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Abstract

In this study, 796 male Duroc pigs were used to identify genomic regions controlling growth
traits. Three production traits were studied: food conversion ratio, days to 100 KG, and
average daily gain, using a panel of 39,436 single nucleotide polymorphisms. In total, we
detected 11 genome-wide and 162 chromosome-wide single nucleotide polymorphism trait
associations. The Gene ontology analysis identified 14 candidate genes close to significant
single nucleotide polymorphisms, with growth-related functions: six for days to 100 KG
(WT1, FBXO03, DOCK7, PPP3CA, AGPATY, and NKX6-1), seven for food conversion ratio
(MAP2, TBX15, IVL, ARL15, CPS1, VWC2L, and VAV3), and one for average daily gain
(COL27A1). Gene ontology analysis indicated that most of the candidate genes are
involved in muscle, fat, bone or nervous system development, nutrient absorption, and
metabolism, which are all either directly or indirectly related to growth traits in pigs. Addition-
ally, we found four haplotype blocks composed of suggestive single nucleotide polymor-
phisms located in the growth trait-related quantitative trait loci and further narrowed down
the ranges, the largest of which decreased by ~60 Mb. Hence, our results could be used to
improve pig production traits by increasing the frequency of favorable alleles via artificial
selection.

Introduction

The pig is an important farm animal worldwide, providing over ~37% of all meat average dur-
ing the year 2012-2014 (http://www.fao.org/ag/againfo/themes/en/meat/background.html).
Efficient meat production is paramount in livestock and there is an expected positive correla-
tion between meat production and growth rate [1]. Average daily gain (ADG), days to 100KG
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(D100) and Feed conversion ratio (FCR) are considered as target traits to measure the growth
rate and production performance. Therefore, understanding the genetic determinants control-
ling FCR, D100 and ADG is crucial for designing better breeding programs and improving pro-
duction efficiency.

13030 QTLs from 477 publications were reported to be associated with 663 different pig
traits [2]. 1424 QTLs are associated with production traits, which including 312 QTLs for
ADG; 12 QTLs for days to different body weight; 93 QTLs for FCR (http://www.
animalgenome.org/cgi-bin/QTLdb/SS/index, Apr 27, 2015). However, even though there are
some successful examples of QTLs found in domestic animals [3, 4], identification of causative
mutations underlying QTLs is still a challenge [5]. Poor resolution in QTL mapping experi-
ments (i.e. large region in genome consist of hundreds or thousands of genes) and complicated
architecture in most QTLs (i.e. multiple causative mutation present in one or several genes)
make QTLs mapping not very successful [5]. Moreover, QTLs are inconsistently replicated in
different source populations [6].

GWAS is well-known and powerful strategy for genetic dissection of trait loci in human and
animal due to the development of high throughput SNP platform and cost-effective method
for large population analysis. Furthermore, it is believed that GWAS signals have replicated
across populations of different regions [7] and was proved by some reported researches [8-10].
Recent technological advances, such as the complete pig genome sequence and the 60K porcine
SNP chip array, have facilitated genome-wide association studies (GWAS) in this species [11].
Several GWA analysis has been performed for searching production trait-related candidate
genes in varied pig populations [12-16]. 127 significant SNPs (P ponferroni <0.01) and 102 sug-
gestive SNPs (P ponferroni <0.10) were detected for ADG in two extreme and divergent groups
of Italian Large White pigs [12]. Another GWAS study was implemented within two extremely
divergent purebred Yorkshires lines, their results showed that significant SNPs for residual
feed intake and ADG were identified on different chromosomes (SSC3, SSC5, SSC6, SSC7,
SSC13, SSC14, and SSC15) [16]. Duroc is an excellent source of sires for pig production, it is
important to find out growth-related potential genes for molecular breeding. However, only
one GWAS were carried out in this breed, in total 110 significant SNPs were detected for FCR
[13]. In this study, we perform GWAS for D100, FCR, and ADG using Illumina Porcine
SNP60 BeadChip in a ~800 male Duroc pig population to understand the genetic mechanisms
underlying such important traits.

