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Abstract

on-target predictive performance.

Background: One of the main challenges for the CRISPR-Cas9 system is selecting optimal single-guide RNAs
(sgRNAs). Recently, deep learning has enhanced sgRNA prediction in eukaryotes. However, the prokaryotic chromatin
structure is different from eukaryotes, so models trained on eukaryotes may not apply to prokaryotes.

Results: We designed and implemented a convolutional neural network to predict sgRNA activity in Escherichia coli.
The network was trained and tested on the recently-released sgRNA activity dataset. Our convolutional neural
network achieved excellent performance, yielding average Spearman correlation coefficients of 0.5817,0.7105, and
0.3602, respectively for Cas9, eSpCas9 and Cas9 with a recA coding region deletion. We confirmed that the sgRNA
prediction models trained on prokaryotes do not apply to eukaryotes and vice versa. We adopted perturbation-based
approaches to analyze distinct biological patterns between prokaryotic and eukaryotic editing. Then, we improved
the predictive performance of the prokaryotic Cas9 system by transfer learning. Finally, we determined that potential
off-target scores accumulated on a genome-wide scale affect on-target activity, which could slightly improve

Conclusions: We developed convolutional neural networks to predict sgRNA activity for wild type and mutant Cas9
in prokaryotes. Our results show that the prediction accuracy of our method is improved over state-of-the-art models.
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Background

Gene editing allows modification of the genome and tran-
scription products on target sites. The CRISPR-Cas9 sys-
tem is a bacterial adaptive immune system, which includes
CRISPR-associated nuclease Cas9 (SpCas9), a specificity-
determining CRISPR RNA (crRNA), and an auxiliary
trans-activating RNA (tracrRNA) [1-3]. The crRNA and
tracrRNA duplexes can be fused to generate a chimeric
single-guide RNA (sgRNA), which targets the complex
to a 3NGG-flanked genomic region [4—6] protospacer
adjacent motif (PAM) via ~20 nucleotide Watson-Crick
base pairing [7]. During DNA double-stranded break
(DSB) induction and subsequent nonhomologous end
joining (NHE]) DNA damage repair, specific genomic
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fragments can be inserted, deleted or replaced. There-
fore, the system can be reprogrammed by changing the
sgRNA sequence for site-specific editing [2, 8, 9], allow-
ing investigation of gene function [10, 11], gene expression
[12, 13], genetic interactions [14, 15], and the relation-
ships between genetic variations and phenotypes [16, 17].
Moreover, CRISPR-Cas9 has been applied to clinical tri-
als, editing and remodeling harmful genes for personal-
ized therapy [18, 19].

CRISPR-Cas9 using a specific sgRNA can precisely edit
the target site (i.e. on-target editing), though it may bind
and edit at other additional sites (i.e. off-target editing).
Off-target effects are undesired and should be minimized.
Moreover, widely varying sgRNA on-target activity lim-
its further application of CRISPR-Cas9 gene editing [20—
22]. Poor sgRNA activity results in a high false-positive
rate during genome editing, which allows many wild-type
cells to survive [23]. Thus, designing criteria to maxi-
mize sgRNA efficacy is necessary to improve success and
reproducibility. Various sgRNA design rules and tools
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have been developed for sgRNA on-target efficacy clas-
sification and regression in eukaryotes. Some learning-
based methods have achieved better performance, such
as sgRNA Designer [22], SSC [24], sgRNA Score [25, 26],
CRISPRscan [27], TSAM [28] and DeepCRISPR [29].

Some studies indicate that the CRISPR-Cas9 system is
affected by chromatin structures in eukaryotic cells. Chro-
matin openness and CRISPR-Cas9 mutagenesis efficiency
are correlated, indicating that CRISPR-Cas9 mutagene-
sis is influenced by chromatin accessibility in zebrafish
embryos [30]. Mapping genome-wide binding sites of a
catalytically-inactive Cas9 (dCas9) in mouse embryonic
stem cells (mESCs) demonstrated that chromatin inac-
cessibility prevents dCas9 binding to target sites [31].
When the DNA target is within a nucleosome, strong Cas9
cleavage inhibition occurs in yeast cells, which is relieved
when nucleosomes are depleted [32, 33]. The prokary-
otic genome is occupied by nucleoid-associated proteins
[34] and transcription factor binding [35], but lacks com-
plex chromatin structures [36]. However, there are inac-
tive sgRNAs during genome editing in prokaryotic cells
[37-40], so optimizing sgRNA activity is also necessary
for prokaryotes. Meanwhile, sgRNA activity prediction
models trained on eukaryotes do not apply to prokary-
otes [23, 40]. Guo et al. [23] found a very weak correlation
between prokaryotic datasets and predictions from two
eukaryotic machine learning models (Doench et al. [22]
and Xu et al. [24]) and a notable but weak negative cor-
relation with biophysical model predictions (Farasat et al.
[41]). Cui and Bikard used the model from Doench et al.
[21] and observed very poor predictions for the activity of
13 targets in E. coli [40]. A gradient-boosting regression
tree (GBR) has been used to predict sgRNA activity for
prokaryotes [23]. Although the GBR model was predic-
tive, modest Spearman correlation coefficients of 0.542,
0.682 and 0.328 for Cas9, eSpCas9 and Cas9, respec-
tively (ArecA) [23], indicates a large space for performance
improvement.

