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Microribonucleic acids, best known as microRNAs or miRNAs, are small, non-coding RNAs
with important regulatory roles in eukaryotic cells. Here, I present a broad review on highly
relevant but generally non-depicted features of miRNAs, among which stand out the non-
conventional miRNA seed sites, the unusual messenger RNA (mRNA) target regions, the
non-canonical miRNA-guided mechanisms of gene expression regulation, and the recently
identified new class of miRNA ligands. Furthermore, I address the miRNA uncommon
genomic location, transcription, and subcellular localization. Altogether, these unusual
features and roles place the miRNA system as a very diverse, complex, and intriguing
biological mechanism.
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INTRODUCTION
MicroRNAs (miRNAs), a class of non-coding RNAs (ncRNAs) of
approximately 23 nucleotides (nt), are well known for their role
in RNA interference (RNAi), where they mediate posttranscrip-
tional gene expression regulation (Bartel, 2009). miRNA genes
generally reside in intergenic regions carrying their own pro-
moters or in intronic regions of transcription units, therefore
sharing the host gene promoter and being commonly transcribed
by RNA polymerase (Pol) II (Bartel, 2004; Cai et al., 2004; Lee
et al., 2004; Kim and Nam, 2006). The approximately 1000 nt pri-
mary transcript (pri-miRNA), a stem-loop structure with long
single-stranded ends, is typically processed by a nuclear RNase III
enzyme named Drosha, giving rise to an approximately 60 nt hair-
pin intermediate known as the miRNA precursor (pre-miRNA).
This pre-miRNA bears an approximately 2 nt overhang at the
3′-end of the stem-loop structure, which is important for its fur-
ther processing in the cytoplasm by a second RNase III enzyme,
named Dicer. This second cleavage removes the loop of the pre-
miRNA, leaving another 2 nt 3′overhang and, thus, a miRNA
duplex (Bartel, 2004; Cullen, 2004). In general, only one strand
of the miRNA duplex is loaded into the RNA-induced silenc-
ing complex (RISC), where it will guide, in a sequence-specific
manner, mRNA degradation or translation inhibition (Cullen,
2004; Bartel, 2009). This interaction is mainly reported to take
place between the 5′-end of the miRNA and the 3′untranslated
region (UTR) of the mRNA. The process described above is
generally seen as the miRNA canonical aspects and their main
mode of action. However, current literature has brought to light
non-conventional miRNA features, which are the center of this
review.

Hereafter, I review the current knowledge in the miRNA field
with focus on the non-canonical facets of these molecules in
animals, which are summarized in Figure 1. For a complete review

on non-conventional Drosha and Dicer pathways, readers can
address two published articles (Yang and Lai, 2011; Ha and Kim,
2014).

UNUSUAL microRNA GENOMIC LOCATION AND
TRANSCRIPTION
Although there is no consensus about the most frequent miRNA
genomic location in animals due, among other factors, to vary-
ing miRNA genomic distribution in different species, there is
no doubt that they mainly map to intergenic regions as solo or
clustered genes or to intronic regions of defined protein-coding
or non-coding transcription units (Bartel, 2004; Kim and Nam,
2006). The most striking deviation was shown in mouse testes,
where approximately 30% of the miRNA genes mapped to exonic
sequences (Ro et al., 2007).

While it has been assumed that intronic miRNAs rely on host
gene transcription in order to be expressed (Bartel, 2004), com-
pelling evidence has suggested that a set of intronic miRNAs can be
expressed, both in humans and Caenorhabditis elegans, indepen-
dently of their host gene (Isik et al., 2010; Monteys et al., 2010). In a
Drosophila melanogaster short RNA data meta-analyses, Berezikov
et al. (2011) identified 12 miRNA loci also giving rise to miRNAs
from antisense strand transcription and processing. Besides this
potential source of novel miRNAs in Drosophila, Berezikov et al.
(2011) located miRNA loci in coding sequences and UTRs. Anti-
sense strand origin was consistently found in humans, although
miRNAs derived from the antisense transcription of the miRNA
loci showed to be lowly expressed (Burroughs et al., 2011).