Materials and Methods

Source population and phenotypes

A total of 796 commercial Duroc sires from the Guangdong Wen’s Foodstuffs Group Co., Ltd.
(Guangdong, China) were used in this study. All animals were born at the end of 2011, and
raised in the same standard conditions and no open wounds of other signs of illness of injury
and no display abnormal behavior etc. Ear tissue collection was implemented based on the pro-
cedure below: pig ear was first cleaned with 75% alcohol followed by cutting the small fraction
of ear with clear forfex, and then treating the wound with tincture of iodine. The protocol for
ear tissue collection was approved by the Animal Welfare Committee of the China Agricultural
University (approval number: XK257).

Traits recorded for individual boars are D100 (Days to 100 KG of body weight), FCR (feed
conversion ratio between 30 and 100 KG), and ADG (average daily gain between 30 and 100
KG). Phenotypes were collected by Osborne FIRE Pig Performance Testing System (Kansas,
American) in Guangdong Wen’s Foodstuffs Group Co., Ltd. (Guangdong, China). ADG and
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FCR was tested between 30 KG and 100 KG of body weight. D100 was measured from birth to
100 KG of body weight.

Genotyping and quality control

DNA was extracted from ear tissue using the phenol-chloroform method [17]. The quality and
quantity of the DNA extracted was checked with a NanoDrop™ 2000 (Thermo Fisher Scientific
Inc., USA). DNA quality was measured by retaining samples with concentrations >50 ng/ul,
total volume >50 pl, and a ratio of light absorption (A260/280) between 1.8 and 2.0. Genotyp-
ing was conducted using the Illumina Porcine SNP60 BeadChip by the company (DNA Land-
Markers, Canada) Genotypes were called with GenomeStudio (Illumina, USA). Data mining
was performed in our lab.

To reduce the false-positive associations resulting from genotyping, we controlled our SNP
analysis with a genotyping call rate > 95% and a Hardy-Weinberg equilibrium (HWE)
p > 10~*. Considering that rare SNPs have lower statistical power, SNPs with a minor allele fre-
quency (MAF) > 1% were selected for further analysis. Moreover, all of the SNPs located on
the sex chromosome were removed.

GWAS and population stratification assay

Genome-wide association studies were performed by testing the association for each SNP-trait
combination independently. The potential bias in association caused by hidden population struc-
tures was removed by adjusting phenotypes and genotypes as suggested by Price et al. [18]. We
used the EGSCORE function (EIGENSTRAT method) in the GenABEL R package [19]. Via
EIGENSTRAT method, the genotypes and phenotypes were corrected by regressing them onto
principal axes of variation obtained by decomposing the identity-by-state (IBS) matrix among
individuals [18]. Then the association between the ancestry-adjusted phenotype values and each
ancestry-adjusted SNP was computed with a linear regression model. The quantile-quantile (Q-
Q) plot was always implemented in the test, this is a commonly used tool for scanning the popu-
lation stratification in GWA studies [20]. Multiple testing was carried out for permutations while
GenABEL/egscore function was performed with times = 10,000 argument [19]. The permutation
at genome-wise significance or chromosome-wise significance was implemented with all filtered
SNPs in the whole genome or a particular chromosome [21]. The phenotypes of three traits were
randomly shuftled 10,000 times and the empirical threshold value for genome-wise and chromo-
some-wise was determined by selecting the 95th percentile of the highest test statistic over the
10,000 permutation replicates [22, 23]. An adjusted p-value for each SNP were obtained after
permutation, and then we defined a SNP is genome-wide significant (significant) or chromo-
some-wide significant (suggestive) if its adjusted p-value is less than 0.05 [24].

