2Fuc1 and
the frequency of both glycans was reduced in COVID-19.

In contrast to the above proteins, Ig related proteins including
IGHA2, FCGBP, and JCHAIN exhibited greater glycosylation hetero-
geneity. On the glycosite N131 of IGHA2, the frequency of glycan
Hex3HexNAc4 decreased by 63.3% but that of analogue Hex3Hex-
NAc5 (with an additional HexNAc) increased by 46.9% in COVID-19
(Fig. 3B). On the same glycosite, the frequency of glycan Hex3-
HexNAc3 was comparable between two groups but the analogue
Hex3HexNAc4 (with an additional HexNAc) was only detected in
COVID-19. On the glycosite N205 of IGHA2, the relative frequency of
glycans increased as the number of HexNAc increased. These results
suggest the N-glycosylation alterations of gut IGHA2 are charac-
terized by the conjugation of more complex glycans through the
attachment of more HexNAc. The glycan specific alterationwas also
observed in JCHAIN (N71), where glycan Hex3HexNAc3Fuc, with an
additional Fuc compare to its counterpart, exhibited higher fre-
quency in COVID-19. On the other hand, the frequency of the same
glycan on different sites can be quite different. For instance, while
Hex3HexNAc2Fuc was only detected in COVID-19 on N1063 of
FCGBP, the frequency of this glycan was decreased in COVID-19 on
N1317. Taken together, the overall N-glycosylation of IGHA2, FCGBP,
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and JCHAIN was suppressed with glycan-specific and site-specific
variations.

We also extended our analysis to O-glycosylation and performed
intensity based label-free quantification (Tables S4.3). Similar to N-
glycoproteome, O-glycoproteome also revealed increased glyco-
sylation of proteases and reduced glycosylation of IGHA2, FCGBP,
ANPEP, and GP2. As shown in Fig. 3C, the relative abundance of O-
HexNAcylated peptides QQLQS205KNECGILADPK from FCGBP,
PSTPPTPS111PSTPPTPSPSCCHPR from IGHA1, and SVTWSESGQNV-
T49AR from IGHA2 were significantly decreased in COVID-19
(q < 0.05), while the corresponding protein abundance did not
change.

3.3. Reduction of beneficial gut bacteria and potential host-bacteria
interactions

We used the metaproteomics approach, which is more accurate
than sequencing methods for biomass estimates, to investigate
microbial community structure and activity [35]. The relative
abundance of 34 bacterial taxa were significantly changed between
healthy subjects and patients with COVID-19, most of which were
from the Firmicutes phylum (20 out of 34, 58.8%) followed by the
Bacteroidetes phylum (10 out of 34, 29.4%) (Table S5). Strikingly, the
relative abundance of all 20 altered members in the Firmicutes
phylum significantly decreased in COVID-19 (p < 0.05), themajority
of which were butyrate-producers [36] belonging to the Lachno-
spiraceae family, such as genera Lachnoclostridium, Ruminococcus,
Butyrivibrio, and Dorea, and species Blautia hansenii, Ruminococcus
lactaris, and Tyzzerella nexilis (Fig. 4A). There was also a significant
depletion of butyrate-producing genus Eubacterium in COVID-19,
which also carry out bile acid and cholesterol transformations in
the gut, contributing to gut and hepatic homeostasis through
modulation of bile acid metabolism [37]. In addition, a recent study
has found that several species of the phylum Firmicutes (such as
genera Clostridium, Ruminococcus, and Eubacterium) were posi-
tively associated with memory scores, while species from the
phylum Bacteroidetes mainly presented negative associations with
memory scores [38]. Taken together, these data suggest a signifi-
cant reduction of beneficial gut bacteria in COVID-19.

