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Abstract

Objective: To develop predictive models for in-hospital mortality and length of stay (LOS) for coronavirus
disease 2019 (COVID-19)epositive patients.
Patients and Methods: We performed a multicenter retrospective cohort study of hospitalized COVID-
19epositive patients. A total of 764 patients admitted to 14 different hospitals within the Cleveland Clinic
from March 9, 2020, to May 20, 2020, who had reverse transcriptase-polymerase chain reactioneproven
coronavirus infection were included. We used LightGBM, a machine learning algorithm, to predict in-
hospital mortality at different time points (after 7, 14, and 30 days of hospitalization) and in-hospital
LOS. Our final cohort was composed of 764 patients admitted to 14 different hospitals within our system.
Results: The median LOS was 5 (range, 1-44) days for patients admitted to the regular nursing floor and
10 (range, 1-38) days for patients admitted to the intensive care unit. Patients who died during hospi-
talization were older, initially admitted to the intensive care unit, and more likely to be white and have
worse organ dysfunction compared with patients who survived their hospitalization. Using the 10 most
important variables only, the final model’s area under the receiver operating characteristics curve was 0.86
for 7-day, 0.88 for 14-day, and 0.85 for 30-day mortality in the validation cohort.
Conclusion: We developed a decision tool that can provide explainable and patient-specific prediction of
in-hospital mortality and LOS for COVID-19epositive patients. The model can aid health care systems in
bed allocation and distribution of vital resources.
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D espite several international and local
efforts, the coronavirus pandemic
caused by the severe acute respira-

tory syndrome coronavirus 2 has infected
more than 122 million individuals worldwide,
and more than 2.7 million people have died to
date.1 The pandemic is far from over, with
increasing new cases in several parts of the
United States and the world. Consequently,
health care systems continue to face several
challenges regarding bed availabilities/alloca-
tions and resource use.

Whereas some infected patients can be
asymptomatic, others can experience severe res-
piratory distress syndrome, multiorgan failure,
and death. Thus, identifying patientswith higher
risk for early mortality during their hospitaliza-
tion could aid hospitals and health care pro-
viders in predicting the disease trajectory,
distributing vital resources efficiently, and
consequently improving patients’ outcomes.
Mayo Clin Proc Inn Qual Out n August 2021;5(4):795-801 n https:/
www.mcpiqojournal.org n ª 2021. Published by Elsevier Inc on be
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We developed a clinical decision tool that
uses clinical and demographic variables within
24 hours of hospitalization to provide personal-
ized predictions of patient mortality and length
of stay (LOS) that are specific for a given patient.

PATIENTS AND METHODS
All patients admitted to our health care system
from March 9, 2020, to May 20, 2020, who
had reverse transcriptase-polymerase chain
reactioneproven coronavirus disease 2019
(COVID-19) infection were included in our
database (n¼962). We excluded patients: (1)
who had not been discharged or died by
May 21, 2020 (n¼103), (2) for whom
discharge disposition was unknown (due to
missing information or transfer to another
hospital; n¼89), and (3) who were younger
than 18 years (n¼6). Our final cohort was
composed of 764 patients admitted to 14
different hospitals within our system. The
/doi.org/10.1016/j.mayocpiqo.2021.05.001
half of Mayo Foundation for Medical Education and Research. This is an open access
g/licenses/by-nc-nd/4.0/).
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TABLE. Patients’ Characteristicsa,b

Characteristic All Patients (n ¼ 764)c Death or Hospice (n¼116) Survived (n¼648) P

Demographic characteristic
Race, no. (%)
White 433 (56.7) 82 (70.7) 351 (54.2) .001
African American 277 (36.3) 30 (25.9) 247 (38.1) .02
Asian 10 (1.3) 1 (0.9) 9 (1.4) >.99
Multiracial 28 (3.7) 1 (0.9) 27 (4.2) .11