Canonical transcription of miRNAs involves Pol II, the same
enzyme generally producing mRNAs (Cai et al., 2004; Lee et al.,
2004). However, a miRNA cluster in human chromosome 19
(C19MC) downstream from an Alu repeat was shown to be
associated only with Pol III, suggesting that this same enzyme,
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FIGURE 1 | An overview of the canonical and non-canonical aspects of

miRNAs. Conventional and non-conventional features of the miRNA system
in animals are outlined by full and dashed arrows, respectively. The
non-conventional route can be represented by one or more unusual aspects.

1 Non-conventional Drosha and Dicer pathways have been reviewed
elsewhere (Yang and Lai, 2011; Ha and Kim, 2014). Ago, Argonaute protein;
CDS, coding sequence; Pol, RNA polymerase; pre-miRNA, precursor miRNA;
pri-miRNA, primary miRNA; UTR, untranslated region.

responsible for Alu activity, is also involved in C19MC tran-
scription (Borchert et al., 2006). Moreover, on a bioinformatic
approach, the authors proposed that miRNAs flanked upstream
by tRNA-, besides Alu- based promoters, might be transcribed by
Pol III. However, the first findings were challenged by Bortolin-
Cavaillé et al. (2009), who proposed that C19MC miRNAs are
actually derived from Pol II placenta-specific non-protein-coding
transcripts. Still, further studies have shown that miRNAs of
murine γ-herpesvirus 68 (Bogerd et al., 2010) and herpesvirus 4
(Diebel et al., 2010), and miRNA-like small RNAs of Neurospora
crassa (Yang et al., 2013) are indeed transcribed by Pol III. There-
fore, it remains to be demonstrated whether functional miRNAs
can be produced through Pol III activity in animals.

A NOT SO PASSENGER STRAND
It has long been proposed, since the initial studies of miRNAs in
C. elegans (Lim et al., 2003), D. melanogaster (Aravin et al., 2003),
and mouse (Lagos-Quintana et al., 2002), that during miRNA bio-
genesis and maturation only one of the arms of the pre-miRNA
fold-back is generally found accumulating at steady levels. The
less common mature miRNA sequence derived from the pre-
cursor has been named miRNA∗ (miRNA star) or “passenger

strand,” while the most abundant one has been named miRNA
or “guide strand,” as it is thought to be preferentially incorporated
into Argonaute (Ago) protein complexes and, therefore, to guide
posttranscriptional regulation (Lau et al., 2001; Yang et al., 2011).

However, several studies have suggested that miRNA∗ strands
are more abundant than initially thought and that these might be
more than mere carriers of the guide strand. Comparisons between
human, chimpanzee, mouse, rat, dog, and chicken genomes
revealed that several human miRNA∗ strands are highly conserved,
especially at the seed sequence vicinity, which, in turn, exhibits
significant 3′UTR complementarity across vertebrate evolution
(Yang et al., 2011). miRNA∗ seed sequences and center regions
have also been shown to be conserved across Drosophilid evolution
(Okamura et al., 2008) and a group of typical vertebrates (human,
zebrafish, chicken, and frog; Guo and Lu, 2010). By analyzing
10 different libraries from human and mouse deep-sequencing
data, Kuchenbauer et al. (2011) found among all detected miRNAs
a percentage of miRNA∗ ranging from 0.3 to 12.3%, suggest-
ing a tissue and species-specific miRNA∗ expression. Moreover,
classification into miRNA/miRNA∗ ratio groups pointed out that
approximately 13% of all ratios favor the miRNA∗, while approx-
imately 13, 24, and 50% favor the miRNA at low, intermediate,
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and high ratios, respectively. The class of miRNA duplexes giving
rise to balanced strand expression was termed “β-duplexes,” while
the class of miRNA duplexes giving rise to a dominant strand
was called “α-duplexes” (Kuchenbauer et al., 2011). Finally, these
broader and evolutionary analyses are accompanied by reporter
assays focusing on validating the miRNA∗ functionality (Okamura
et al., 2008; Ogata et al., 2010; Kuchenbauer et al., 2011; Yang et al.,
2011; Byrd et al., 2012; Niederer et al., 2012; Chang et al., 2013;
Goedeke et al., 2013; Martin et al., 2014). Altogether, these evi-
dences suggest that all miRNA loci are potential dual-function
genes, as two distinct miRNAs may originate from the same hair-
pin and, therefore, target different sets of genes (Okamura et al.,
2008; Ogata et al., 2010; Ohanian et al., 2013).