The relative abundance of all altered members in the Bacter-
oidetes phylum significantly increased in COVID-19 (p < 0.05), such
as Bacteroides coprophilus, Bacteroides coprocola, Bacteroides gra-
minisolvens, Bacteroides uniformis, and Bacteroides stercoris
(Fig. 4A). Importantly, it has been shown Bacteroidetes and Firmi-
cutes bacteria mainly down-regulate and up-regulate ACE2
expression in the murine gut, respectively [39]. Therefore, the
enrichment of Bacteroidetes and the reduction of Firmicutes may
potentially inhibit SARS-CoV-2 entry by down-regulating intestinal
ACE2 expression.

Association analysis of altered host proteins and bacteria
revealed potential host-microbiome interactions. Overall, bacteria
groups increased in COVID-19 including B. coprophilus and
B. coprocola exhibited negative correlations with host proteins,
while those increased in COVID-19 such as Ruminococcus and
Fusobacteria exhibited positive correlations (Fig. 4B). An exception
was CEACAM6, which was positively associated with B. coprophilus.
A recent study has shown CEACAM6 is critical for pathogen en-
terotoxigenic Escherichia coli adhesion [40]. The reduction of host
proteins such as IGHV3-73 and IGHV3-64D may potentially
contribute to the enrichment of Bacteroidetes phylum because of
the reduced anti-bacteria Igs.

3.4. Functional alteration of gut microbiome

Gene ontology (GO) analysis of metaproteomics data revealed



Fig. 3. Altered glycoproteome in COVID-19 patients. A. Altered glycosylation frequency of major N-glycosylated sites. Different types of glycans were merged. B. Altered
glycosylation frequency of major N-glycans in major N-glycosylated sites. C. Reduced O-glycosylated peptide abundance of FCGBP, IGHA1, and IGHA2. The identifier of glycopeptide
(left panel) is presented using the format: gene name_modification site_glycan_peptide sequence (the modification sites are highlighted in red). The protein abundance is shown in
the corresponding right panel (Wilcoxon's rank sum test, *q < 0.05, **q < 0.01, ns, not significant). (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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that 9 biological processes of microbial proteome exhibited sig-
nificant difference between healthy subjects and patients with
COVID-19 (q < 0.05) (Fig. 4C). Among them, CTP biosynthetic pro-
cess, GTP biosynthetic process, and UTP biosynthetic process
reduced in COVID-19, while de novo' AMP biosynthetic process
increased in COVID-19. Untargeted metabolomics revealed that
nucleobase (guanine), nucleosides (adenosine, guanosine, 20-
deoxyadenosine, and inosine) and nucleotides (adenosine 50-
monophosphate (AMP), thymidine 50-monophosphate (TMP), 20-
deoxyguanosine 50-monophosphate (dGMP)) decreased in COVID-
19 (q < 0.05) (Fig. 5A), while cyclic AMP (cAMP), methylated pu-
rines (1-methyladenine, 6-dimethyladenine) and methylated py-
rimidine (5-methylcytosine, 1,3-dimethylxanthine) increased in
COVID-19. Association analysis of microbial and metabolomics
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data revealed that adenosine was positively associated with class
Clostridia and order Clostridiales, and guanine and guanosine were
positively associated with genus Butyrivibrio (Fig. 4C). In contrast,
1-methyladeninewas negatively correlatedwith genusDorea, order
Clostridiales and class Clostridia, and 5-methylcytosine and 6-
dimethyladenine were negatively correlated with genus Rumino-
coccus. Consistent with the metabolomics findings, GO analysis
indicated that there was a 1.8-fold increase in the protein abun-
dance of DNAmethylation process in the COVID-19 group, although
this difference only reached a relaxed statistical significance
threshold (raw p ¼ 0.02). On the other hand, the process of tRNA
aminoacylation (lysyl-tRNA aminoacylation, isoleucyl-tRNA ami-
noacylation) an essential step of protein synthesis, increased in
COVID-19.



