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As sequencing becomes more accessible and affordable, the analysis of
genomic and transcriptomic data has become a cornerstone of many
research initiatives. Communities with a focus on particular taxa or ecosys-
tems need solutions capable of aggregating genomic resources and serving
them in a standardized and analysis-friendly manner. Taxon-focussed
resources can be more flexible in addressing the needs of a research commu-
nity than can universal or general databases. Here, we present MolluscDB, a
genome and transcriptome database for molluscs. MolluscDB offers a rich
ecosystem of tools, including an Ensembl browser, a BLAST server for hom-
ology searches and an HTTP server from which any dataset present in the
database can be downloaded. To demonstrate the utility of the database
and verify the quality of its data, we imported data from assembled genomes
and transcriptomes of 22 species, estimated the phylogeny of Mollusca using
single-copy orthologues, explored patterns of gene family size change and
interrogated the data for biomineralization-associated enzymes and shell
matrix proteins. MolluscDB provides an easy-to-use and openly accessible
data resource for the research community.

This article is part of the Theo Murphy meeting issue ‘Molluscan
genomics: broad insights and future directions for a neglected phylum’.
1. Introduction
Molluscs are important members of many terrestrial and aquatic ecosystems,
where they can be dominant herbivores or important predators. They are impor-
tant indicators of ecosystem health and are highly responsive to environmental
change. Molluscs are also major food sources for humans, and understanding
their biology is important for improving shellfish productivity. The mollusc
shell is a product of active biomineralization, the enzymologyofwhich is of inter-
est to synthetic biology, aquaculture and climate science. Improved
understanding of all of these issues and questions can be gained through the
application of genomic and post-genomic methodologies to target species of
molluscs, and through comparison of mollusc genes and genomes.

Over the past years, sequencing costs have decreased significantly. As a
result, sequencing projects are no longer limited to specialized centres or
large consortia [1]. This has favoured the study of non-model organisms such
as molluscs, for which the number of sequencing-related publications is rapidly
growing [2]. During the publication process, raw data and draft genomes are
submitted to public databases. However, other analysis outputs such as gene
predictions or functional annotations are often not formally submitted, which
hinders further analyses by other researchers. Exceptionally, research groups
make their results publicly available through their own websites, but such
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resources can be hard to maintain, tend to increase format
inconsistency between projects and do not offer a stable
environment for the exploitation of the data. The situation
is worse for species for which only transcriptome data are
available, as there is no widely accepted route for submission
of transcriptome assembly and annotation data for reuse.
Usually, transcriptome data are only available in the form
of raw reads, and reuse of these data often requires reassem-
bly and reanalysis, divorcing secondary use from the primary
publication [3,4].

While pan-taxonomic databases such as Ensembl [5] host
and maintain data in a reliable way and provide a diverse set
of tools for data exploration, they cannot accommodate most
datasets generated in genomic research owing to strict quality
inclusion criteria. For model organisms, data are hosted in
taxon-specific databases, such as FlyBase [6] or WormBase
[7]. These offer a feature-rich presentation and analysis eco-
system that can focus on meeting the specific needs of their
research communities. Owing to their multiple advantages,
taxon-specific databases have also been developed for non-
model organisms, such as VectorBase [8], Avianbase [9] and
Lepbase [10]. This tiered system of databases, from Tier 1
(local, often private, single-species or single-analysis resources)
through Tier 2 (multi-species databases) and Tier 3 (pan-
species databases such as Ensembl) [11] delivers to the needs
of the science community. However, tools for Tier 2 databases
that integrate genome and transcriptome data are lacking.

MolluscDB is a Tier 2 genome and transcriptome database
for the phylum Mollusca built with GenomeHubs [12]. Mol-
luscDB delivers the core elements of Ensembl, plus additional
resources conferred by GenomeHubs. Here, we discuss the
features of MolluscDB and highlight its utility by using it
to support analyses of mollusc phylogeny, of gene family
evolution and of genes associated with biomineralization.
2. Methods
(a) Software tools used
Relevant parameters and version numbers of software tools are
given in electronic supplementary material, table S5.