NUCLEUS-TO-CYTOPLASM microRNA TRANSPORT: A
TWO-WAY ROUTE?
It is a general assumption that pre-miRNAs are transported by
Exportin-5 in a one-way direction from nucleus to cytoplasm
(Yi et al., 2003; Lund et al., 2004). However, many lines of evi-
dence indicate that these molecules can also be guided back to the
nucleus. A hexanucleotide terminal motif of miR-29b is respon-
sible for this cytoplasm to nucleus transport (Hwang et al., 2007).
CRM1 (Exportin-1), known to transport different classes of RNAs,
enables the miRNA nuclear import (Castanotto et al., 2009). miR-
NAs and piwi-interacting RNAs (piRNAs) were found in the nuclei
of spermatocytes and Sertoli cells (Marcon et al., 2008). These
miRNAs may enter the nucleus to undergo modifications, asso-
ciate with nuclear proteins or with target transcripts, participate
in chromatin remodeling, or regulate ncRNAs. An example of
miRNAs directly regulating transcriptional silencing includes the
knockdown of POLR3D mRNA expression due to increased levels
of mature miR-320 (Kim et al., 2008). Other examples of miRNAs
found in the nucleus are miR-709, miR-690, miR-30e (Tang et al.,
2012), and miR-122 (Földes-Papp et al., 2009). miRNAs can also
be found in the nucleolus as precursor forms, like miR-494 and
miR-664, and as mature miRNAs, like miR-21, miR-1, miR-351,
miR-206 (Politz et al., 2006, 2009), and miR-320 (Marcon et al.,
2008). Another intriguing subcellular localization of miRNAs is
mitochondria, where they may modulate apoptosis processes in a
coordinated way (Kren et al., 2009).

Ago family proteins have also been consistently detected inside
the nucleus (Ohrt et al., 2008; Rüdel et al., 2008; Tan et al., 2009;
Ahlenstiel et al., 2012). It has been shown that Importin 8, besides
being required for efficient binding of Ago2 to target mRNAs,
directs Ago proteins to the nucleus of human cells (Weinmann
et al., 2009). Taken together, these data add more evidence for
the important function of regulatory RNAs inside the nuclear
compartment.

SPATIAL PREFERENCE: BINDING ELSEWHERE IN THE mRNA
(AND miRNA)
After translation initiation, interactions between miRNAs and
mRNAs resulting in translational repression may occur beyond
the well-defined 3′UTR target, possibly taking place at the 5′UTR
and coding sequence of the mRNA (Lytle et al., 2007). Although
there is still some debate about the mechanisms of repression
induced by miRNAs binding to different regions of their targets

(Lytle et al., 2007; Forman et al., 2008), several computational
screenings have pointed to putative miRNA sites in coding regions
and 5′UTRs (Stark et al., 2007; Forman et al., 2008; Lee et al.,
2009; Forman and Coller, 2010; Schnall-Levin et al.,2010). Several
screenings bring experimentally validated results from reporter
assays mainly (Forman et al., 2008; Schnall-Levin et al., 2010), con-
firming the possible physical interaction of miRNAs with 5′UTRs
and/or coding regions. Several other studies focusing on such
reporter assays have also confirmed this non-conventional tar-
geting (Tay et al., 2008; Qin et al., 2010; Schnall-Levin et al., 2011).
It remains a challenge to identify the broadness of miRNA:mRNA
interactions that take place elsewhere in the mRNA.