Fig. 4. Taxonomical and functional alterations of gut microbiome. A. The abundance changes of representative taxonomical groups. Significance is indicated by: (Mann-Whitney
U test, *q < 0.05, **q < 0.01, ***q < 0.01). B. Associations between altered host proteins and gut microbiome taxonomical groups. Only correlations with q < 0.05 were indicated
with colored squares. Positive correlations were shown in red and negative correlations were shown in blue, with sizes of squares representing the magnitude of the correlations. C.
Volcano plots illustrate biological processes of microbial proteome that were significantly different (q < 0.05) indicated on top of the plot. D. Reduced NADH peroxidase in bacterial
species and genera belonging to order Clostridiales (Wilcoxon's rank sum test, *q < 0.05, **q < 0.01, ***q < 0.001). (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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3.5. Enrichment of bacterial related deleterious metabolites

Using untargeted metabolomics, we identified 96 fecal metab-
olites significantly differed between control subjects and COVID-19
patients, mainly including nucleosides, nucleotides, bile acids,
carboxylic acids, dipeptides, tripeptides, and acylated amino acids
(Table S6). Notably, we detected an enrichment of several gut
microbiome-related deleterious metabolites in COVID-19 (Fig. 5B
and S1), including phenylacetyl glutamine (q ¼ 0.01), which pro-
motes cardiovascular disease such as platelet thrombosis [41], and
salsolinol (q ¼ 0.003), which is a potential gut bacterial neurotoxin
contributing to the development of neurodegenerative diseases
[42,43]. The reduction of Firmicutes phylum (such as class Clostridia,
order Clostridiales, and genus Dorea) may be at least partially
responsible for the increment of phenylacetyl glutamine because
they were correlated inversely with each other (Fig. 5C). Longitu-
dinal analysis indicated that the phenylacetyl glutamine level was
sustained at high levels in sever patient 5 and in patient 11 who
exhibited significant GI symptoms two months after symptom
onset. In contrast, this metabolite was kept at a steady and normal
level in patient 12 throughout the course of disease and restored to
a normal level in patient 13 after one month following symptom
onset (Fig. 5B).

We also observed elevated levels of uric acid (q ¼ 0.002) in
COVID-19, a uremic toxin playing an important role in several
kidney diseases such as lithiasis, gout nephropathy, and pre-
eclampsia. One third of endogenous uric acid is extrarenally
excreted via the gut lumen, where it undergoes uricolysis by gut
microbiota [44,45]. Increased fecal uric acid was positively associ-
ated with several Bacteroides species (Fig. 5C). Interestingly,
although all COVID-19 patients involved in this study were non-
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drinkers, a significantly higher abundance of ethyl glucuronide in
COVID-19 (q ¼ 0.01), a metabolite of ethanol formed by glucur-
onidation, was observed in the COVID-19 group, which indicates a
higher susceptibility of ethanol toxicity. Recent studies have
demonstrated that certain gut bacteria (such as Klebsiella pneu-
moniae) contribute to endogenous ethanol production and promote
the development of non-alcoholic fatty liver disease [46e48].
Furthermore, gut microbial (such as E. coli and Clostridum sordellii)
b-glucuronidases could hydrolyze ethyl glucuronide, which may
increase the retention of ethanol in the body by enterohepatic
circulation [49]. For patient 11, both ethyl glucuronide and uric acid
climbed sharply on day 35 of disease onset, when the discrimina-
tive proteins IGHV3-64D, CELA3A, ALPI, and PLA2G2A also
dramatically increased (Fig. 5B).

Bile acids are critical for lipid absorption, antibacterial defense
and immune regulation [50]. Gut microbiome mediates the
primary-to-secondary bile acid conversion. Primary bile acids
(chenodeoxycholic acid and muricholic acid), two glycine conju-
gates (glycochenodeoxycholic acid and glycocholic acid), and sec-
ondary bile acids (ursodeoxycholic acid and hyodeoxycholic acid)
were decreased (q < 0.05) in fecal samples from participants with
COVID-19, compared with control samples (Fig. 5A). Furthermore, a
newly discovered conjugated bile acid phenylalanocholic acid [51]
was also decreased in COVID-19. Hyodeoxycholic acid exhibited
significant positive associations with many taxonomic groups
including class Clostridia, order Clostridiales, family Eubacteriaceae,
and genera Butyrivibrio, Dorea, and Eubacterium (Fig. 5C).