Recently, a deep-learning framework, DeepCRISPR
[29], was presented to predict on-target knockout efficacy
and whole-genome off-target cleavage with better per-
formance than available state-of-the-art tools. Moreover,
Kim et al. [42] and Xue et al. [43] used a deep-learning
framework based on one convolution layer, DeepCas9,
to predict sgRNA activity in human cells. Lin and Wong
designed deep convolutional and deep feedforward neu-
ral networks to predict off-target mutations for eukary-
otic CRISPR-Cas9 gene editing, simultaneously demon-
strating improvements over available state-of-the-art off-
target prediction methods and traditional machine learn-
ing models including random forest, gradient boosting
tree, and logistic regression [44]. However, sgRNA activ-
ity prediction models trained on eukaryotes are almost
invalid for prokaryotes.
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In this study, we developed a convolutional neural net-
work with five convolution layers to predict sgRNA activ-
ity in prokaryotes. We created a sgRNA activity predictor
for wild type and mutant Cas9 in prokaryotes, surpass-
ing available state-of-the-art models. We confirmed that
sgRNA activity prediction models trained on prokary-
otes are not appropriate for eukaryotes. Then, we trained
our convolutional neural network with eukaryotic data,
similarly surpassing available state-of-the-art eukaryotic
models. We next adopted perturbation-based approaches
to analyze biological patterns between prokaryotic and
eukaryotic editing. Then, we improved predictive perfor-
mance of prokaryotic Cas9 by transfer learning. Finally,
we observed that genome-wide potential off-target effects
influence on-target activity, and utilized genome-wide
accumulative potential off-target scores and sgRNA guide
sequence fold scores to further improve predictive perfor-
mance.

Results

Comparison and selection of models

We used a bacterial dataset (Set 1) with good signal-to-
noise ratio and low bias, including Cas9, eSpCas9, and
Cas9 (ArecA). We removed redundancy in Set 1 with simi-
larity threshold 0.8, which established another dataset (Set
2, see Table 1). To evaluate the performance of our mod-
els, we compared the predictive results with several other
hot spot prediction methods [29, 42, 44] based on other
network architectures.

We used 5-fold cross-validation to select and compare
these architectures (Table 2, and more detailed tables in
Additional file 1: Table S1). Our CNN_5layers (see Meth-
ods and Fig. 1) improve prediction accuracy over others,
which achieved average Spearman correlation coefficients
0.5817 (0.5787), 0.7105 (0.7063), and 0.3602 (0.3577) for
Cas9, eSpCas9, and Cas9 (ArecA), respectively, in Set 1
(Table 2), under 5-fold cross-validation. Compared with
Table 2, Additional file 2: Figure S1 contains more infor-
mation and demonstrates the reliability of the results
and significant increases in a more visual way. We used
a Steiger test for statistical significance testing between
DeepCas9 (next-best model) and CNN_5layers. The p-
values were 2.4e -12, 5.8¢ -7 and 5.7e -4, for Cas9,

Table 1 Number of samples and range of on-target activity
value in Set 1 and Set 2

o Cas9 eSpCas9 Cas9 (ArecA)
Descriptions
Set 1 Set 2 Set 1 Set 2 Set 1 Set 2
Size 44163 40,605 45,071 41426 48,112 43950
Min 0.0016  0.0016 0.0007 0.0007 0.0080 0.0080
Max 483807 483807 45.1725 451725 220268 22.0268
Mean 246415 246381 169593 169825 124479 124518
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Table2.Ave.rage Spearman correlation Foefﬁcients under 5-fold eSpCas9, and Cas9 (ArecA), respectively, in Set 1. The
cross-validation for several network architectures p-values in Set 2 were similar to those in Set 1. We
Cas9 eSpCas9 Cas9 (ArecA) found that the performance of simple CNN_2layers (see
Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Methods and Additional file 3), a CNN architecture with
DeepCRISPR 05149 05139 06617 06631 03108 03049 two convolution layers, improved prediction accuracy
CNN__Lin 05217 05214 06665 06685 03176 03144 than those of traditional machine learning algorithms for
Set 1 (Gradient Boosting Regression tree: 0.542, 0.682
and 0.328, Additional file 1: Table S1). However, Deep-
CNN_5layers 05817 05787 07105 0.7063 03602 03577 CRISPR [29] and CNN_Lin [44] perform poorly because

of over- and under-fitting when comparing the training

and test loss curves (data not shown). By comparing per-

formance between CNN_Lin [44] and DeepCas9 [42],

Networks

DeepCas9 05554 05517 06951 06881 03400 0.3362
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Fig. 1 Components of constructed convolution layers and overall CNN_5layers construction. a The picture on the top shows details of the
constructed convolution layer, which contains a convolution operation, a batch normalization and a leaky rectified linear unit in turn. The
convolution kernel size is 3x 1 and the output channel is 120. The simplified diagram is on the bottom. b The picture shows the overall CNN_5layers
schema, including five convolution layers, five maximum pooling layers, and two fully-connected layers. All activation functions in CNN_5layers
were LeakyRelU. One dropout layer which drops 30 percent was performed after each pooling operation and the first fully-connected layer
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which have similar network architectures (only one multi-
scale convolution layer) and different input size (23 nt
and 30 nt respectively), we concluded that target DNA
flanking sequences affect sgRNA on-target activity. Our
CNN_5layers is more robust, which could largely prevent
over-fitting for Cas9 and eSpCas9 (Additional file 2: Figure
S1), possibly due to composite application of batch nor-
malization and dropout. Thus, our CNN_5layers network
had improved predictive performance. The performance
in Set 2 were slightly weak, due to the smaller training
sample size. We therefore used Set 1 for the following
research.

Invalidity cross domains

Eukaryotic sgRNA activity prediction models are almost
invalid for prokaryotes [23, 40]. We used eleven inde-
pendent eukaryotic datasets to study the validity of our
prokaryotic-trained models (Additional file 1: Table S2).
Only predictions from the eSpCas9 model were statisti-
cally significant (p-value < 0.05). All Spearman correla-
tion coefficients are less than 0.11. Among prokaryotes,
we used the eSpCas9 model to predict Cas9 activity, with a
Spearman correlation coefficient of 0.5822. These results
from these two different results demonstrate our model is
valid within domains, but not valid between domains.