Ethnicity, no. (%)
Non-Hispanic 705 (94.8) 109 (96.5) 596 (94.5) .51
Hispanic 39 (5.2) 4 (3.5) 35 (5.5)

Age (y), median (Q1, Q3) 64 (53, 76) 80 (72, 84) 62 (52, 73) <.001
Sex, no. (%)
Female 366 (47.9) 57 (49.1) 309 (47.7) .85
Male 398 (52.1) 59 (50.9) 339 (52.3) .85

Body mass index (kg/m2), median (Q1, Q3) 30.1 (25.9, 35.4) 30.3 (26.5, 35.6) 28.6 (22.9, 32.7) <.001
Previous medical history, no. (%)
Chronic obstructive pulmonary disease 95 (13.5) 17 (16.2) 78 (13.0) .47
Asthma 156 (22.1) 16 (15.1) 140 (23.3) .08
Diabetes 284 (39.9) 50 (46.3) 234 (38.7) .17
Hypertension 528 (72.3) 96 (83.5) 432 (70.2) .005
Coronary artery disease 152 (21.6) 44 (40.4) 108 (18.1) <.001
Heart failure 139 (19.6) 44 (40.0) 95 (15.9) <.001
Any cancer 142 (19.4) 35 (31.5) 107 (17.3) .001

Laboratory parameters, median (Q1, Q3)

Metabolic indexes
Sodium (mEq/L) 137.0 (134.0, 139.0) 138.0 (134.0, 141.0) 137.0 (134.0, 139.0) .02
Potassium (mEq/L) 4.0 (3.7, 4.4) 4.2 (3.8, 4.5) 4.0 (3.7, 4.3) <.001
Creatinine (mg/dL) 1.0 (0.8, 1.4) 1.6 (1.1, 2.3) 1.0 (0.8, 1.3) <.001
Lactate (mg/dL) 1.4 (1.0, 1.8) 1.5 (1.2, 2.1) 1.3 (1.0, 1.8) .02

Hepatic indexes
Alanine aminotransferase (U/L) 24.0 (15.0, 40.0) 27.0 (15.0, 41.0) 23.0 (15.0, 39.0) 0.38
Aspartate aminotransferase (U/L) 34.0 (24.0, 52.0) 43.0 (32.0, 79.0) 32.0 (23.0, 49.0) <.001
Total bilirubin (mg/dL) 0.4 (0.3, 0.6) 0.5 (0.3, 0.7) 0.4 (0.3, 0.6) .05
Alkaline phosphatase (U/L) 72.0 (57.5, 94.5) 82.0 (63.5, 104.0) 71.0 (57.0, 93.2) .01
Albumin (g/dL) 3.7 (3.4, 4.0) 3.4 (3.0, 3.8) 3.7 (3.4, 4.0) <.001

Hematologic indexes
Hemoglobin (g/dL) 13.1 (11.6, 14.5) 11.9 (9.9, 13.8) 13.3 (11.9, 14.6) <.001
White blood cell count (k/mL) 6.4 (4.8, 8.5) 7.7 (5.4, 10.9) 6.3 (4.8, 8.2) <.001
Platelet count (k/mL) 207.0 (160.0, 267.0) 198.5 (144.2, 245.2) 209.0 (163.0, 268.0) .04

Coagulation indexes
International normalized ratio 1.0 (1.0, 1.1) 1.1 (1.0, 1.2) 1.0 (1.0, 1.1) .04
Partial thromboplastin time (s) 29.6 (27.1, 33.4) 30.8 (27.0, 33.7) 29.4 (27.1, 33.2) .50
D-Dimer (ng/mL) 840.0 (490.0, 1615.0) 1470.0 (825.0, 3380.0) 780.0 (470.0, 1390.0) <.001