(b) Infrastructure
MolluscDB consists of a set of Docker containers and scripts pro-
vided by GenomeHubs. Infrastructural containers (EasyMirror
[12], SequenceServer [13], h5ai (https://larsjung.de/h5ai/) and
MySQL) were set up on an LXC container running Ubuntu
18.04 on a dedicated server (with access to 4 cores and 16 GB
of RAM). Analytical and import-related containers (BLAST
[14], BUSCO [15], CEGMA [16,17], InterProScan [18], Repeat-
Masker [19] and EasyImport [12]) were run when needed in a
local compute cluster at the Institute of Evolutionary Biology,
Edinburgh (768 cores, 384 GB to 1.5 TB RAM per node). Certain
features of the Ensembl instance were modified using a custom
plugin (https://github.com/genomehubs/molluscdb-plugin/).

(c) De novo transcriptome assembly
Raw reads from different studies were downloaded from the
Sequence Read Archive (SRA) [20]. The quality of each dataset
was first assessed with FastQC [21]. Raw reads were trimmed
to remove adapters and low quality or very short sequences
with BBDuk [22]. Trimmed reads were then de novo assembled
with Trinity [23]. Finally, candidate coding regions within the
transcripts were predicted with TransDecoder [24]. Flags to
account for strand specificity of the datasets were used for both
Trinity and TransDecoder when appropriate. BLAST searches
against UniRef90 [25] and hmmscan [26] searches against Pfam
[27] were included in the TransDecoder pipeline to maximize
sensitivity for capturing open reading frames.

(d) Data import
Transcriptome and genome assemblies fromdifferent sourceswere
incorporated into the database (table 1 and electronic supple-
mentary material, table S1). Three species were directly mirrored
from Ensembl Genomes [28–31]. Four genome assemblies were
imported together with their proteins and gene models from
ngenomes.org [32], VectorBase [8,33] and the NCBI Assembly
resource [34,35]. Fifteen transcriptome assemblies were added to
the database: 4 published assemblies [36–38] and 11 transcrip-
tomes that were de novo assembled from publicly available raw
read data [3,39–44]. For all the transcriptomes, proteins were
predicted and imported together with their assemblies.

(e) GenomeHubs analyses
During importation of genome or transcriptome data, Genome-
Hubs performs a number of analyses. Genome assemblies were
masked with RepeatMasker [19] using the built-in Metazoa
repeat database. Sequence similarity of the proteins to Swiss-
Prot [25] was determined with BLAST [14]. Domain annotation
and GO terms were obtained for each protein via InterProScan
[18]. Genome completeness was evaluated with CEGMA
[16,17] and BUSCO [15]. The same analyses were performed on
transcriptome assemblies except for CEGMA and RepeatMasker.

A full set of orthology predictions and gene tree reconstruc-
tions was performed to enable Ensembl Compara [45] data
displays within MolluscDB. The full orthology pipeline used
Orthofinder 2 [46] for the majority of analysis steps and was
implemented in a GenomeHubs Compara container [12]. Protein
sequences in MolluscDB were clustered based on pairwise DIA-
MOND [47] blastp searches using the default inflation parameter
of 1.5. For each orthogroup, protein sequences were aligned
using MAFFT [48] and the resulting alignments were trimmed
to remove poorly aligned regions using trimAl [49]. Approximate
maximum-likelihood gene trees were reconstructed using
FastTree [50] and reconciled against a species tree generated
during the same Orthofinder run from a concatenated alignment
of 1163 single-copy or mostly single-copy genes to identify gene
duplication events, orthologs and paralogs. Orthofinder results
were processed and imported into a Compara database as part
of the GenomeHubs import.

( f ) Analysis of protein families
Protein, GFF3 and InterProScan files for the 22 species of mol-
luscs detailed in table 1 were downloaded from MolluscDB via
the download section. As two gene sets were available for Lym-
naea stagnalis, only the files corresponding to the AUGUSTUS
[51] annotation were used. Additionally, protein and GFF3 files
of the annelid Capitella teleta were downloaded from Ensembl
Genomes [28,31], and InterProScan [18] annotation was gener-
ated using the same version and parameters used for the
MolluscDB species. Protein files were filtered to remove
sequences shorter than 30 residues and predicted peptides with
internal stop codons. For transcriptomes or genomes for which
isoform information was available (Biomphalaria glabrata and
Octopus bimaculoides), only the longest isoform for each locus
was retained. Proteins were clustered with OrthoFinder [52] at
an inflation value of 3.0 using BLAST similarity information.