CNN_5layers also better in eukaryotes

We trained CNN_5layers with eukaryotic data, which
produced a eukaryotic model. Then, we compared our
eukaryotic model with other models including Deep-
CRISPR [29], DeepCas9 [43] and TSAM [28]. To ensure
valid comparisons, overlapping test samples relative to
respective training sets were removed from eleven inde-
pendent eukaryotic test sets (see Methods and Addi-
tional file 4). Similar to the prokaryotic models, Deep-
CRISPR [29] performed poorly (Additional file 1: Table
S2). However, for nine of eleven test sets, our eukary-
otic CNN_5layers model outperformed other models
(Table 3). In short, our CNN_5layers network can be
generalized to other eukaryotic species.

Analyzing melting temperatures and RNA fold scores

We next calculated target sequence melting tempera-
tures T(1_7), T(8_15), T(16_20), T(1_20), T(-5_-1) and
T(21_+2) (see Methods). The Spearman correlation coef-
ficients between on-target activity and melting temper-
atures (Table 4) are all statistically significant (p-values
€(3e -203, 0.05), Additional file 1: Table S3), except for
the feature T(1_7) in Cas9 (ArecA) scenario. The melting
temperatures are listed in Additional file 5. We found that
T(1_20) is the most important feature, consistent with
previous results utilizing relative feature importance (Gini
importance) [23]. However, we observed that the second
most important feature is T(16_20) for Cas9 and T(8_15)
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Table 3 Comparison of Spearman correlation coefficients
between eukaryotic sgRNA activity and eukaryotic model
predictions

Independent test datasets Size  DeepCas9 TSAM_U6 CNN_5layers

chari2015Train293T 1234 — 03812 0.3607
doench2014HsA375 1276 0.3237 0.3187 0.3369
doench2016 2333 03527 0.3439 0.3945
hart2016-GbmAvg 4272 03795 04242 0.4404
hart2016-Hct1162lib1Avg 4239  0.3679 04161 0.4288
hart2016-Hct1162lib2Avg 3617 03196 0.3598 0.3829
hart2016-Helalib1Avg 4256 0.3403 0.3879 04033
hart2016-HelalLib2Avg 3845 03617 0.3942 0.4390
hart2016-RpelAvg 4214 0.2519 0.3094 0.3044
wang2015hg19 2921 02030 0.1882 0.2291
xu2015TrainMEsc 981 03668 0.4088 04111

The DeepCas9 training set contains all chari2015Train293T samples

for eSpCas9. This result is also consistent with previous
study results [23]. We used the six melting temperatures
(combination t in Table 5) to predict on-target activity
by simple linear regression. The average Spearman corre-
lation coefficient between predictive value and on-target
activity is 0.1777 (0.1604) for Cas9 (eSpCas9) in Table 6.
The Spearman correlation coefficient of combination t is
significantly different than feature t1, t2, t3, t4, t5, or t6.
In addition, we used four physicochemical properties:
minimum free energy (MFE), free energy of the thermody-
namic ensemble (FETE), frequency of the minimum free

Table 4 The Spearman correlation coefficients between
on-target activity and six melting temperatures, four RNA fold
scores, and four POSs

Abbreviations Features Cas9 eSpCas9 Cas9 (ArecA)
t1 T(1_7) -0.0302 -0.0322 —

t2 T(8_15) -0.0915 -0.1304 -0.0579
t3 T(16_20) -0.1424 -0.0695 -0.0789
t4 T(1_20) -0.1439 -0.1346 -0.0762
t5 T(-5_-1) 0.0239 0.0385 0.0332
t6 T21_42) 0.0098 0.0107 0.0119
fl MFE 0.0944 0.0895 0.0601
2 FETE 0.0862 0.0832 0.0517
f3 FMSE -0.0246 -0.0276 -0.0323
f4 ED 0.0166 0.0225 0.0286
p1 Cropit_POS -0.1083 -0.0998 -0.0527
p2 Cctop_POS -0.1088 -0.1003 -0.0518
p3 Mit_POS -0.1130 -0.1073 -0.0607
p4 Cfd_POS -0.1131 -0.0985 -0.0579

T(1_7) in Cas9 (ArecA) scenario is not statistically significant
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Table 5 Descriptions of several feature combinations

Combinations Descriptions

t t1,12,13, 14,15, 6

¢ 11,12, 13,14, 15,16, C

tp 11,12, 13, t4, 15,16, p1, p2, p3, p4

t_p_cC 11,12,13,t4, 15,16, p1, p2, p3, p4, C

t_p_f t1,12, 13,14, 15,16, p1, p2, p3, p4, f1, 2, 13, f4
tp_fc t1,12,13, 14,15, 16, p1, p2, p3, p4, f1,12,13,f4, ¢
tf t1,12,13, 14,15, t6, 1,12, f3, f4

tfc 1,12, 13, 14,15, 16, f1,12,f3,f4,

p p1,p2,p3, p4

p_c pl,p2,p3,p4.c

p_f pl1, p2, p3, p4,f1,12,3,f4

p_f c pl1,p2, p3, p4,f1,12,3,f4,c

f 1,12, 13,4

C CNN_5layers output

energy structure in the ensemble (FMSE), and ensemble
diversity (ED) to characterize the secondary structure of
20 nt-long guide RNAs using ViennaRNA [45] (see Meth-
ods). Among the four physicochemical properties, MFE is
the most characteristic property (Table 4). We also used
four RNA fold scores as features (combination f in Table 5)
to predict on-target activity by simple linear regression.
We found that the average Spearman correlation coeffi-
cient between the prediction and the true on-target activ-
ity is 0.0956 (0.0940) for Cas9 (eSpCas9) in Table 6, which
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achieves higher correlation coefficients than feature f1, £2,
f3, and f4.

Interpreting the learned model and transfer learning

To understand invalidity across domains, we interpreted
the trained CNN models and analyzed the learned biolog-
ical features with perturbation-based approaches [46—48].
Figure 2 represents the base preference of high on-target
activity at 41 positions in prokaryotic Cas9, prokaryotic
eSpCas9, and a eukaryotic scenario.