3.6. Alerted microbial lipidome profiles

A total of 4,124 lipid features covering 5 lipid categories



Fig. 5. Fecal metabolome alterations in COVID-19 patients. A. Heatmap showing the relative abundance of representative fecal metabolites differentiating between COVID-19 and
controls (Wilcoxon's rank sum test, q < 0.05). B. Abundance and longitudinal changes of phenylacetyl glutamine, salsolinol, uric acid, and ethyl glucuronide. Significance is indicated
by: (Wilcoxon's rank sum test, *q < 0.05, **q < 0.01). C. Correlations of gut microbial and metabolite abundance. Nodes are sized according to the Pearson correlation coefficient
(only correlations with q < 0.05 are shown).
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(sphingolipid, phospholipid, neutral lipid, glycoglycerolipid, fatty
acyl and other lipid subclasses) and 67 lipid subclasses (Table S7)
were identified based on diagnostic fragment ions along with
associated acyl chain fragment information. The most commonly
identified lipid species in the fecal lipidome belonged to the cer-
amide (Cer) subclass with 923 identifications, followed by the tri-
acylglycerol (TG) and monohexosylceramides (Hex1Cer) subclasses
with 467 and 349 identifications, respectively (Fig. 6A). Other
frequently identified lipid species included the diradylglycerol (DG,
265 identifications), phosphatidylcholine (PC, 245), monogalacto-
syldiacylglycerol (MGDG, 174), dihexosylceramide (Hex2Cer, 166),
phosphatidylethanolamine (PE, 154), OAcyl-(gamma-hydroxy)
fatty acid (OAHFA, 135), and sphingomyelin (SM, 122) subclasses.
Among the top 30 identified lipid species, Hex1Cer, SPH, and Cer, all
of which belong to the sphingolipid category, underwent the
greatest amount of change, with 24.9%, 17.2%, 15.9% significantly
increased (q < 0.05) in the COVID-19 group compared to the control
group, whereas only 0.9%, 3.5%, and 3.3% significantly decreased
(q < 0.05) in the same comparison, respectively (Fig. 6A, Table S7).
Within the phospholipid category, the proportions of upregulated
lipids weremuch greater than those of downregulated lipids for the
PC (5.7 vs. 1.6%), PE (9.1 vs. 0.7%), and cardiolipin (CL, 6.4 vs. 0.9%)
species, while the proportions of upregulated lipids were lower
than those of downregulated lipids for lysophosphatidylglycerol
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(LPG, 0 vs. 11.4%), lysophosphatidylserine (LPS, 0 vs. 11.1%), lyso-
phosphatidylethanolamine (LPE, 0 vs. 3.9%), phosphatidylglycerol
(PG, 2.9 vs. 4.9%). Within the neutral lipid category, the proportions
of upregulated lipids were comparable to or lower than those of
downregulated lipids for the DG (2.6 vs. 6.8%) and TG (5.8 vs. 4.5%)
species.

Gut bacterial sphingolipids like Cer, although less well charac-
terized than their mammalian counterparts, are increasingly un-
derstood to play important roles in microbial-host interactions
[52e54]. The sphingoid backbones and attached fatty acyl chains of
bacterial sphingolipids are often odd-chain length, hydroxylated or
methylated, while the sphingoid bases for mammals are predom-
inantly even chained and linear backbones [55]. We found many
Cer lipids downregulated in the COVID-19 group have a C17-
sphingoid base, which probably derived from gut bacteria (based
on the odd number of carbon atoms). Specifically, five C17-Cer
lipids with trihydroxy sphingoid bases, including Cer(t17:0/
17:0þO), Cer(t17:0/23:0þO), Cer(t17:0/24:0þO), Cer (t17:1/16:0),
and Cer (t17:1/23:0þO) were significantly reduced in COVID-19
(q < 0.05), but no C17-Cer lipids with trihydroxy bases were
increased in COVID-19 (Fig. 6B). In addition, a total of 6 Cer lipids
with monohydroxy sphingoid bases, including Cer(m17:1/24:1),
Cer(m17:1/20:0), Cer(m17:1/26:0), Cer(m17:1/15:0þO), and 2
Cer(m17:1/16:0þO) isomers, were significantly reduced in COVID-