A total of 5 one-to-one single-copy orthologue clusters and
2182 ‘fuzzy’ single-copy orthologue clusters (clusters with
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https://larsjung.de/h5ai/
https://github.com/genomehubs/molluscdb-plugin/
https://github.com/genomehubs/molluscdb-plugin/


Table 1. Genome and transcriptome assemblies available in MolluscDBa. An extended version of this table is available in electronic supplementary material,
table S1.

species class span (Mb) scaffold count scaffold N50 (kb) contig count contig N50 (kb)

BUSCO

complete (%)b

genome data

Bathymodiolus platifrons Bivalvia 1658 65 662 343 272 497 13 85.80

Crassostrea gigas Bivalvia 558 7658 402 30 459 31 94.10

Modiolus philippinarum Bivalvia 2630 74 573 100 301 873 39 82.60

Octopus bimaculoides Cephalopoda 2338 151 674 475 700 124 6 86.80

Biomphalaria glabrata Gastropoda 916 331 400 48 369 696 13 84.50

Lottia gigantea Gastropoda 360 4469 1870 18 335 96 94.40

Lymnaea stagnalis Gastropoda 997 148 229 5 328 378 6 88.10

Capitella teleta (outgroup)a Polychaeta 277 20 803 188 49 393 22 98.40

transcriptome data

Cristaria plicata Bivalvia 418 523 239 2 100.00

Laternula elliptica Bivalvia 297 324 119 1 98.60

Mya arenaria Bivalvia 76 118 239 1 70.30

Mya truncata Bivalvia 361 684 686 1 96.70

Mytilus edulis Bivalvia 336 592 134 1 84.80

Mytilus galloprovincialis Bivalvia 181 227 675 1 92.10

Pecten maximus Bivalvia 195 298 288 1 85.80

Scutopus ventrolineatus Caudofoveata 116 246 430 1 72.90

Octopoteuthis deletron Cephalopoda 114 122 672 2 95.70

Vampyroteuthis infernalis Cephalopoda 105 149 961 1 88.80

Laevipilina hyalina Monoplacophora 135 287 179 1 52.50

Acanthochitona crinita Polyplacophora 208 266 385 1 96.70

Gadila tolmiei Scaphopoda 181 345 172 1 93.70

Gymnomenia pellucida Solenogastres 194 266 289 1 86.10

Wirenia argentea Solenogastres 327 563 852 1 73.00

aCapitella teleta is not a mollusc so is not present in the database, which is why it is marked as ‘outgroup’.
bBUSCO loci from the eukaryota_odb9 set identified in the assembly.
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maximum 5 proteins per taxon and with members in at least 75%
of the taxa) were identified via KinFin [53]. Sequences in these
2187 clusters were aligned with MAFFT [48]. Alignments were
trimmed with trimAl [49] and single-gene trees generated via
RAxML [54]. Strict orthologues were inferred via PhyloTreePru-
ner [55], yielding 1238 orthologous loci. Alignments of these
were concatenated into a supermatrix of 262 970 distinct align-
ment positions (with 20.31% missing data) with FASconCAT
[56] and a phylogenetic tree was inferred using RAxML [54].

An extended KinFin analysis was performed on the
orthogroups in order to identify synapomorphic clusters and
explore the expansions and contractions of protein families.
KinFin defines synapomorphic clusters for each node of the phy-
logenetic tree using Dollo parsimony, which requires that only
proteins of taxa under a given node be members of the cluster,
and that proteins of at least one taxon from each child node be
present. The topology of the phylogenetic tree of the taxa and
the functional annotation of the proteins were supplied as
input. For the KinFin analyses, taxa were grouped into the
following taxonomic sets: Polyplacophora (Acanthochitona cri-
nita), Gastropoda (Biomphalaria glabrata, Lottia gigantea, Lymnaea
stagnalis), Bivalvia (Bathymodiolus platifrons, Crassostrea gigas,
Cristaria plicata, Laternula elliptica, Mya arenaria, Mytilus edulis,
Mytilus galloprovincialis, Modiolus philippinarum, Mya truncata,
Pecten maximus), Solenogastres (Gymnomenia pellucida, Wirenia
argentea), Scaphopoda (Gadila tolmiei), Monoplacophora (Laevipi-
lina hyalina), Cephalopoda (Octopus bimaculoides, Octopoteuthis
deletron, Vampyroteuthis infernalis), Caudofoveata (Scutopus
ventrolineatus) and the outgroup (the annelid Capitella teleta).