Region I of the three scenarios shows extreme base
preference and Region II takes second place (Fig. 2). We
found enhanced base preference at position 20 in the three
scenarios. In Region I, prokaryotic Cas9 and prokaryotic
eSpCas9 favored T and A for high on-target activity, but
positions 17 and 19 were two exceptions. In the eukaryotic
scenario, preference in Region I showed a totally differ-
ent pattern, where high on-target activity disfavored T
and other base preferences represented a more complex
landscape. In Region II, prokaryotic Cas9 and prokaryotic
eSpCas9 base preferences changed smoothly, but shook
at positions 10 and 15. In the eukaryotic scenario, high
on-target activity favored A in Region II, while the T and
G preferences changed at positions 14 and 15. In Region
III, the eSpCas9 base preferences are more informative
than Cas9, especially at position 1, where high on-target
activity favored G and A and disfavored C. In upstream
sites, high on-target activity favored G and C in the two
prokaryotic scenarios, but they favored C and T in the
eukaryotic scenario. In downstream sites, the preferences
were reversed twice at positions +2 and +6 in all three

Table 6 Average performances in training set and test set under 5-fold cross-validation for fifteen feature combinations by Linear

Regression
Combinations Cas9 eSpCas9 Cas9 (ArecA)

training set test set training set test set training set test set
t 0.1782 01777 0.1604 0.1604 0.1070 0.1056
p 01217 0.1207 01121 0.1121 0.0630 0.0604
f 0.0962 0.0956 0.0947 0.0940 0.0674 0.0667
p 0.1931 0.1917 01772 0.1759 0.1157 0.1130
tf 0.1888 0.1880 0.1740 0.1724 0.1191 0.1174
p_f 0.1480 0.1467 0.1408 0.1399 0.0864 0.0837
t_p_f 0.2026 0.2010 0.1892 0.1875 0.1258 0.1228
C 0.6631 0.5817 0.8060 0.7105 04765 0.3602
tc 0.6631 0.5813 0.8064 0.7112 04747 03574
p_c 0.6636 0.5827 0.8068 0.7122 04768 0.3601
fc 0.6650 0.5851 0.8077 0.7137 04773 0.3639
t_p_C 0.6637 0.5824 0.8072 0.7125 04753 0.3579
tfc 0.6655 0.5848 0.8085 0.7142 04753 0.3619
p_f_c 0.6656 0.5861 0.8085 0.7149 04775 0.3640
t_p_fc 0.6663 0.5860 0.8092 0.7155 04758 0.3624
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Fig. 2 Base performance at 41 positions. The figure shows base preference of high on-target activity at 41 positions in a prokaryotic Cas9, b

prokaryotic eSpCas9, and ¢ eukaryotic scenarios

scenarios. In addition, G was favored at position 21 and
disfavored at position +1 in all three scenarios. Overall,
two prokaryotic scenarios have the similar base prefer-
ences at 41 positions and they are different from the
eukaryotic scenario.

We calculated importance scores by calculating the
absolute values of four differences at each position. The
normalized cumulative value of 41 points on each curve
is shown in Fig. 3. The importance in downstream
sequences was higher than upstream sequences. Torsional
DNA constraints in flanking regions affect local target
DNA strand shape, appropriate topological spatial confor-
mation, and Cas9 cleavage complex binding to target DNA
sites [41, 49]. Kim and co-workers suggested that 50 nt tar-
get sequence inputs performed better than 24, 27, and 34
nt-long inputs [42].

The predictive performance in prokaryotic eSpCas9
scenario is more accurate than prokaryotic Cas9 and
eukaryotic scenarios. According to the ideology of transfer
learning [50] and to improve performance, we fine-tuned

the whole prokaryotic Cas9 model and eukaryotic model,
which were both initialized with prokaryotic eSpCas9
model parameters. First, we rigorously removed overlap-
ping samples. We found that the predictive performance
for the prokaryotic Cas9 model was improved, but that
the predictive performance of the eukaryotic model was
not. Additional file 6: Figure S2 shows the prokaryotic
Cas9 real-time average Spearman correlation coefficient
changes under the same 5-fold cross-validation in the
raw and transfer learning scenarios. The average Spear-
man correlation coefficients were improved from 0.5817
to 0.6279. Notably, the predictive correlation coefficient
was 0.5822 using the eSpCas9 model within domains,
suggesting fine-tuning is necessary.

Potential off-target effects on on-target activity

To study potential off-target effects on sgRNA on-target
activity, we calculated potential off-target scores (POS)
for every sgRNA. Cropit_POS, Cctop_POS, Mit_POS,
and Cfd_POS were potential off-target scores calculated
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Fig. 3 Importance scores at 41 positions. The figure shows the importance scores at 41 positions in prokaryotic Cas9, prokaryotic eSpCas9, and
eukaryotic scenario. The normalized cumulative value of 41 points on each curve is one

by CROP-IT [51], CCTop [52], MITScore [20, 53], and
CFDScore [22], respectively (see Methods and Fig. 4). It
was reported that T(1_7), T(8_15), T(16_20) and T(1_20)
were the top 4 scores [23] in all manually-extracted fea-
tures, including position-independent features, position-
specific features, PAM, GC content, and dinucleotide fea-
tures. In comparison with melting temperatures, potential
off-target scores are also important features for Cas9,
eSpCas9, and Cas9 (ArecA). We found that all Spear-
man correlation coefficients between the four POSs and
sgRNA activity for eSpCas9 were lower than for Cas9
(Table 4), which could result from improved eSpCas9
specificity [54]. Comparing the four off-target predictors,
MITScore [20, 53] seemed to be the most predictive.
We used only four POSs as features (combination p in
Table 5) to predict on-target activity by simple linear
regression. The average Spearman correlation coefficient
between predictive value and on-target activity was 0.1207
(0.1121) for Cas9 (eSpCas9) in Table 6. The Spearman cor-
relation coefficient of combination p is also higher than
pl, p2, p3, and p4, indicating that off-target potential-
ity affects on-target activity in the CRISPR-Cas9 system.
Indeed, off-target activity and on-target activity inter-
act with each other, and seems to be interpreted by
molecular dynamics. If these off-target predictors can
be further optimized, a higher degree of correlation is
likely.