Fig. 6. Fecal lipidome alterations in COVID-19 patients. A. Distribution of top 30 lipid subclasses identified in untargeted fecal lipidomics. The bar plots indicate number of all
identified lipids (left y-axis) and the solid line correspond to the proportion of altered lipids (right y-axis) within each subclass. B-E. Heatmap depicting the relative abundance of
differentially expressed lipid subclasses (Wilcoxon's rank sum test, q < 0.05) in COVID-19. Several lipid subclasses exhibited chain-length dependent alterations including ceramide
(Cer) lipids with trihydroxy (B) or monohydroxy (C) sphingoid bases, as well as fatty acyl lipids and neutral lipids (D and F). F. Distribution of chain length and number of double
bonds of upregulated (red dots) and unchanged (black dots) fatty acyl lipids and neutral lipids (no downregulated feature was observed). Degree-of-unsaturation dependent al-
terations were observed in Cer with trihydroxy bases (B) and DG lipids (E). G. Increased frequency of protein modification by lipid peroxidation products 4-hydroxynonenal (HNE)
and 4-oxononenal (ONE). The identifier of features is presented using the format: gene name_peptide sequence (the modification sites are highlighted in red). (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)
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19 (q < 0.05), all of which have a C17-sphingoid base (Fig. 6C).
Unlike C17-Cer species with monohydroxy or trihydroxy sphingoid
bases, C17-Cer species with dihydroxy sphingoid bases did not
shown significant difference in COVID-19. Association analysis of
microbial and lipidomics data revealed that Cer(m17:1/22:1),
Cer(d18:1/23:0þO), Cer(t18:0/22:0), and Cer(t44:3) were associ-
ated with species Bacteroides coprocola, genus Collinsella, class
Fusobacteria, and family Peptostreptococcaceae, respectively
11
(Fig. S2).
The chain-length-dependent alteration was also observed for

fatty acyl lipid (acyl carnitine (AcCa)) and neutral lipid (acylGlcSi-
tosterol, acylGlcStigmasterol, acylGlcCampesterol, (AcHexSiE,
AcHexStE, AcHexZyE, AcHexCmE) subclasses, for which a total of 7
lipids were significantly upregulated in COVID-19 (Fig. 6D). All of
them have a C18 acyl chain regardless of the number of double
bonds (Fig. 6F).
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In addition to chain length, the degree of unsaturation also
influenced the behavior of certain lipid species. Highly unsaturated
Cer lipids with trihydroxy bases carrying 6 or 7 double bonds
(Cer(t40:7) and Cer(t40:6)) were downregulated in COVID-19,
while those upregulated Cer lipids have no more than 3 double
bonds (Fig. 6B). Similarly, many highly unsaturated DG lipids car-
rying 5e8 double bonds, such as DG(29:8), DG(28:7), DG(38:6),
DG(27:5), and DG(32:5) were downregulated in COVID-19, while
those upregulated DG lipids in COVID-19 only have 2 or 3 double
bonds (Fig. 6E).

3.7. Increased lipid peroxidation and disturbed redox homeostasis
in host and microbiome

We also observed proteomics level evidence of altered lipid
features by open database search which allows mining modified
peptides. The increased frequency of protein modification by
reactive lipid peroxidation products 4-hydroxynonenal (HNE) and
4-oxononenal (ONE) suggests oxidative stress in COVID-19 (Fig. 6E).
Indeed, human superoxide dismutase (SOD1), the major antioxi-
dant enzyme for superoxide removal and the first line of defense
against oxidative stress, was significantly downregulated in COVID-
19 (Fig. 2A). Meanwhile, NADH peroxidase, which reduces perox-
ides, of several bacterial species and genera belonging to order
Clostridiales were also down regulated (Fig. 4D). These results
indicate a redox homeostasis disruption for both host and gut
bacteria.