Interestingly, Lee et al. (2009) observed among the 5′UTR
motifs a preferential interaction of these sites with the 3′-end of
miRNAs, suggesting that different ends of a miRNA may bind to
both UTRs of an mRNA. Another type of interaction has been
proposed to take place mainly between nucleotides 4–14 or 5–15
of a miRNA and its targeting sites, with these being named as
“miRNA centered sites” (Shin et al., 2010). Together, these data
indicate mRNA non-conventional seed sites, i.e., sites recognized
by regions other than the miRNA 5′seed sequence.

BEYOND POSTTRANSCRIPTIONAL GENE SILENCING
The discovery of miRNA-mediated gene expression regulation at
the posttranscriptional level has revolutionized molecular biology,
bringing new avenues to the treatment of several diseases, such
as cancer and viral infections. However, emerging new mech-
anisms of gene expression regulation through miRNA activity
should be considered by researchers when it comes to data inter-
pretation and application. miRNAs have been recently proposed
to recognize and guide transcription factors (TFs) to their cor-
rect gene promoters (Korla et al., 2013). Based on earlier results
that many pre-miRNAs carry binding sites for TFs (Piriyapongsa
et al., 2011) and that miRNAs target TFs (Dannemann et al.,
2012), Korla et al. (2013) hypothesized that miRNAs would act
as a decoy for TFs, driving them to their correct gene promot-
ers. In a computational approach, miRNA seed sequences have
also been shown to match gene promoters in a frequency com-
parable to miRNA/3′UTR matches and some miRNA/promoter
pairs exhibited unusual sequence complementarity (Younger et al.,
2009). Together with their previously discussed nuclear accumu-
lation, these findings suggest that miRNAs may have an important
function in this cellular compartment.

Other studies have deeply investigated and reported miRNAs as
negative gene transcription regulators (Kim et al., 2008; Younger
and Corey, 2011). Another line of evidence has proposed that dsR-
NAs also regulate gene expression through a mechanism termed
as RNA activation (RNAa), in opposition to RNAi. RNAa has been
shown to take place in humans at the transcriptional level as a
consequence of both sequence-specific promoter (Li et al., 2006;
Place et al., 2008), and/or sequence-specific antisense transcript
(Morris et al., 2008; Schwartz et al., 2008) targeting by dsRNAs.
In the first case, dsRNAs promoted gene activation by targeting
AT-rich promoter regions, while in the second case activation
was achieved through chromatin structure changes. More recently,
RNAa was also shown to occur in non-human primates, mouse,
and rat (Huang et al., 2010, 2012).
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Positive regulation of gene expression is also an emerging fea-
ture of miRNAs at the posttranscriptional level. The first study
to verify that miRNAs can act upregulating translation suggested
a model by which human miR-369-3 directs, in a sequence-
specific manner, the association of Ago and fragile X mental
retardation-related protein 1 to the AU-rich element of the tumor
necrosis factor-α (TNFα) mRNA under starvation conditions,
leading to increased TNFα translation efficiency (Vasudevan et al.,
2007). Similar results were found later and demonstrated that
miR-10a targets the 5′UTR of ribosomal protein (RP) mRNAs
resulting in RP enhanced translation under amino acid starva-
tion. As a consequence, indirect global protein synthesis also
occurred through the aforementioned miRNA–mRNA interac-
tion, since it leads to increased availability of the translation
machinery (Ørom et al., 2008). Together, this data may suggest
that positive or negative posttranscriptional regulation by miR-
NAs might take place depending on the physiological state of
the cell or organism. Another example of translation stimula-
tion by miRNAs has been speculated by Jopling et al. (2005)
and confirmed and detailed by Henke et al. (2008): the liver-
specific miR-122, with two complementary sites on the 5′UTR of
Hepatitis C Virus genome, induced viral RNA translation by con-
tributing to the association of ribosomes in a sequence-specific
manner.