Inflammatory indexes
Lactate dehydrogenase (U/L) 299.0 (229.8, 401.0) 400.0 (308.0, 531.0) 288.0 (223.5, 366.5) <.001
C-Reactive protein (mg/dL) 6.5 (3.0, 12.2) 11.9 (5.7, 17.5) 5.9 (2.5, 11.3) <.001
Procalcitonin (ng/mL) 0.1 (0.1, 0.4) 0.3 (0.2, 1.4) 0.1 (0.1, 0.3) <.001
Ferritin (ng/mL) 511.4 (255.3, 1009.2) 852.9 (351.9, 1747.5) 485.5 (235.1, 893.2) <.001

Cardiac enzymes
Troponin T (ng/mL) 0.0 (0.0, 0.1) 0.1 (0.0, 0.2) 0.0 (0.0, 0.1) .06
Creatine kinase (U/L) 135.0 (69.5, 297.0) 242.0 (105.0, 753.0) 115.0 (65.8, 228.2) .001

Treatment-related variables, no. (%)
Intensive care unit on admission 147 (19.2) 48 (41.4) 99 (15.3) <.001
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TABLE. Continued

Characteristic All Patients (n ¼ 764)c Death or Hospice (n¼116) Survived (n¼648) P

Laboratory parameters, median (Q1, Q3), continued
Need for noninvasive mechanical ventilation 96 (12.6) 34 (29.3) 62 (9.6) <.001
Mechanical ventilation on d 1 74 (9.7) 34 (29.3) 40 (6.2) <.001
Mechanical ventilation during stay 133 (17.4) 59 (74.7) 74 (27.4) <.001
Use of hydroxychloroquine 293 (52.6) 39 (48.1) 254 (53.4) .45
Use of tocilizumab 50 (9.0) 8 (9.9) 42 (8.8) .92
New use of steroids 94 (12.3) 32 (27.6) 62 (9.6) <.001

aQ, quartile.
bSI conversion factors: To convert sodium and potassium values to mmol/L, multiply by 1.0; to convert creatinine values to mmol/L, multiply by 88.4; to convert lactate values
to mmol/L, multiply by 0.111; to convert total bilirubin values to mmol/L, multiply by 17.104; to convert albumin and hemoglobin values to g/L, multiply by 10; to convert
white blood cell values to �109/L, multiply by 1; to convert platelet values to �109/L, multiply by 1; to convert D-dimer values to nmol/L, multiply by 5.476; to convert
C-reactive protein values to mg/L, multiply by 10; to convert ferritin values to mg/L, multiply by 1; to convert troponin T values to mg/L, multiply by 1.0.
cFor the categorical variables, percentages are calculated out of non-missing data points instead of out of 764.

PERSONALIZED PREDICTION OF COVID-19 MORTALITY
study was approved by the Cleveland Clinic
Institutional Review Board and conducted in
accordance with the Declaration of Helsinki.

Data Set and Outcomes Definition
For each patient, demographic, clinical, and lab-
oratory variables (109 variables; Supplemental
Table, available online at https://mcpiqo
journal.org) were included and structured
from the electronic health care record. All vari-
ables were collected within the first 24 hours
of hospitalization. Twenty-two percent of our
data was missing, mostly because some labora-
tory tests were not ordered on the day of admis-
sion or the test was not ordered at all for the
patient. Missing data were handled by the
built-in algorithm from the machine learning
model used in our analysis.

The main outcomes evaluated were mortal-
ity at 7, 14, and 30 days of hospitalization and
hospital LOS, which was defined as the time
between hospitalization and death or discharge
from the hospital. We also built a model for
prediction of intensive care unit (ICU) transfer
(or death before ICU transfer) among patients
admitted to the regular nursing floor.

Statistical Analyses
To ensure that all variables are treated equally
regardless of their significance in univariate
analysis and to account for the variables that
can be significant only in the context of other
variables, we used a machine learning model,
Mayo Clin Proc Inn Qual Out n August 2021;5(4):795-801 n https:/
www.mcpiqojournal.org
Light Gradient Boosting Machine (LightGBM),2

in our analysis. LightGBM is a model based on
the gradient boosting framework. In gradient
boosting, models with weak predictive capa-
bility, such as decision trees, are used together
to achieve high predictive performance. During
training of a gradient boosting model, decision
trees are created using the available variables
to separate instances belonging to different clas-
ses (eg, survivors vs nonsurvivors). These deci-
sion trees are created in a sequential fashion to
minimize the prediction errorsmade by the pre-
vious trees. When facing a new case, the model
will use the framework of decision trees created
during training to classify the new example.

