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Abstract: Background: To investigate the effect of rituximab, cyclophosphamide, doxorubicin, vin-
cristine, and prednisone (R-CHOP) chemotherapy on brain glucose metabolism in patients with
diffuse large B cell lymphoma (DLBCL). Methods: Seventy-two patients with newly diagnosed
DLBCL underwent FDG PET/CT brain and whole-body scans at baseline (PET0), in the interim of
chemotherapy (PET2), and at the end (PET6) of chemotherapy. All three brain scans of each patient
were analyzed using statistical parametric mapping software. Results: Compared with the PET0
scan, the PET2 and PET6 scans revealed a significantly higher glucose metabolism throughout the
whole brain, with the PET6 scan revealing a higher metabolism than the PET2 scan. Patients with a
complete response (CR) displayed decreased glucose metabolism in the lingual gyrus and increased
glucose metabolism in the pons after chemotherapy compared with the findings in patients with
partial responses or progressive disease. Conclusions: Brain glucose metabolism was affected by
R-CHOP treatment throughout the entire chemotherapy protocol.
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1. Background

Diffuse large B cell lymphoma (DLBCL) is the most common and aggressive subtype
of non-Hodgkin Lymphoma (NHL), and positron emission tomography/computed to-
mography (PET/CT) using fluorine 18F-fluoro-2-deoxy-d-glucose (18F-FDG) labeling is a
widely accepted method for assessing responses to first-line treatment including rituximab,
cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in patients with
DLBCL [1]. More attention is paid to the metabolic changes in lymphoma lesions in the
body during treatment, whereas the effect of chemotherapy on brain metabolism and
cognitive complications are generally neglected. The patients who receive chemotherapy
sometimes complain of memory loss, depression, anxiety, and other symptoms of cognitive
dysfunction. Several studies demonstrated that neurotoxicity related to chemotherapy
regimens plays a role in these symptoms [2]. Currently, the evaluation of the effect mainly
relies on neurophysiological scales and other grading tools [3].

However, only a few studies used imaging modalities such as magnetic resonance
imaging to assess changes in the brains of solid tumor survivors [4] or patients with
lymphoma [5]. Conversely, the mechanism of this impairment, the associated metabolic
changes, and the relationship between changes in the brain and the patient’s prognosis have
not been clarified, and the results of the reported studies have also been inconsistent [6,7].
Because the head is often included in the scan range of PET/CT in patients with lymphoma
in our center not only due to the conventional scan protocol including the whole body and
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brain, but also to exclude the tumor invasion of brain tissue, this provides an opportunity
to study brain glucose metabolism during the treatment process.

Therefore, we retrospectively investigated the use of FDG PET/CT to measure brain
glucose metabolism before chemotherapy and after two and six cycles of chemotherapy
in patients with newly diagnosed DLBCL. The purpose of the research was to explore the
changes in brain glucose metabolism visually throughout the entire chemotherapy period
and whether these changes after chemotherapy could predict treatment efficacy.

2. Methods
2.1. Patients

This retrospective study was approved by the Ethics Committee of the local hospital.
All subjects provided written informed consent. From January 2009 to September 2014,
72 patients with newly diagnosed DLBCL were enrolled in this study. The patient’ inclu-
sion criteria were as follows: de novo pathologically proven DLBCL; receipt of first-line
chemotherapy with rituximab, cyclophosphamide, doxorubicin, vincristine, and pred-
nisone (R-CHOP); FDG PET/CT scans performed before (PET0) and after two (PET2) and
six cycles (PET6) of chemotherapy; and the availability of images in a digital format for
review and analysis. The exclusion criteria were as follows: progression of transformed
lymphoma-like follicular into DLBCL and/or another malignant disease; presence of lym-
phoma lesions in the central nervous system; history of neuropsychiatric disease; and
receipt of any salvage therapy other than R-CHOP.

2.2. PET/CT Scans

A GE Discovery VCT PET/CT scanner (GE Healthcare, Milwaukee, WI, USA) was
used to assess the distribution of 18F-FDG in the brain and the whole body of the subjects.
All patients received intravenous 18F-FDG (4–5 MBq/kg) after fasting for at least 6 h.
Patients were required to remain in a resting condition for 60 min, and then PET scanning
was performed from the neck to the upper thigh (whole body scan). A brain scan was
separately taken after the whole-body scan by placing the patient’s head in a dedicated
support, and a 5 min emission scan was performed after the CT scan for attenuation
correction (120 kV, 110 mA). The PET data were reconstructed using the VUE Point HD
system (GE Medical Systems) in the 3D mode in a 192 × 192 matrix.

The time point for the PET2 scan was as close as possible to the beginning of the third
cycle of chemotherapy, and the PET6 scan was conducted at least 1 month after the end
of chemotherapy.