Haplotype block analysis

Whole genome haplotype block was estimated by PLINK software [25], with the default Haplo-
view procedure. Haplotype block analysis was implemented within chromosomes with at least
two significant SNPs. The haplotype blocks were defined by the criteria of Gabriel et al. to fur-
ther pinpoint underlying associations affecting the trait [26, 27].

Gene ontology analysis

Genomic locations for the Sscrofa 10.2 genome version were downloaded from www.
animalgenome.org/pig/. The SNP linkage map is based on USDA-MARC v2 (A) (http://www.
thearkdb.org/). Selection of the nearest gene to the significant SNPs was obtained from

PLOS ONE | DOI:10.1371/journal.pone.0139207 September 29, 2015 3/15


http://www.animalgenome.org/pig/
http://www.animalgenome.org/pig/
http://www.thearkdb.org/
http://www.thearkdb.org/

el e
@ : PLOS ‘ ONE GWAS Reveals New Production Trait Genes in a Male Duroc Population

Table 1. Descriptive statistics analysis of production traits in a male Duroc population.

Traits Units N Mean SD Min max
D100 day 792 161.773 8.091 136.6 196.9
ADG g/day 792 868.37 100.625 547.5 1211.49
FCR kg/kg 790 2.108 0.175 1.59 2.76

Mean, standard deviation (SD), minimum (min) and maximum (max) values are presented for all of the phenotypes included in the association study (N).

doi:10.1371/journal.pone.0139207.t001

www.ensembl.org/Sus_scrofa/Info/Index (Sscrofa 10.2 genome version). To obtain the closest
human homology genes in the gene list, we input the pig gene ID into the Ensemble BioMart
(http://www.ensembl.org/biomart/martview). Gene ontology analysis was carried out using the
DAVID Bioinformatics Resources 6.7 (http://david.abec.ncifcrf.gov/) [28].

Results

Phenotype and SNP data summary

Phenotype data of three production traits were analyzed and presented in Table 1. All traits
were approximately normally distributed. After quality controlled filtering steps, 39,436 SNPs
were available for GWA analysis (Table 2). The average physical distance between two neigh-
boring SNPs on the same chromosome was approximately 56.7Kb, ranging from 48.3 (SSC10)
to 76.4 Kb (SSC1). Based on the length of each chromosome in the USDA-MARC v2 (A) link-
age map, the average genetic distance between adjacent SNPs on the SNP chip was 0.062 cM,
this ranged from 0.096 cM (SSC12) down to 0.037 cM (SSC1) (Table 2). A comparison of dif-
ferent SNP chip found, the higher density (shorter average distance) between adjacent SNPs,
the finer genomic region will be obtained for GWAS and haplotype block analysis.

Significant SNPs and phenotypic variance

The p-value of (in terms of-log;, p) profiles of all SNPs association tested for the three traits
examined are shown in Fig 1. The genome-wide significant SNPs at the permutation based crit-
ical level detected by the associated test for the three traits are shown in Table 3. In total, 11
genome-wide significant (significant) and 162 chromosome-wide significant (suggestive) SNPs
were defined. The proportion of phenotypic variance explained by each significant SNP is
shown in Table 3.

Regarding D100, seven significant SNPs were detected (Table 3). One SNP (M1GA0027152)
had no known location; the remaining significant SNPs were located on SSC2 and SSC6. Of
these, five SNPs reached the 1% genome-wide significance (adjusted p-value < 0.01) level.
Moreover, 78 suggestive SNPs were detected; these were mainly located on SSC2, SSC8, SSC11,
SSC12, and SSC16 (S1 Table). Twenty-six suggestive SNPs involved in the D100 trait were
located in the interior regions of known genes in the Ensemble Sscrofa 10.2 assembly. The
nearest genes for the remaining mapped SNPs are shown in S1 Table.