The data set was divided randomly into
training (80.0%) and test (20.0%) sets and
the models were initially trained with all our
variables. The most influential 10 variables as
determined by the values originated by the
SHapley Additive exPlanations (SHAP) algo-
rithm3 (an algorithm that is widely used to
determine the most important variables that
affected a model’s decision) were extracted.
These were ranked from the most to the least
important variable and used to fit reduced
clinically usable versions of our models.

Hyperparameter optimization using a
Bayesian optimization algorithm was obtained
to ensure that the most robust models were
used, and 10-fold cross-validation was also
used to ensure the reproducibility of the final
models. Model performance in the validation
/doi.org/10.1016/j.mayocpiqo.2021.05.001 797
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FIGURE1. Ten most important variables for each model. Bar plots show the 10 most important variables
for each model based on their SHapley Additive exPlanations (SHAP) values (values generated using the
SHAP algorithm indicating how much a variable contributed to the model’s decisions). ANC, absolute
neutrophil count; AST, aspartate aminotransferase; BMI, body mass index; CK, creatinine kinase;
COVID-19, coronavirus disease 2019; CRP, C-reactive protein; CXR, chest radiograph; D1, day 1; ICU,
intensive care unit; INR, international normalized ratio; LDH, lactate dehydrogenase; LOS, length of stay;
NC, nasal cannula; PTT, partial thromboplastin time; SUN, serum urea nitrogen.
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set is reported using the area under the receiver
operating characteristics curve (ROC AUC).
RESULTS

Patient Population
Among the 764 patients included in the anal-
ysis, 116 (15.2%) either died (n¼87) or were
transitioned to hospice care (n¼29). The me-
dian age was 64 (range, 19-98) years and 147
patients (19.2%) were admitted directly to
Mayo Clin Proc Inn Qual Out n August 2021
the ICU. The median LOS was 5 (range,
1-44) days for patients admitted to the regu-
lar nursing floor and 10 (range, 1-38) days
for patients admitted to the ICU. The Table
summarizes the clinical characteristics of
our cohort. As expected, patients who died
during their hospitalization were older, were
more likely to be initially admitted to the
ICU, and had worse organ dysfunction and
inflammatory biomarker levels compared
with patients who survived their
;5(4):795-801 n https://doi.org/10.1016/j.mayocpiqo.2021.05.001
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FIGURE 2. Personalized prediction of mortality and length of stay (LOS). Decision plots show how the probability of the outcome
(7-day mortality on the left and LOS >7 days on the right) shifts as each variable is considered for 3 different patients on each side.
The starting point in the bottom of each graph is the pre-test probability (ie, overall percentage of patients who died within 7 days or
whose LOS was >7 days). For instance, in the top panel left, the probability of dying goes from about 40% to 90% as the patient’s age
(of 85 years) is considered by the algorithm. On the left, the 3 patients depicted had similar ages but different outcomes (top 1 died
and the other 2 survived), all of which were correctly predicted by the model. On the right, from top to bottom, LOS was 5, 8, and 24
days. BMI, body mass index; CRP, C-reactive protein; D1, day 1; LDH, lactate dehydrogenase; Nan, missing value; NC, nasal cannula;
PTT, partial thromboplastin time; SUN, serum urea nitrogen.

PERSONALIZED PREDICTION OF COVID-19 MORTALITY
hospitalization (Table). Interestingly, men
did not have worse outcomes compared
with women and African American patients
had a lower mortality rate compared with
whites in our cohort (Table).