Shell matrix proteins (SMPs) were identified by sequence
similarity to a list of experimentally validated SMPs [57]. Pro-
teins shorter than 50 residues were filtered out. Reciprocal best
BLAST hits between SMPs and proteins in the clustering were
evaluated via rbbh.py (https://github.com/DRL/rbbh).
3. Results and discussion
(a) MolluscDB resources
MolluscDB is available openly at https://molluscdb.org. The
database collates the genomic data for 22 species of mollusc
including 7 species represented by genome sequences and 15
by transcriptome assemblies. Data are stored in the Ensembl
schema and thus could be queried with tools developed by
the Ensembl project [5], or custom tools using the Ensembl
application programming interface (API). The 22 species in
MolluscDB represent eight major classes of molluscs
(table 1). For each assembly, a landing page includes a brief
description of the species, information on the assembly and
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Figure 1. Protein families in species represented in MolluscDB. (a) Stacked histogram of proteins in each taxon analysed assigned to: ‘shared’: proteins in clusters
containing proteins from multiple taxa; ‘specific’: proteins in clusters containing two or more proteins from a single proteome; and ‘singleton’: proteins in single
protein clusters. (b) Frequency plot of cluster size in the OrthoFinder clustering of 214 608 orthogroups. (Online version in colour.)
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its annotation, and interactive plots displaying assembly
metrics [58] and codon usage [59].

The GenomeHubs [12] implementation of the Ensembl
infrastructure permits the hosting of multiple assemblies
from the same species as well as multiple annotations of
one assembly. Thus, for L. stagnalis, two annotations of the
same assembly can be accessed. A text search function
allows the discovery of specific sequences, regions or
annotation terms. For each species genome, a gbrowse
genome browser representation of the data is available. For
the transcriptomes, the data are represented as one contig
per assembled transcript, with the open reading frame anno-
tated. Importantly, the annotation of genome-derived and
transcriptome-derived proteins is consistent across species,
as all the genomes and transcriptomes were decorated with
functional inferences derived from searches and comparisons
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to the same libraries of reference information. We note that
the assembled transcriptomes contain many more contigs
(assembled transcripts) and have much longer spans than
would be expected of a mollusc genome, and many more
than the well-annotated complete genome sequences. This
feature of transcriptome assemblies is well known, and
results from a preponderance of short contigs supported by
very few sequences. We have included the complete assem-
blies rather than filter by coverage as we would rather not
exclude possibly biologically meaningful information.

MolluscDB includes an instance of Sequenceserver [13] so
that a user can perform BLAST searches against any sequence
hosted in the database at https://blast.molluscdb.org/. Two
types of BLAST databases are available: nucleotide databases,
which include scaffolds, transcripts and coding sequences
(CDS), and protein databases. The BLAST search parameters
can be modified from default to facilitate advanced search.
A link in the header of every result connects each sequence
with its Ensembl entry. The MolluscDB download server at
https://download.molluscdb.org/ allows users to download
any sequence or analysis hosted in the database. Files are
consistently named and formatted.

(b) Using MolluscDB to explore protein family evolution
in Mollusca

We used an orthology clustering of the protein-coding genes in
MolluscDB to explore the protein family traits of these species.
A total of 802 455 proteins were retrieved after the filtering of
the 23 proteomes included in the study. OrthoFinder [52]
grouped these proteins into 214 608 clusters, 153 141 (71.4%)
of which were singletons. L. stagnalis andG. tolmiei contributed
the largest number of proteins to the clustering, and together
they accounted for 32.62% of singleton clusters (figure 1a).
The clusters presented a power-law-like frequency distribution
with a deviation at cluster size 23 (figure 1b). Similar patterns
have been observed before in such analyses [53,60–62]. This
peak is largely made up of single-copy orthologues.

https://blast.molluscdb.org/
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Table 3. Protein families that have significantly different numbers of members in Bivalvia. An extended version of this table is available in electronic
supplementary material, table S3.