Further performance improvement with additional
features

Potential off-target scores involved genome-wide off-
target alignments and evaluations, which could not be

extracted from sgRNA and local target DNA sequences.
Given that potential off-target scores are important extra
features, we integrated CNN_5layers output and POSs
to further improve predictive performance. Besides the
POSs, we considered six melting temperatures and four
RNA fold scores, including T(1_7), T(8_15), T(16_20),
T(1_20), T(-5_-1), T(21_+2), MFE, FETE, EMSE, and ED.
We tested several feature combinations. The feature com-
binations are described in Table 5. For CNN_5layers,
the average test Spearman correlation coefficients are
shown in Tables 2 and 6 (combination c). The train-
ing set correlations are shown in Table 6 (combination
c). We used simple linear regression, regularized lin-
ear regression (L1LR and L2LR), support vector regres-
sion (SVR), and gradient boosting regression tree (GBR)
with various parameters selection as predictor models.
Under each cross-validation, we input previously-trained
CNN_5layers output as new features (Fig. 4). We observed
improved CNN_5layers predictions using the simple lin-
ear regression method (Table 6). Through internal com-
parisons (Table 4) and cross-comparisons between Table 4
and the top half of Table 6, we found that recipro-
cally combining POSs features, melting temperatures, and
RNA fold scores achieved higher correlation coefficients.
Regarding the bottom half of Table 6, adding POSs fea-
tures, melting temperatures, or RNA fold scores to the
CNN_5layers output (t_c, p_c, £ c) improved predictive
performance in the training and test sets for Cas9 and
eSpCas9. However, for Cas9 (ArecA), only RNA fold
scores (f_c) improved performance. In all three scenar-
ios, melting temperatures did not greatly improve per-
formance, indicating that CNN_5layers is more able to




Wang and Zhang BMC Bioinformatics (2019) 20:517

Page 8 of 14

43 nt-long DNA sequence

l_mm
i|—=|||

Untrained CNN_5layers

Fixed

T v

Test set B
o | L 4
Training set = ne p4
T Vitad @ p3
— o
Test set t»‘,E I Q pi
(o] ml@ p
: I CrUplt -EP- -. f4
Training set

On-target site
(SgRNA)

43 nt-long DNA sequence

Trained CNN_5layers

-

Fig. 4 Flow chart of training CNN_5layers and further improving predictive performance under 5-fold cross-validation. The datasets were randomly
and equally separated into five subgroups, and alternately four subgroups were used as the training set to train the models. The remaining
subgroup was used to test the generalization capacity of the trained models. We combined trained CNN_5layers output with extra features to
continue training simple linear regression models. Finally, the remaining subgroup was again used to test improved performances

learn melting temperature features than RNA fold score
features. Additionally, melting temperature features were
extracted more easily (Additional file 1: Table S4). Collec-
tively, we observed that the combination of POSs, RNA
fold scores, and CNN_5layers output (p_f c) achieved
better predictive performance.

Discussion

We compared our CNN_5layers with other published
networks, such as CNN_Lin [44], DeepCas9 [42] and
DeepCRISPR [29]. These models show different per-
formance, indicating the need to analyze the cause
of the differences. First, the number of parameters of
CNN_Lin [44], DeepCas9 [42], and DeepCRISPR [29]
are ~22,000, ~232,000, and ~3,025,000 respectively. Our
CNN_5layers has ~190,000 parameters. Second, compar-
ing DeepCas9 [42] with CNN_5layers, we found the num-
ber of parameters is roughly similar. However, DeepCas9
has three fully-connected layers with ~223,000 parame-
ters (proportion ~96%). The proportion in CNN_5layers
is only ~7%, and batch normalization is used in our
fully-connected layers. And another point is that our

CNN_5layers addresses a larger sample space (43 nt-long
input) than DeepCas9 (30 nt-long input). For DeepCas9,
such large-scale, three fully-connected layers without
batch normalization can fit many functions, but a few
losses can propagate back to the convolution layers. The
main advantage of CNN is abstracting features by convo-
lution. Lin et al. [44] seemed to understand this situation,
so they used a maximum pooling layer with a window
size of 5x1 and stride 5 to downsize the fully-connected
layer in their CNN_Lin. However, this down-sampling
is not suitable for 23x1 size feature maps. Chuai et al.
[29] used a fully convolutional network (FCN) without
fully-connected layers. DeepCRISPR [29] has hundreds of
channels, which can lead to severe over-fitting (Additional
file 2: Figure S1). Third, target site flanking regions have
heavily favored and unfavored nucleotides, especially in
the downstream region. The DeepCas9 30 nt target DNA
input size [42] (NaNyoNGGN3) is so small that impor-
tant feature information is omitted. As shown in Fig. 2,
the region from +4 to 410 contains abundant preference
information. Therefore, well-behaved network architec-
tures need to be carefully and elaborately designed. We
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built several CNN architectures with multiple convolution
layers and different scales of fully-connected layers (Addi-
tional file 3, Additional file 1: Table S1). CNN_2layers
and CNN_3layers with large-scale fully-connected lay-
ers have relatively weak generalization ability, indicat-
ing that the number of convolution layers, channel size,
and fully-connected layer scale should be adjusted and
balanced carefully. Finally, we used our CNN_5layers
architecture to predict sgRNA activity, surpassing avail-
able state-of-the-art models in both prokaryotes and
eukaryotes.

Genome-wide potential off-target effects influence on-
target activity and utilized genome-wide accumulative
potential off-target scores to further improve predic-
tive performance for Cas9, eSpCas9 and Cas9 (ArecA).
However, the performance improvements are very small.
Multi-modal network architectures have been widely
reported, so we attempted to make POSs a CNN input
by adding them as an input channel or concatenat-
ing them into flattened fully-connected layers. However,
fluctuations in predictive performance made it difficult
to determine exactly whether performance improved.
Our two-step training method shows improved per-
formance. The main advantage of CNN is abstract-
ing features layer by layer [55]. We adopted batch
normalization and down-sampling to avoid over-fitting
in the training set, which allowed the training set
to be reused to train other models with additional
features.