For FCR, four significant SNPs were found, of which two were located on SSC4 and two on
SSC15 (Table 3). Additionally, of the remaining 66 suggestive SNPs most were located on SSC4
(n =8), SSC15 (n = 24), and SSC16 (n = 14) (S1 Table). Twenty-four suggestive SNPs were
identified in the inner regions of known genes.

However, the permutation tests revealed no significant association for ADG. Only 24 sug-
gestive SNPs were detected and most were located on SSC8 (n = 9) and SSC10 (n = 6) (S1
Table). Among these SNPs, nine were located within genes. Several suggestive SNPs were
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Table 2. Distributions of SNPs after quality control and the average distance between adjacent SNPs on each chromosome.

SSC

2300 N®O AN =

- o = = =
N o o~ ODN

18
Unmapped

SNP no.

3866
2505
1972
2581
1580
2160
2302
2258
2237
1381
1486
1180
2821
2848
2162
1416
1268
935
2478
39436

Physical size (Mb)' Mb/SNP Linkage map (cM)? cM/SNP
205.5 0.0764 144 0.0372
140.1 0.0559 132 0.0527
123.6 0.0627 129 0.0654
136.3 0.0528 130 0.0504
100.5 0.0636 114 0.0722
123.3 0.0571 165 0.0764
136.4 0.0593 156 0.0678

120 0.0531 127 0.0562
1325 0.0592 138 0.0617
66.74 0.0483 124 0.0898
79.82 0.0537 85 0.0572
57.44 0.0487 113 0.0958
145.2 0.0515 126 0.0447
148.5 0.0521 111 0.0390
134.5 0.0622 112 0.0518
77.44 0.0547 93 0.0657
64.4 0.0508 97 0.0765
54.31 0.0581 57 0.0610

2136.55

SNP, single nucleotide polymorphisms; SSC, Sus scrofa chromosome
"The physical size is based on Sus scrofa Build 9 (http://www.ensembl.org/Sus_scrofa/Info/Index)
2The linkage map is based on USDA-MARC v2 (A) (http://www.thearkdb.org/).

doi:10.1371/journal.pone.0139207.1002

associated with more than one trait, indicating possible pleiotropic effects. For example, nine
suggestive SNPs were associated with both D100 and ADG on SSC8.

Candidate genes at significant or suggestive level

The aim of this study was to identify and characterize novel growth-related genes in the pig.
After obtaining the above results, we tried to reduce the number of potential genes based on a
common growth-related biological function. A list of 14 candidate genes was obtained. Of
these, Wilms’ tumor 1 (WT1), F-box only protein 3 (FBXO3), Dedicator of cytokinesis 7
(DOCKY?), Protein phosphatase 3, catalytic subunit, alpha isozyme (PPP3CA), 1-acylglycerol-
3-phosphate O-acyltransferase 9 (AGPAT9), and NK6 homeobox 1 (NKX6-1) associated to
D100; microtubule-associated protein 2 (MAP2), T-box 15 (TBX15), involucrin (IVL), ADP-
ribosylation factor-like 15 (ARL15), carbamoyl-phosphate synthase 1, mitochondrial (CPS1),
von Willebrand factor C domain-containing protein 2-Like (VWC2L), and VAV3 guanine
nucleotide exchange factor (VAV3) correlated with FCR; collagen, type XXVII, and alpha 1
(COL27A1) as a potential functional candidate gene, associated to ADG. Gene ontology analy-
sis indicated that most of the candidate genes are involved in muscle, fat, bone or nervous sys-
tem development, nutrient absorption, and metabolism.

Population stratification

The power of genetic association analysis is often compromised by population stratification,
which contributes to false positive results. To investigate the population structure, we
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Fig 1. Manhattan plots of genome-wide association studies for three production traits in male Duroc pigs. The inserted quantile—quantile (Q—Q) plots
show the observed versus expected log p-values.

doi:10.1371/journal.pone.0139207.g001
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Table 3. Genome-wide significant SNPs and closest genes for D100 and FCR traits.