cluster ID

species with
members in
cluster

total
proteins in
cluster

Bivalvia
proteins in
cluster status domain ID domain description

OG0000078 22 241 189 enriched IPR002227 tyrosinase copper-binding domain

OG0000280 22 123 97 enriched IPR008858 TROVE domain

OG0000236 19 134 116 enriched IPR001073 C1q domain

OG0000462 19 92 73 enriched IPR006612 zinc finger, C2CH-type

OG0000931 19 63 51 enriched IPR003886 NIDO domain

OG0000091 18 227 198 enriched IPR027370 RING-type zinc-finger, LisH dimerization motif

OG0000121 18 198 186 enriched IPR001611

IPR000157

leucine-rich repeat

toll/interleukin-1

receptor homology (TIR) domain

OG0000216 18 142 119 enriched IPR002018 carboxylesterase, type B

OG0000166 17 163 142 enriched IPR006202

IPR006029

neurotransmitter-gated ion-channel

ligand-binding domain

neurotransmitter-gated ion-channel

transmembrane domain

OG0000173 17 159 144 enriched IPR000210

IPR011705

BTB/POZ domain

BTB/Kelch-associated

OG0000607 17 79 68 enriched IPR004245 protein of unknown function DUF229

OG0000275 15 123 107 enriched IPR003961 fibronectin type III

OG0000451 18 94 8 depleted IPR007074 LicD family

OG0000752 18 70 7 depleted IPR001506 peptidase M12A
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A well-supported phylogeny was inferred from the set of
1238 orthologous loci (figure 2). All branches display bootstrap
support values of 100, with the exception of two: the branch
leading to Cephalopoda and Monoplacophora, and a branch
leading to a subclade of Bivalves. Our results support a division
in two major clades: Aculifera (Caudofoveata, Polyplacophora
and Solenogastres) and Conchifera (Bivalvia, Cephalopoda,
Gastropoda,Monoplacophora and Scaphopoda).Within Aculi-
fera, Polyplacophora was placed sister to aplacophorans
(Caudofoveata and Solenogastres). Within Conchifera, we
recovered Bivalvia sister to a clade including Gastropoda and
Scaphopoda. These results coincidewith previous phylogenetic
analyses [41,63]. Monoplacophora was recovered as the sister
taxon of Cephalopoda. While this is consistent with Smith
et al. [41], a recent study including genomic data from a newly
sequenced monoplacophoran suggests that Monoplacophora
could be a sister taxon to the rest of Conchifera [63]. Clearly, a
more exhaustive sampling of loci across and within taxa is
needed to create a robust phylogenetic framework formolluscs.

An insight on the distinctive biology of a monophyletic
group can be gained through the study of synapomorphies.
Just like morphological traits, molecular features such as gene
presence and absence or gene family expansion and contraction
are informative in a phylogenetic context. Using KinFin [53], we
identified protein families that were unique to particular clades.
By decorating these with functional attributes based on domain
and sequence similarity, we assigned likely biological meaning
to these synapomorphies. Here, we present an analysis of
species in Bivalvia compared with all other mollusc groups in
the database (table 2 and electronic supplementary material,
table S2). Analysis of the OrthoFinder [52] clustering identified
14 synapomorphic clusters with the presence of at least five of
the ten bivalve species. Annotations associated with these 14
clusters could be grouped into two main classes: immunity
and metabolism. The dominant annotations related to immu-
nity to cellular and viral pathogens, including RNA-
dependent RNA polymerase (involved in the RNAi response
to invading viral nucleic acids), big defensin [64,65], serumamy-
loid A [66,67], thaumatin [68], macin [69,70] and an immunity-
relatedGTPase. Four Bivalvia-restricted clusters were annotated
only as containing matches to domains of unknown function
(DUF). One of these domains, DUF3421, has been associated
with stress-responsive, sugar-binding natterins in C. gigas [71],
where theymayplay roles in immunedefence [72,73].Metabolic
annotations included carbohydrate metabolism (glycoside
hydrolase family 76, and, possibly, a STELLO-like domain-con-
taining protein), protein metabolism (peptidase S51) and
degradation of vitamin B1 (Thiaminase-2/PQQC).

KinFin also facilitates analysis of expansion and contraction
of protein families between clades by considering clustermem-
bership count variation in a statistical framework akin to that
deployed for gene expression analysis [53]. We identified
protein clusters that had significantly different numbers of
members in Bivalvia species than in the other taxa analysed
(table 3 and electronic supplementary material, table S3). To
be selected, the clusters had to havemembers in at least 7 Bival-
via and 7 other taxa, with Log2 mean≥ 2 or ≤−2 and a p-value
below 0.05 for the difference between Bivalvia and other taxa.