Next, we used perturbation-based approaches to ana-
lyze single-base preference at certain positions. We also
analyzed dinucleotide, trinucleotide, and more complex
biological pattern preference. We believe that our CNN
could learn RNA folding features. However, it seems diffi-
cult to interpret long-range interactions that CNN learns.
In the future, we will consider a more powerful model [47,
48, 56, 57] to improve long-range interaction prediction.
It is unclear which biological factors cause different pat-
terns between prokaryotic and eukaryotic editing. Many
factors have effects on gene editing activity, such as guide
sequence folding, off-target effects, chromatin structure,
simple cutting activity, and double strand break (DSB)
repair. For example, dense chromatin structures could
introduce noise in data from eukaryotic cells [30, 32, 33].
Bacteria mainly rely on homologous recombination (HR)
with sister chromosomes to repair DSBs [40], instead of
nonhomologous end joining (NHE]). Our prokaryotic on-
target activity is calculated by cell toxicity induced by
DSB. Eukaryotic on-target activity is based on toxicity or
base indels. Different DSB end configurations are impor-
tant for eukaryotic NHE] efficiency [58]. Guo et al. [23]
posits that NHE] can also introduce noise in eukary-
otic cell data. In most cases, the cutting site is between
positions 17 and 18. We found position preference
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from 15 to 20 nt was different between prokaryotic
and eukaryotic scenarios than other positions (Fig. 2).
These differences may result from joining efficiency and
NHE] preference. Several other biological factors con-
tribute to the different patterns between prokaryotic
and eukaryotic editing, such as conformation changes
and internal solvation kinetics of the Cas9 protein. The
cause of these differences will be investigated in future
studies.

CROP-IT [51], CCTop [52], MITScore [20, 53], and
CFDScore [22] were used to calculate POSs for every
sgRNA. These packages can still be improved. In living
cells, off-target and on-target activity influence each other.
Thus, it is possible that on-target and off-target prediction
models will be optimized together.

Conclusion

We conclude that deep neural networks can improve
the predictive performance of sgRNA on-target activ-
ity in prokaryotes. By increasing the number of net-
work convolution layers and target DNA sequence input
size, we developed a CNN with five convolution lay-
ers to predict sgRNA activity. Our network outper-
formed state-of-the-art traditional machine learning algo-
rithms and other CNN models. We confirmed that
sgRNA activity prediction models trained on prokary-
otes not appropriate for eukaryotes. We trained our
CNN_5layers network based eukaryotic data, similarly
surpassing available state-of-the-art eukaryotic models.
Thus, our CNN_5layers network has certain generaliza-
tion ability and has improved performance in eukary-
otes. We used perturbation-based approaches to ana-
lyze different biological patterns between prokaryotic and
eukaryotic editing. Then, we improved the predictive
performance of prokaryotic Cas9 by transfer learning.
Finally, we confirmed that genome-wide potential off-
target effects and sgRNA guide sequence folding have
effects on on-target activity. We also used genome-
wide accumulative potential off-target scores and RNA
fold scores to further improve predictive performance.
We believe that our algorithm can also be applied to
eukaryotes.

Methods

Benchmark datasets

The main datasets that we used in training and testing
were from ~70,000 sgRNA activity maps, which were
systematically profiled by co-expressing a genome-scale
library with a pooled screening strategy in Escherichia
coli. The high-quality datasets were established for Cas9
(Streptococcus pyogenes), eSpCas9, and Cas9 (ArecA).
The eSpCas9 is a reengineered Cas9 derivative with
improved specificity, containing K810A, K1003A, and
R1060A mutations [54]. Cas9 (ArecA) was developed in
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Escherichia coli by knockout of recA blocking DSBs repair.
Three datasets included 44,163, 45,070, and 48,112 sgR-
NAs, respectively [23].

Extending sequences

We mapped these 20 nt sgRNA guide sequences to
the Escherichia coli reference genome (K12 MG1655,
NC000913.3), ensuring that target regions were flanked
by a 3’NGG PAM site. Then, we extended the target DNA
sequences to 43 nt, namely N1gNagNGGNio (N represents
any nucleotide, and the first and last 10 nt are the extended
portions). There were several reasons for these exten-
sions: (1) some studies indicate that sequences upstream
and downstream of sgRNA target sites have favored and
unfavored nucleotides in human and mouse cells [21, 24],
especially enrichment or depletion in flanking regions
in Ciona cells [59]; (2) the deep learning algorithm has
unique advantages in automatic feature extraction with
noise interference [60—62]; (3) it is possible that occupa-
tion by nucleoid-associated proteins, transcription factor
binding, and torsional constraints in flanking regions ster-
ically hinder Cas9 cleavage complex binding and local
DNA strand movement to appropriate conformations
[41, 49]. Deep learning algorithms will detect these hid-
den factors. We found three 20 nt guide sequences
mapped multiple times to reference genome. Never-
theless, we retained these ambiguous mapping samples
to prevent changing sample distribution for compar-
isons with previous algorithms. After sequence extension,
we established three datasets (Set 1; see Table 1 and
Additional file 7).

Removing redundancy

There were no overlapping samples within any dataset.
However, we routinely reduced sequence redundancy
using CD-HIT [63, 64]. Removing highly similar
sequences can reduce natural sample-biased effects and
make models more robust, especially when similar sam-
ples occur between training and test datasets, causing
an illusion of good performance. We found that some
sgRNAs target adjacent DNA sites in Set 1. For pooled
screening, these adjacent samples could have mutual
interference, resulting in low-quality data. Therefore,
we used CD-HIT to remove redundancy in Set 1 with
similarity threshold 0.8, which established dataset Set
2, also including Cas9, eSpCas9 and Cas9 (ArecA)
(Table 1).