Trait No. SNPID SSC'. Location Adjusted p- Phenotypic Nearest gene Distance/ Relative
(bp)? value variance explained bp function
by SNP (%)

D100 7 M1GA0027152 O 0 0.032 2.86 NA NA NA
MARC0024404 2 30918580 2.0E-04 4.21 WTH within DNA binding
MARC0041999 2 30971975 2.0E-04 4.21 ENSSSCG00000024950 (+)15767  NA
DRGA0002876 2 29530558 2.9E-3 3.48 FBXO3 within protein

ubiquitination
ALGA0110196 6 144977414  5.7E-3 3.35 ENSSSCG00000024345 (+)289423 NA
ASGA0030028 6 144900841 5.7E-3 3.35 ENSSSCG00000024345 (+)365996 NA
MARCO0091155 6 138154672  0.0213 2.96 DOCK?7 within neuron

development

FCR 4 INRA0016084 4 112040937 0.0313 2.82 TBX15 (-)5882 transcription

factor activity
INRA0015807 4 105568818  0.044 2.74 IVL (+)28421 structural
molecule activity
ALGA0086784 15 123675955  0.0451 2.73 ENSSSCG00000023447 (-)93555 NA
ALGA0086789 15 123902773  0.0451 2.73 MAP2 (+)201050 phosphorus
metabolic
process

SNP, single nucleotide polymorphisms; D100, days to 100 KG; FCR, feed conversion ratio; WT1, Wilms’ tumor 1; FBXO3, F-box only protein 3; DOCK?7,
Dedicator of cytokinesis 7; TBX15, T-box 15; IVL, involucrin; MAP2, microtubule-associated protein 2

Sus scrofa chromosome

2Derived from the current porcine genome sequence assembly (Sscrofa10.2) (http://www.ensembl.org/Sus_scrofa/Info/Index)

+/-: The SNP located in the upstream/downstream of the nearest gene; NA: not assigned.

doi:10.1371/journal.pone.0139207.t003

constructed a principle component analysis (PCA) analysis and plotted the filtered SNP data
with first two principle components (Fig 2). The contribution rate of the first two principle
components (Principle component 1 and Principle component 2) were 2.78% and 2.31%

0.10

0.05 -

PC2

0.00 -

-0.05 -

-0.05 0.00 0.05 0.10

Fig 2. Principle component analysis (PCA) plot of population structure with the top two principle
components. PC1: Principle component 1; PC2: Principle component 2.

doi:10.1371/journal.pone.0139207.g002
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respectively and the cumulative contribution rate of top ten principle components were
18.25% (S1 Fig). Our further analysis, based on the IBS status, also gave us a similar population
structure (Fig 3). We adjusted our data to prevent false positive signals from stratification, even
though the evidence for population stratification was not strong.

Haplotype block analysis

In total, 4,975 haplotype blocks were obtained in our study. The number of SNPs ranged from
2 to 14. The average haplotype block length was 117.1559 Kb and the longest was 199.999 Kb
(Fig 4). The distribution of haplotype length and the number of the SNPs are shown in Figs 4
and 5. However, the haplotype blocks were not distributed evenly on all chromosomes. In our
study of D100, we found 25 suggestive SNPs located in SSC8 from 67.4 to 144.2 Mb and 2
strong haplotype blocks were detected (129.4-129.6 Mb and 141.7-142.2 Mb) (Fig 6A). Five
genes, DDIT4L, H2AFZ, PTPN13, MAPK10, and ARHGAP24, were located in the two blocks
(S1 Table). In our study of FCR, 26 suggestive SNPs located in SSC15 ranging from 123.7 to
129.4 Mb were detected and they constituted strong haplotype blocks (125.9-126.3 Mb, 127.7-
128.1 Mb, 128.3-128.8 Mb and 128.9-129.4 Mb) (Fig 6B). Genes including ERBB4, IKZF2,
SPAGI16, VWC2L, ENSSSCG00000029683, and ENSSSCG00000029020 were identified in this
region (S1 Table). We also observed 11 suggestive FCR SNPs located in SSC16 from 34.9 to
38.9 Mb, of which 10 SNPs were located at 35 Mb. A particularly strong haplotype block from
34.85 to 35.31 Mb was identified in our data (Fig 6C). Further analysis found that the ARL15,
NDUFS4, and ENSSSCG00000024947 genes were located in this haplotype block (S1 Table).
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As for ADG, however, relatively few suggestive SNPs generated less haplotype blocks. It is
important to mention that a haplotype block located in SSC10 from 59.0 to 59.2 Mb contained