Table 4. Functionally annotated shell matrix proteins. An extended version of this table is available in electronic supplementary material, table S4.

cluster ID domain ID domain description
number of
proteins in cluster

number of species
represented in cluster

OG0000137 IPR001223

IPR002557

glycoside hydrolase family 18, catalytic domain

chitin-binding domain

182 23

OG0000159 IPR001466 beta-lactamase-related 167 23

OG0000231 IPR000668

IPR013201

peptidase C1A, papain C-terminal

cathepsin propeptide inhibitor domain (I29)

136 23

OG0000631 IPR019479

IPR000866

peroxiredoxin, C-terminal

alkyl hydroperoxide reductase subunit C/

thiolspecific antioxidant

77 23

OG0000962 IPR002130 cyclophilin-type peptidyl-prolyl cis-trans isomerase

domain

62 23

OG0001572 IPR000741 fructose-bisphosphate aldolase, class-I 49 23

OG0001810 IPR017868

IPR001715

filamin/ABP280 repeat-like

calponin homology domain

46 23

OG0000078 IPR002227 tyrosinase copper-binding domain 241 22

OG0000127 IPR019791 haem peroxidase, animal type 190 22

OG0000344 IPR015798

IPR015800

copper amine oxidase, C-terminal

copper amine oxidase, N2-terminal

110 22

OG0002836 IPR001660 sterile alpha motif domain 38 22

OG0005847 IPR001715 calponin homology domain 28 22

OG0000686 IPR014044 CAP domain 73 21

OG0009156 IPR001152 beta-thymosin 23 21

OG0000036 IPR001304 C-type lectin-like 369 19

OG0000093 IPR002557

IPR002035

chitin-binding domain

von Willebrand factor, type A

225 19

OG0000222 IPR031569 apextrin, C-terminal domain 138 19

OG0001850 IPR002937 amine oxidase 45 12

OG0011795 IPR000867 insulin-like growth factor-binding protein, IGFBP 17 10

OG0013954 IPR001223 glycoside hydrolase family 18, catalytic domain 12 8

OG0015275 IPR003961 fibronectin type III 10 7

OG0017162 IPR002035 von Willebrand factor, type A 8 7

OG0005249 IPR002035 von Willebrand factor, type A 30 6

OG0018497 IPR002223 pancreatic trypsin inhibitor Kunitz domain 7 6

OG0018680 IPR001148 alpha carbonic anhydrase 7 3

OG0020309 IPR015882

IPR015883

IPR004866

beta-hexosaminidase, bacteial type, N-terminal

glycoside hydrolase family 20, catalytic domain

chitobiase/beta-hexosaminidases, N-terminal domain

6 6

OG0020490 IPR001073 C1q domain 6 3

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200157

8

Therewere 14 clusters with differential representation in Bival-
via. Twelve had higher family sizes in the bivalves. These
included one annotated as tyrosinase, an enzyme implicated
in shell formation [74–76], and several families annotated
with domains associated with mollusc immunity, including
C1q-like proteins [77], Toll/interleukin-1 receptor (TIR) [78]
and fibronectin type III [79] domains. These findings mesh
with previous descriptions of gene family expansions in
bivalves of tyrosinase [80], C1q [77] and TIR [81]. Other
enriched clusters have annotations including zinc-finger
domains (C2CH-type and RING-type), carboxylesterase type
B, neurotransmitter-gated ion-channel ligand-binding and
transmembrane domains, TROVE domain, NIDO domain,
BTB/POZ domain and a domain of unknown function
(DUF229). Two clusters, annotated as containing peptidase
M12A and LicD nucleotidyltransferase superfamily members,
displayed a significantly lower number of proteins in Bivalvia
compared with the other taxa.
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(c) Shell matrix proteins
SMPs comprise a heterogeneous set of enzymes and struc-
tural proteins implicated in the biomineralization process,
either by the demonstration of secretion by the mantle
during shell synthesis or repair, or through isolation of pep-
tides from isolated shell material [82]. We used a previously
curated list of experimentally validated SMPs [57] to interro-
gate the gene sets in MolluscDB to identify presence/absence
and gene family size change patterns (table 4 and electronic
supplementary material, table S4).