Model establishing

For model inputs, we converted 43 nt-long DNA
sequences into one hot code representation. Each position
had a four-element vector with one component set to one
and the others set to zero. Each sample was represented as
a 4x43x1 three-dimensional matrix, where 4 represents
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four channels. The model output is a value which predicts
on-target activity.

To achieve the desired performance, we adopted
advanced algorithms such as batch normalization and
a leaky rectified linear unit (LeakyReLU). Batch nor-
malization (BN) addresses the internal covariate shift.
This method normalizes each training mini-batch, allows
much higher learning rates, and makes model more easily
initiated [65]. The ReLU was proposed for deep learn-
ing in 2015 [66], since it is more biologically plausible,
and can act as the activation function for hidden units.
Nevertheless, the ReLU cannot learn via gradient-based
methods when activation values are zero. In this study,
we used a LeakyReLU, which allows a small gradient
when the unit is not activated. Some studies demonstrated
that LeakyReLU is a better activation function, and may
replace traditional activation functions [67, 68]. There-
fore, we constructed convolution layers with a convolu-
tion operation, batch normalization, and a leaky rectified
linear unit (Fig. 1a).

In this study, we found that factors that affecting model
performance include the number of convolution layers,
channel size, and scale of fully-connected layers. There-
fore, we utilized convolution layers with a n x 3x1
and stride 1 convolution kernel size, a maximum pool-
ing layer with 2x1 and stride 2 window size, and two
fully-connected layers to build CNNs with various convo-
lution layers and multiple scales of fully-connected layers
(Additional file 3). Finally, we trained and tested these net-
works for model selection and discussed the merits and
disadvantages of network architectures in the discussion
section.

Other models for comparison

We compared our algorithms with three recently pub-
lished prediction algorithms based on deep learning. The
first network architecture is DeepCRISPR [29], which
is a fully convolutional neural network (FCN) and pre-
dicts on-target knockout efficacy in eukaryotic cells with
better performance than the available state-of-the-art
tools. The second network architecture was meticulously
designed as an off-target predictive classifier in eukary-
otic cells [44]. Because the off-target input size matched
perfectly with on-target input size (23 nt), we retrained
it using our on-target dataset. The difference is that
we changed the output size of the last fully-connected
layer to one value instead of two values and changed
the binary cross entropy loss function to the mean
squared error. We named this modified network archi-
tecture CNN_Lin. Similar to CNN_Lin, DeepCas9 [42]
is a convolutional neural network with only one convo-
lution layer. The difference is that the DeepCas9 input
size is 30 nt-long target DNA sequences (NsNogNGGN3)
[42]. Another convolutional neural network based on only



Wang and Zhang BMC Bioinformatics (2019) 20:517

convolution layer and 30 nt-long inputs is also named
DeepCas9 [43]. We distinguished between DeepCas9 [42]
and DeepCas9 [43] by reference annotation. Thus, we
can compare the performances of 30 nt-long input with
23 nt-long input. It is worth noting that DeepCRISPR
[29], CNN_Lin [44], DeepCas9 [42], and our CNNs were
all trained and tested with the same training dataset,
test dataset, and separation of 5-fold cross-validation.
We adopted mean squared error as the loss function of
these CNN regression models. The last layer of all CNN
architectures does not contain a batch normalization and
activation function to avoid limiting the numerical output
range.

Independent eukaryotic datasets

We used fourteen eukaryotic datasets which were col-
lected and arranged by Haeussler et al. [53]. We chose
three high-quality datasets (xu2015TrainHI60_Kbm?7,
doench2014Hs, doench2014Mm) from the fourteen
eukaryotic datasets to train a eukaryotic model. The
remaining eleven datasets (Table 3) were used to inde-
pendently test eukaryotic models. We normalized the
on-target activity values of each eukaryotic dataset and
concatenated the three datasets as a eukaryotic train-
ing set. Therefore, the eukaryotic on-target values vary
between zero and one, which is different from the three
prokaryotic model on-target value ranges (Table 1). This
was also necessary to compare our eukaryotic model with
other models. We compared our model with DeepCRISPR
[29], DeepCas9 [43], and TSAM [28]. Unlike comparisons
in the prokaryotic models, we did not need to retrain
the networks with similar data, because of the eleven
independent eukaryotic test sets. To ensure valid com-
parisons, we had to remove some overlapping samples in
each model training set for the eleven eukaryotic datasets.
Finally, to verify the validity of prokaryotic models for
eukaryotes, we used the remaining eleven datasets to test
prokaryotic trained models. The eukaryotic training set
and eleven independent eukaryotic test sets are described
in Additional file 4.

Melting temperatures and RNA fold scores

Previous studies showed that the predictive scores were
most influenced by melting temperature, which is deter-
mined by Watson-Crick base pairing. In other words,
the melting temperatures in different regions are effec-
tive predictive metrics [23, 28]. We computed the melting
temperatures from different target site regions using the
Biopython Tm_stalus function [69, 70]. We needed to
number N19N20NGGN1g in a certain order, -10 to -1 for
the first N1g (upstream), 1 to 23 for NooNGG, and +1
to +10 for the last N9 (downstream). Then, we calcu-
lated the melting temperatures of 1 to 7 (Region III), 8
to 15 (Region II), 16 to 20 (Region I), 1 to 20, -5 to -1,
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and 21 to +2 (T(1_7), T(8_15), T(16_20), T(1_20), T(-5_-
1), and T(21_+2), respectively; Table 4). Guide sequences
(20 nt) within the 5 end of crRNA-tracrRNA duplexes
could form secondary structures [1, 4], which could have
adverse effects on sgRNA activity. We used ViennaRNA
[45] to predict secondary structures of 20 nt-long RNA
fragments (Fig. 4). We used four physicochemical prop-
erties to characterize RNA folding, including minimum
free energy (MFE), free energy of the thermodynamic
ensemble (FETE), frequency of the minimum free energy
structure in the ensemble (FMSE), and ensemble diversity
(ED) (Additional file 8).