the genes MLLT10 and SKIDA1 (Fig 6D) (S1 Table).

Discussion

Duroc pig is an excellent source of sires for pig production, and is particularly crucial to the
improvement of growth and lean meat traits of pig populations. Thus, it is important to obtain
major genes responsible for growth traits for future molecular breeding. GWAS provides an

Number of SNPs
)
1

(]
1

*
*. X X o5 * * * x x * %

1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Chromosome

Fig 5. Distribution of the number of SNPs in each haplotype block along the genome. *denotes mean number of SNPs.

doi:10.1371/journal.pone.0139207.9005
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efficient way to search for growth-related candidate genes in Duroc pigs. We already know that

the accuracy of GWAS and haplotype block analysis is based on the population structure, such

as genome

Fig 6. Haplotype blocks for significant SNPs. The black line indicated the identified blocks. 6A: A haplotype block composed of suggestive D100 SNPs
located in SSC8; 6B: A haplotype block composed of suggestive FCR SNPs located in SSC15; 6C: A haplotype block composed of suggestive FCR SNPs

located in SSC16; 6D: A haplotype block composed of suggestive ADG SNPs located in SSC10.

doi:10.1371/journal.pone.0139207.g006
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domestic animals have simpler population structure and genetic diversity, especially within
one breed [5]. So, GWAS is more useful for domestic animals, including pig. In this study, all
Duroc pig samples were collected from the same farm, and could be treated as having a similar
genetic background, which is verified by PCA clustering and IBS status results (Figs 2 and 3).
The investigated pigs without population stratification was also confirmed by Q-Q plots (Fig
1), which showed the obtained results is not deviate from expected values. Therefore GWAS
became the method of choice in this analysis.

Candidate gene searches following GWAS consist of descriptions of genes located close to
significant SNPs that are physiologically related to the traits of interest. Thus, potentially
important but apparently physiologically unrelated genes may be discarded from further analy-
sis. In this study, given that we are interested in the genetics of fast and efficient growth, we
expected to find genes involved in fat, muscle, bone or nervous tissue development, cell prolif-
eration and differentiation, nutrient absorption, and metabolism. Then, 14 candidate genes,
located close to significant or suggestive SNPs were considered as important candidate genes.

Six candidate genes associated with D100 trait were selected. The WT1 gene has a crucial
role in organ development from cell proliferation to mature organ structure [30]. Little is
known about the FBXO3 and DOCKY7 genes, although they are located near the most signifi-
cant SNPs. Three suggestive SNPs were located in the PPP3CA intron and another two were
located in the AGPAT9 and NKX6-1 introns. PPP3CA activates myogenin gene transcription
[31]. In transgenic mice overexpressing PPP3CA, glucose absorption and glycogen and lipid
oxidation in skeletal muscle increased [32]. Furthermore, AGPAT?Y is a member of the GPAT
gene family that controls the rate of triacylglycerol biosynthesis [33]. NKX6-1 is active in devel-
oping pancreatic -cells [34].