2.3. PET/CT Data Analysis

FDG PET/CT brain image data were analyzed using statistical parametric mapping
(SPM) software (SPM8; Wellcome Trust Centre for Neuroimaging, Institute of Neurology,
University College London, London, UK) operated within MATLAB 7.4.0.287 (MathWorks,
Natick, MA, USA) for Windows. For this purpose, images in the DICOM format were
converted into an analyzable format using MRIcro 1.40 (http://www.nitrc.org/projects/
mricro/) (accessed on 21 February 2021)). Spatially normalized images were mapped onto
a PET-specific template and then smoothed via convolution using a Gaussian kernel with
an 8 mm full-width half-maximum. A paired t-test was used to compare brain images
between groups (PET0 vs. PET2, PET0 vs. PET6, PET2 vs. PET6). SPM coordinates were
corrected to match the Talairach coordinates. Clusters containing more than 125 voxels
(5 × 5 × 5 voxels, cluster size: 11 mm × 11 mm × 11 mm) were accepted as significant
because a smaller threshold can ensure that as many small differences as possible are
recognized, and p values were corrected for multiple comparisons using family-wise error
rates. Corrected p < 0.05 denoted statistical significance. When statistically significant
differences were not identified at this conservative threshold, uncorrected p < 0.01 or
p < 0.001 served as the significance threshold.

http://www.nitrc.org/projects/mricro/
http://www.nitrc.org/projects/mricro/
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3. Results
3.1. Patients and Characteristics

The patient characteristics are listed in Table 1. According to the Lugano classification,
the follow-up data at the end of six cycles of chemotherapy revealed complete responses (CR),
progressive disease (PD), and partial responses (PR) in 55, 7, and 10 patients, respectively.

Table 1. Characteristics of the 72 patients with diffuse large B cell lymphoma.

Characteristic Data

Age (mean ± standard deviations) 47.8 ± 16.7 (18–81)
No. of male patients 40 (55.6%)
No. of female patients 32 (44.4%)
Ann Arbor Stage

I–II 35 (48.6%)
III–IV 37 (51.4%)

IPI
Low risk (0–1) 44 (61.1%)
Low-intermediate risk (2) 14 (19.4%)
High-intermediate risk (3) 10 (13.9%)
High risk (4–5) 4 (5.6%)

B symptoms
Positive 31 (43.1%)
Negative 41 (56.9%)

Germinal center (GC)
GC 30 (41.7%)
Non-GC 42 (58.3%)

Abbreviation: IPI, international prognostic index.

3.2. Comparison of Brain Metabolism at Baseline (PET0) and in the Interim of (PET2) Chemotherapy

There was a significant increase in metabolism involving nearly the whole brain at
PET2 compared to PET0, excluding the bilateral prefrontal cortices and ventricles, and
there were no areas of the brain where a significant reduction in FDG metabolism occurred
(Figure 1A).

3.3. Comparison of Brain Metabolism at Baseline (PET0), in the Interim of (PET2), and at the End
of (PET6) Chemotherapy

There was a significant increase in metabolism involving nearly the whole brain at
PET6 compared to PET0, excluding a small portion of the prefrontal cortices and ventricles
(Figure 1B). There were also no areas of the brain where a significant reduction in FDG
metabolism occurred.
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Figure 1. (A): Statistical parametric mapping (SPM) analysis revealed significantly increased brain 
metabolism in nearly the whole brain, excluding the bilateral prefrontal cortices and ventricle (over-
laid in the MRI T1-weighted image and 3D cortex template), in the PET2 scan compared with that 
in the PET0 scan (p < 0.001, uncorrected). (B): SPM analysis revealed increased brain metabolism in 
the PET6 scan compared with that in the PET0 scan (p < 0.001, uncorrected). (C): SPM analysis re-
vealed further increases in brain metabolism in the PET6 scan compared with that in the PET2 scan 
(p < 0.05, uncorrected). 

3.4. Correlations between Brain Glucose Metabolism Changes and Therapeutic Responses 
In the PET2 scan, the group of 55 patients with CRs at the end of chemotherapy ex-

hibited hypermetabolism on both sides of the pons and hypometabolism on both sides of 
lingual gyrus compared with the findings in the 17 patients with PRs or PDs (NonCR 
group). In the PET6 scan, the CR group displayed hypometabolism only in the left lingual 
gyrus and inferior frontal gyrus compared with the findings in the NonCR group. Figure 
2 and Table 2 presented the areas and corresponding Talairach coordinates with signifi-
cant differences in brain glucose metabolism in the CR and NonCR groups in the PET2 
(Figure 2A) and PET6 (Figure 2B) scans. 

Table 2. Brain areas with significantly different glucose metabolism between the complete response 
(CR) and NonCR (progressive disease and partial response) groups in the PET2 and PET6 scans. 