Mortality Models
A total of 109 clinical variables (Supplemental
Table) were included in the algorithm to pre-
dict mortality after 7, 14, and 30 days of hos-
pitalization. A feature extraction algorithm was
used to identify the top 10 variables that
Mayo Clin Proc Inn Qual Out n August 2021;5(4):795-801 n https:/
www.mcpiqojournal.org
affected mortality at each time point. Although
variables such as age and lactate dehydroge-
nase, ferritin, and C-reactive protein levels
were shown as important at each time point
but at a different level of importance, others
such as being treated with a mechanical venti-
lator in the first 24 hours only affected mortal-
ity at 30 days (Figure 1).

Using the top 10 variables only, the final
model ROC AUC when applied to the valida-
tion cohort was 0.86 for 7-day mortality, 0.88
for 14-day mortality, and 0.85 for 30-day
/doi.org/10.1016/j.mayocpiqo.2021.05.001 799
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mortality. The model can provide personalized
and explainable prediction for an individual
patient (Figure 2).

LOS Model
Using similar methodology, the top 10 vari-
ables that affected hospital LOS longer than
7 days and longer than 14 days are shown in
Figure 1. Using these variables, the final model
ROC AUC was 0.80 for LOS longer than 7
days and 0.82 for LOS longer than 14 days.

Other Outcomes
We also used the same methodology to build a
model to predict ICU transfer (or death before
ICU transfer) among patients admitted initially
to the regular nursing floor. The final model
ROC AUC with only the top 10 variables
was 0.80. The top 10 clinical variables that
affected the risk for ICU transfer as well as
30-day mortality in patients older than 70
years can also be found in Figure 1.

DISCUSSION
In this study, we developed personalized pre-
diction models that use clinical variables
within 24 hours of admission to predict mor-
tality and LOS that are specific for COVID-
19einfected patients. The proposed models
showed robust AUCs in predicting mortality
and LOS at different time points during hospi-
talization. Our models’ predictions could alert
physicians regarding adverse outcomes for
hospitalized patients with COVID-19 infection
such as hospital mortality and transfer to the
ICU. It can also help hospitals manage a
COVID-19 surge by identifying the expected
LOS in the hospital and ICU. We also
explored the clinical variables that affected
these outcomes during hospitalization and
showed that although some variables such as
age, lactate dehydrogenase level, and ferritin
level have a significant impact on mortality
at each time point, others such as procalcito-
nin level can only affect mortality after 14
and 30 days. More importantly, our models
can provide an explainable prediction that is
specific for a given patient. This explainability
will allow physicians to understand the signif-
icant clinical variables that affected their pa-
tients’ outcomes.
Mayo Clin Proc Inn Qual Out n August 2021
Several studies have evaluated the
impact of clinical variables on mortality dur-
ing hospitalization for patients with COVID-
19 infection.4-7 Although all showed that
age and comorbid conditions could affect
the outcome, the effect of other clinical vari-
ables varies. These differences in the out-
comes could be related to the difference in
the methodology of conducting the multi-
variate analyses. Our machine learning
model included all clinical variables initially
to ensure that all variables are treated
equally regardless of their significance in
univariate analyses. We then focused on
the analysis of the top 10 variables that
affected the overall outcomes. Although ma-
chine learning models are often viewed as a
“black box,” our model can provide an
explainable output that is specific for a
given patient.

Our study has important limitations. First,
as a retrospective study importing data from
the electronic medical record, a high propor-
tion of missing data is expected. Although
missing data will worsen the performance of
a prediction algorithm, empirically we were
able to verify that the model still had robust
performance on our test set (ie, validation
cohort). Second, given that each surge may
have its own specific characteristics and that
all patients came from hospitals within the
same health care system, our ability to gener-
alize our findings may be limited to some
extent.
CONCLUSION
We built personalized prediction models to
predict outcomes for hospitalized patients
with COVID-19 infection. The models can
aid physicians and health care systems in
understating the disease trajectory and ex-
pected outcomes for a given patient.
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