We selected seven candidate genes associated with FCR. The MAP2 gene has a role in neu-
ron growth and repair [35]. It was reported that body weight was regulated through the central
nervous system, because glucocorticoid and mineralocorticoid receptors in hippocampal neu-
rons define the balance between glucose allocation processes and food intake [36]. The TBX15
gene is involved in adipocyte differentiation, triglyceride accumulation, and mitochondrial
function, and some of its variants reportedly increase the risk of diabetes and metabolic disease
[37]. IVL, a widely used marker for keratinocyte differentiation, is a major component of the
cornified envelope and its expression is relevant to the PPARG gene, which plays an important
role in adipocyte differentiation [38]. Some potential candidate genes near those SNPs were the
ARL15, CPS1, VWC2L, and VAV3 genes. ARL15 regulates human adiponectin levels [39],
which affects insulin sensitivity and glucose and lipid metabolism [40]. CPS1-deficient hepato-
cytes can cause steatosis and glycogenosis [41]. VWC2L and VAV 3 regulate osteoclast activa-
tion and matrix mineralization [42, 43].

Only suggestive SNPs were associated with ADG. Nevertheless, we still selected the gene
COL27A1 as a potential functional candidate. It generates collagen type XXVII, and therefore
it is crucial in cartilage calcification [44]. Most of the other genes close to suggestive SNPs
played significant roles in nervous signal transduction and regulation. To evaluate the potential
functional role of regions around associated SNPs with corresponding traits in our population,
gene ontology (GO) information for each closest gene was collected (S2 Table). The nearest
genes associated with the D100 trait primarily participate in the phosphorus metabolic process
and neuron system. Most of the nearest genes associated with the FCR trait join the phospho-
rus metabolic process and nucleotide binding. It is essential to further investigate their effect
on the phenotype to identify new pathways and mechanisms.

The results of our study agree, in part, with previous QTL mapping and GWAS studies. For
example, previous publication reported a QTL associated with FCR on SSC16 located at 32~38
Mb with the peak at 35 Mb, is similar to our result, which showed that one haplotype block
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associated with FCR on SSC16 from 34.9 to 38.9 Mb. Furthermore, 12 significant SNPs for
FCR located on SSC16 were detected in both studies [13]. Two QTLs for ADG were reported
on SSC8 from 124.2 to 139.0 Mb and on SSC10 from 0.7 to 61.2 Mb respectively [45], this was
confirmed by our study, two haplotype blocks associated with D100 and ADG were identified
on SSC8 from 129.4 to 129.6 Mb and on SSC10 from 59.0 to 59.2 Mb respectively. Because of
high correlation between ADG and D100, these two traits were also found to be associated
with 9 same suggestive SNPs in our study. In conclusion, most of our results agree with previ-
ous research and further narrows down the ranges [13, 45, 46]. However, there is also some
inconsistent results found in our study, for example, one haplotype block associated with FCR
was found on SSC15 from 128.9 to 129.3 Mb, which is different from other reports [16]. We
speculated that the different population background might lead to the disagreement. ADG is a
complex trait with high heritability; however there are no significant SNPs were discovered to
be associated with ADG. Similar results were reported in other studies [47, 48], which also indi-
cated no or few significant SNPs were found to be associated with high heritability traits. The
discrepancy might be caused by the following reasons. One is large number of causal variants
with smaller effect are difficult to identify statistically [47-49]. Another reason is rarer variants
with large effect do not exist in current commercial SNP chip [47-49]; Moreover, our investi-
gated Duroc population has similar genetic background because of breeding purpose, more
rare SNPs and monomorphic SNPs were filtered out, which also can lead to no significant
SNPs found.

All candidate genes have been selected given their function and physical location near sig-
nificant or suggestive SNPs associated with a production trait (D100, FCR, and ADG). To
prove causality, future research must include gene sequencing and identification of all muta-
tions, further statistical association testing, and cell experiments comparing molecular activities
between mutant and normal cell lines. A more practical animal breeding aspect of our research
could be weighting SNPs in genomic selection according to their relative additive effects on
production traits.

Supporting Information

S$1 Fig. Cumulative contribution rate of top ten principle components. PC1: First Principle
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