Potential off-target scores

Off-target effects were detected in multiple cell types.
Off-target effects possibly happen at any region on a
genome-wide scale as long as the region contains a
PAM and 20 nt-long protospacer sequence with minor
mismatch. Different sgRNAs have different number of
candidate off-target sites. Moreover, different candidate
off-target sites have different off-target efficiencies for
a given sgRNA. To research potential off-target influ-
ence on on-target activity for various sgRNAs, we found
out genome-wide potential off-target sites (allowing up
to six mismatches) for every sgRNA in Escherichia coli
by Cas-OFFinder [71]. We found that, on average, each
sgRNA has 24 candidate off-target sites. We used CROP-
IT [51], CCTop [52], MITScore [20, 53], and CFDScore
[22] to respectively calculate off-target score of each can-
didate off-target site for certain sgRNA (Fig. 4). The
four off-target predictors independently devised heuris-
tics based on the distances of the mismatches to the PAM
[53] and did not contain too many parameters. Finally,
we respectively accumulated potential off-target scores
(POS) of all candidate off-target sites for every sgRNA
(Additional file 9).

Training methodology and parameters

We trained our CNNs and other networks on a single
NVIDIA Quadra P6000 GPU. Our CNNs were based on
PyTorch framework. For DeepCRISPR [29], DeepCas9
[42] and CNN_Lin [44], we adopted published Tensor-
Flow source codes. DeepCas9 [43] was based on MXNet,
which had been gradually abandoned, so we only used
DeepCas9 [42]. All networks were trained using the Adam
optimizer with initial learning rate of 0.001, and default
hyper-parameters 81 = 0.9, B2 = 0.999, ¢ = le - 08.
The batch size is set to 128. As shown in Fig. 4, we
randomly and equally separated the dataset into five sub-
groups, and alternately four subgroups were used as the
training set to train the models. The remaining sub-
group was used to test the generalization capacity of the
trained models. Then, we combined trained CNN_5layers
output with extra features to continue training a
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traditional machine learning model to improve prediction.
Finally, the remaining subgroup was again used to test
performances (Fig. 4).

Interpretability and transfer learning

We adopted perturbation-based approaches, which
changed a part of the input and observed its impact on the
model output [46—-48]. We used trained model to predict
all samples and accumulate their predictive values (PSA).
Then, we converted the nucleotide to A, T, C, and G at
certain position. For example, the nucleotide at position
-10 can be converted to A, T, C, and G respectively for
all samples. Similarly, we used trained model to predict
all samples-changed and accumulate their predictive
values (PSAc). We had to carry out 41x4 PSAc with the
fixed GG in NGG. The difference between PSAc and
PSA can indicate that the substitute is favored (positive
difference) or disfavored (negative difference) to high on-
target activity. We also calculated the importance score
at each position by accumulating the absolute values of
its four differences. In addition, we fine-tuned the whole
prokaryotic Cas9 and eukaryotic model, which were both
initialized with the prokaryotic eSpCas9 model parame-
ter, expecting to improve performance. It is necessary to
remove the samples from test set, which has the same 43
nt-long feature sequences with eSpCas9 training samples.
Otherwise, the improved performance is unconvincing. It
is also important to convert the on-target activity value
range of two training sets to output range of prokaryotic
eSpCas9 model. We adopted previous training method-
ology including Adam optimizer and learning rate,
loss function and separating of 5-fold cross-validation
(Fig. 4). The prokaryotic Cas9 (ArecA) was not involved
in research of models interpretability and transfer
learning.

Performance evaluation and statistical significance
We used the Spearman correlation coefficient to evaluate
the model performance, which is defined as

63,

r=1-—
nn? —1)

where 7 is the number of data points of the two vari-
ables and d; is the difference in the ranks of the i ele-
ment of each random variable considered. The two vari-
ables are on-target activity value and its prediction. We
used ¢-test to test the Spearman correlation coefficients.
We calculated the Spearman correlation coefficients and
the p-values by SciPy library in Python. Moreover, we
used a Steiger test to compare the Spearman coefficients
between two models, which was performed by psych
package in R.
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models. Table S3. Significance between on-target activity and six melting
temperatures, four RNA fold scores, and four POSs. Table S4. Detailed
information of 5-fold cross-validation for several network architectures.

Additional file 2: Figure S1. Real-time performance comparison under
5-fold cross-validation. The figure shows the real-time average Spearman
correlation coefficients changes during being trained for several network
architectures. Horizontal x-axis is training epochs, and vertical y-axis is
average test Spearman correlation coefficients under 5-fold
cross-validation. a, b and ¢ represent Cas9, eSpCas9 and Cas9 (ArecA),
respectively. The light pink dashed are respectively corresponding to
Spearman correlation coefficients of 0.542, 0.682 and 0.328 for Cas9,
eSpCas9 and Cas9 (ArecA), which are performances of gradient boosting
regression trees.

Additional file 3: CNN architectures for comparison. CNN architectures
from CNN_2layers to CNN_7layers.

Additional file 4: Eukaryotic datasets. Eleven independent eukaryotic test
and training set of DeepCRISPR, DeepCas9, TSAM, and our CNN_5layers.

Additional file 5: Melting temperatures. The melting temperatures of 43
nt-long target DNA sequences.

Additional file 6: Figure S2. Real-time performance comparison
between raw and transfer learning scenario. The figure shows the real-time
average Spearman correlation coefficients changes during being trained in
raw and transfer learning scenario. Horizontal x-axis is training epochs, and
vertical y-axis is average test Spearman correlation coefficients under 5-fold
cross-validation.

Additional file 7: Set 1 dataset. Set T samples including 44,163, 45,070,
and 48,112 sgRNAs for Cas9, eSpCas9 and Cas9 (ArecA), respectively.
Additional file 8: RNA fold scores. Four physicochemical properties
characterizing 20 nt-long guide sequences fold.

Additional file 9: All sgRNAs POSs. POSs calculated by CROP-IT, CCTop,
MITScore, and CFD-Score.
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