A miRNA–miRNA posttranscriptional regulation network has
been postulated on the basis of the finding that primary mRNA-
like ncRNAs in mice are significantly underexpressed in tissues
where their putative targeting miRNA is expressed (Zhao et al.,
2008). Indeed, such an example of miRNA–miRNA regulation has
been recently demonstrated: miR-709 inhibits miR-15a/16-1 mat-
uration by binding to its primary transcript in the nucleus (Tang
et al., 2012). Similarly, in C. elegans, let-7 mature miRNA carries a
complementary sequence to its own primary transcript, whereby
the interaction, in the presence of Ago protein ALG-1, induces pri-
mary transcript processing (Zisoulis et al., 2012). More recently,
long non coding RNAs (lncRNAs) were shown to be potential
targets of miRNAs, revealing also a possible miRNA-lncRNA reg-
ulation network (Jalali et al., 2013). These exciting results may
open new possibilities to restoration strategies of pathologically
relevant altered miRNA expression patterns.

OTHER LIGANDS, NEW FUNCTIONS
It has for long been a dogma that miRNAs loaded in RISCs bind
to mRNAs through Watson and Crick base pairing. Interaction
with other molecules, such as proteins, remained unknown until
recently, when miRNAs were found to bind to and inhibit the
activity of a class of RNA-binding proteins (RBP), named hetero-
geneous ribonucleoproteins (hnRNPs), in a RISC-independent
manner, but yet in a sequence-specific interaction (Eiring et al.,
2010). Similar findings by Balkhi et al. (2013) have proposed miR-
29 as a decoy for another RBP, named human antigen R (HuR).
In a later study, two miRNAs with extracellular expression – miR-
21 and miR-29a – were shown to reach a different cell and bind
to murine Toll-like receptor (TLR) 7 and human TLR8, both
located inside endosomes (Fabbri et al., 2012). The authors also
verified that the miRNA–TLR interaction is immunologically rel-
evant, as typical cytokines upregulated upon TLR activation were

augmented in murine and human cells expressing TLR7 and TLR8,
respectively, after treatment with miR-21 and miR-29a, miRNAs
typically secreted by tumor cells. Similar results were found for
another miRNA in the context of the nervous system. Using a
murine experimental model, the extracellular miRNA let-7b was
shown to directly activate the TLR7, inducing neurodegeneration
(Lehmann et al., 2012). These results are extremely relevant as the
authors also found that let-7b is overexpressed in Alzheimer’s dis-
ease subjects in relation to healthy controls. Another role for let-7b
in the nervous system has been recently described, proposing that
this miRNA acts as a pain mediator through TLR7 and ion chan-
nel activation in nociceptor neurons (Park et al., 2014). Mir-21, in
turn, has been recently reported to mediate cell death of murine
myoblasts through TLR7 (He et al., 2014). In summary, the exis-
tence of another class of miRNA-binding molecules is suggestive
of an even wider role of these ncRNAs in development and disease
in animals.

CONCLUDING REMARKS
The canonical field of miRNAs has not yet been fully challenged
and the next years of miRNA research will continue to teach us how
complex this system is. With the growing usage of next-generation
sequencing methods in transcriptomics, the identification of new
genomic sources of miRNAs must rely on careful inspection of
deep sequencing data, as RNA degradation fragments may be eas-
ily read as small ncRNAs. Another issue in miRNA research is
that algorithm-based websites for the identification of miRNA
binding sites, which are among the most diverse and used bioin-
formatic tools, frequently overlook 5′UTRs and coding sequences
as potential targets of miRNAs and rarely consider their non-seed
sequences as being likely to induce posttranscriptional regulation.
This limitation clearly brings a bias to miRNA studies and might
be responsible for several data misinterpretations. Moreover, the
fast-growing field of extracellular miRNAs may contribute not
only to the elucidation of the mechanisms involved in cell–cell
communication, but also to our knowledge of the repertoire of
miRNA-binding molecules. Finally, if on one hand the different
emerging modes of gene expression regulation involving miRNAs
suggest caution to their clinical application, they might on the
other hand open new avenues for therapy strategies.
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