Seventy-four clusters presented proteins with significant
sequence similarity to SMPs. Of the 48 clusters with three or
more species, 27 had annotation matches to InterPro domains.
These included highly conserved biomineralization domains
such as tyrosinase, carbonic anhydrase, chitin-binding, vonWill-
ebrand factor, protease inhibitors and peroxidases [83,84]. We
also retrieved proteins and domains associated with immune
functions (C1q, fibronectin type III, C-type lectin and apextrin)
[77,79,85–87]. Other matching sequences included proteins
involved inmetabolism (peptidase, fructose aldolase, lactamase,
beta-hexosaminidase, oxidases and glycosyl hydrolases), cross-
linking (filamin and calponin), protein folding (cyclophilin),
actin filament organization (beta-thymosin) and regulation of
insulin-like growth factors. These protein families are a strong
substrate for future analysis of molecular correlates of mollusc
responses to ocean acidification and warming, and for
monitoring farmers’ shellfish growth, health and disease.

(d) Outlook
By collating genome and transcriptome data in a single data-
base structure, we have been able to explore genomic data for
diverse species of molluscs, and identify genes that may have
evolved to deliver clade-specific processes. Using Genome-
Hubs [12] technology, we were able to incorporate genomes
from both existing Ensembl instances and genomes that
were too fragmented to incorporate in such pan-taxonomic
databases. Transcriptome datasets are particularly attractive
and economic to generate, as they sample only the expressed
genome and allow immediate access to potential genes of
interest. We have shown that these data can be rapidly incor-
porated and coordinated with full genome data in a
consistent and accessible way. It is essential to recognize
the key differences between transcriptome assembly-derived
and genome-derived protein sets, such as the presence of
multiple distinct isoforms and gene fragments in transcrip-
tome assemblies. Despite this, the transcriptomes reliably
report on the presence of a gene or gene family in a species,
and facilitate filtering of lists of target genes to include (or
exclude) those with broad phylogenetic representation.

MolluscDB currently presents 22 genomes and transcrip-
tomes from the phylum Mollusca. To date, there are 49
genome assemblies in the International Nucleotide Sequence
Database Consortium (INSDC; GenBank, European Nucleotide
Archive, DNA Databank of Japan) databases (see https://
www.ncbi.nlm.nih.gov/genome/?term=txid6447[Organism:
exp], sourced 01 September 2020) with very different comple-
teness and contiguity metrics. Incorporating these assemblies
in MolluscDB is a near-future goal for the project. There are
nearly 8000 mollusc transcriptome datasets in the short read
archive (SRA) from 646 species (see https://www.ncbi.nlm.
nih.gov/sra/?term=txid6447[Organism:exp]+and+transcrip-
tomic, sourced 1 September 2020), 601 of which have no
genome data. While some of these transcriptome datasets
will not be suitable for assembly and presentation owing to
low size or complexity of sample (including symbionts or
other cobionts), they represent a large, currently untapped
resource of information for comparative and functional geno-
mics. Several global and regional projects, such as the Earth
BioGenome Project [88] and Darwin Tree of Life project
(https://darwintreeoflife.org), intend to sequence and
assemble the genomes of large numbers of mollusc and
other species, suggesting that the need for analysis hubs
will only grow. Current database architectures may struggle
to host and display such large amounts of data. For example,
the 601 transcriptomes alone may generate 200 million
assembled contigs and associated protein predictions and
functional annotations. We are, therefore, also developing
the GenomeHubs platform to scale to these new demands.
Note added in proof
Since this article was accepted, Liu et al. have published their
database of molluscan genome data, also called MolluscDB
(at http://mgbase.qnlm.ac) (Nucleic Acids Research 2021, 49:
D1556. (Liu F, Li Y, Yu H, Zhang L, Hu J, Bao Z, Wang S.
2021 MolluscDB: an integrated functional and evolutionary
genomics database for the hyper-diverse animal phylum
Mollusca. Nucleic Acids Research 49, D988–D997. (doi:10.
1093/nar/gkaa918)). Their presentation includes similar
functionality to MolluscDB presented here. We will liaise
with the authors to ensure that the community is best
served by our complementary efforts.
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