4. Discussion

GI tract is susceptible to SARS-COV-2 infection due to the high
expression of ACE2 receptor. GI symptoms are frequently observed
in patients with COVID-19. Gut's immune responses to SARS-CoV-2
necessitate greater attention because they can alter the commensal
microbiome and the crosstalk between microbiota and extra-
intestinal organ immunity. However, little is known about the
importance of the enteric SARS-CoV-2 for the development of
COVID-19-associated pathologies. Increasing evidence has shown
that COVID-19 can promote cardiovascular disorders such as
myocardial injury, acute coronary syndrome, and thromboembo-
lism [56], neurologic symptoms such as myalgias, encephalopathy,
and dizziness [57], and kidney manifestations such as proteinuria
and dipstick hematuria [58]. A recent study revealed that harmful
metabolites, such as oxalate, were enriched in COVID-19 patients
fecal. Moreover, some metabolites (e.g., sucrose) have the potential
to predict COVID-19 severity [59]. Our study revealed an enrich-
ment of gut bacteria related deleterious metabolites including
phenylacetylglutamine (capable of causing cardiovascular dis-
eases), neurotoxin salsolinol, and uremic toxin uric acid. In addition
to metabolites, we observed a larger number of altered host and
bacterial lipids (predominated by sphingolipids such as ceramide
and hexosylceramide). Sphingolipids produced by gut bacteria can
enter hostmetabolic pathways and impact host ceramide level [40].
Our studymay provide an alternative microbiome-based molecular
mechanism to explain how the gut ecosystemmay play a role in the
development of symptoms in COVID-19 and impact the host
metabolome and lipidome.

The anti-viral response may impose an immunological off-
target effects on gut microbiome in COVID-19 patients. Indeed,
we observed disturbed mucosal immunological defense. The
reduction of host Igs such as IGHV3-73 and IGHV3-64D may
potentially contribute to the enrichment of Bacteroidetes phylum
because of the reduced anti-bacteria Igs. The suppressed expression
of proteins involved in neutrophil degranulation and migration can
also impair the gut anti-bacteria defense system. Furthermore,
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there is an increased risk of colonic mucosal damage and therefore
greater risk of viral and bacterial infection in COVID-19 because of
the increased intestinal protease and glycosylation (indicating po-
tential higher activity) and suppressed mucin glycosylation
(important formucin protection function). Amajor limitation of our
study of is the limited sample size and further larger scale studies
are needed. Nevertheless, our study has demonstrated widely
disturbed gut molecular profiles which may play a role in the
development of symptoms in COVID-19. Considering the gut
ecosystem as a potential target could offer a valuable approach in
managing the disease.

5. Conclusions

Using metaproteomics, metabolomics, glycoproteomics, and
lipidomics, our study has demonstrated widely disturbed gut mo-
lecular profiles and microbial structure in COVID-19 characterized
by disturbed immune, proteolysis and redox homeostasis. Our
findings suggest that considering the gut ecosystem as a potential
target could offer a valuable approach in managing the disease.
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HILIC hydrophilic interaction liquid chromatography
HNE hydroxynonenal
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IGHV3-64D immunoglobulin heavy variable 3-64D
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IGLL1 Ig lambda-like polypeptide 1
IECs intestinal epithelial cells
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PaO2 partial pressure of oxygen
PE phosphatidylethanolamine
PCA principal component analysis
PLA2G2A phospholipase A2
PTMs post-translational modifications
PC phosphatidylcholine
PG phosphatidylglycerol
QC quality control
RT-PCR reverse transcription polymerase chain reaction
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
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SOD1 superoxide dismutase
sGPFs staggered gas-phase fractionations
TCEP tris(2-carboxyethyl)phosphine
TFA trifluoroacetic acid
TMPRSS2 transmembrane serine protease 2
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TG triacylglycerol
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