Comparison Region 
Talairach Coordinates 

T Score p Values (Uncorrected) 
x  y z 

CR&NonCR (PET2)       

hypermetabolism Right pons 1 10 −26 −50 1.96 0.026 
 Right pons 2  16 −24 −44 1.95 0.027 
 Left pons −14 −24 −40 1.76 0.041 
hypometabolism Right lingual gyrus  28 −56 8 2.12 0.018 
 Left lingual gyrus −20 −56 8 2.33 0.011 
CR&NonCR (PET6)       

hypometabolism Left lingual gyrus −18 −54 8 2.30 0.011 
 Left inferior frontal gyrus  −32 −38 2 2.55 0.006 

Figure 1. (A): Statistical parametric mapping (SPM) analysis revealed significantly increased brain
metabolism in nearly the whole brain, excluding the bilateral prefrontal cortices and ventricle
(overlaid in the MRI T1-weighted image and 3D cortex template), in the PET2 scan compared with
that in the PET0 scan (p < 0.001, uncorrected). (B): SPM analysis revealed increased brain metabolism
in the PET6 scan compared with that in the PET0 scan (p < 0.001, uncorrected). (C): SPM analysis
revealed further increases in brain metabolism in the PET6 scan compared with that in the PET2 scan
(p < 0.05, uncorrected).

Furthermore, brain glucose metabolism was higher in the PET6 scan than in the
PET2 scan for the whole brain, excluding the bilateral white matter around the ventricles,
brainstem, and cerebellum (Figure 1C).

3.4. Correlations between Brain Glucose Metabolism Changes and Therapeutic Responses

In the PET2 scan, the group of 55 patients with CRs at the end of chemotherapy
exhibited hypermetabolism on both sides of the pons and hypometabolism on both sides of
lingual gyrus compared with the findings in the 17 patients with PRs or PDs (NonCR group).
In the PET6 scan, the CR group displayed hypometabolism only in the left lingual gyrus and
inferior frontal gyrus compared with the findings in the NonCR group. Figure 2 and Table 2
presented the areas and corresponding Talairach coordinates with significant differences in
brain glucose metabolism in the CR and NonCR groups in the PET2 (Figure 2A) and PET6
(Figure 2B) scans.
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Figure 2. (A): Patients with complete responses (CRs) exhibited hypermetabolism on both sides of 
the pons (red) and hypometabolism on both sides of the lingual gyrus (blue) compared with the 
findings in the NonCR group (partial responses and progressive disease) in the PET2 scan. (B): The 
CR group displayed only hypometabolism in the left lingual gyrus and inferior frontal gyrus com-
pared with the findings in the NonCR group in the PET6 scan. 

4. Discussion 
The patients who have received chemotherapy may suffer from impaired cognition 

named chemobrain. The cognitive impairment includes changes in verbal and visual 
memory, attention, concentration, language, and motor skills. The mechanisms of the neu-
rotoxicity are not well understood. Several explanations have been postulated including 
increased expression of tumor necrosis factor alpha induced by chemotherapy [8], which, 
together with oxidative stress and apoptosis, inhibits neuronal proliferation and differen-
tiation [9]. Most studies have mainly been conducted in patients with cancers such as 
breast, rectal, and lung cancers. A few previous studies focused on lymphoma, especially 
DLBCL and Hodgkin’s lymphoma (HL) by means of evaluating clinical symptoms and 
psychological tests [10]. FDG PET/CT can be used to evaluate physiological processes in 
the body including glucose consumption in the brain, which provides objective visual ev-
idence of the effects of chemotherapy. Because the brain is often included in the range of 
the PET/CT scan in patients with DLBCL, this permits the study of changes in glucose 
metabolism in the brain during the treatment period. To our knowledge, this study rep-
resents the largest analysis of DLBCL patients who underwent PET/CT both during and 
after chemotherapy and assessments of brain glucose metabolism via SPM analysis. 

The results of previously reported studies of brain metabolism changes in patients 
with lymphoma have been contradictory. Chiaravalloti et al. [11]. reported significantly 
higher metabolic activity in the right angular gyrus and significantly lower metabolic ac-
tivity in the bilateral prefrontal and orbitofrontal cortices and left anterior cingulate cortex 
after two cycles of Adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) chemo-
therapy in patients with Hodgkin’s lymphoma (HL). Nonokuma et al. [12]. demonstrated 
significantly increased metabolic activity in the bilateral parietal and occipital regions and 
decreased metabolic activity in the bilateral cerebellar hemisphere, right putamen, bilat-
eral insula, and bilateral anterior cingulate regions after treatment in 30 patients, including 
16 patients with DLBCL. Conversely, a study by Adams et al. [13]. concluded that brain 
glucose metabolism was not affected by R-CHOP therapy in patients with DLBCL. 

We could not clarify the mechanisms of chemobrain in patients with DLBCL using 
FDG PET/CT scans, but the changes in brain glucose metabolism to some extent reflect 
the effects of R-CHOP therapy. The explanations of the decreases in cerebral glucose me-
tabolism reported in some studies after chemotherapy are uncertain. Several possible rea-
sons for decreases in metabolic activity in chemotherapy-treated patients have been pos-
tulated as follows: chemotherapeutic drug penetration of the blood–brain barrier (BBB) 
during chemotherapy [14]; an autoimmune reaction, named paraneoplastic syndrome, 
caused by cytokines secreted from activated immune system cells [15]; the intravascular 
invasion of lymphoma cells and occlusion of the arterioles, capillaries, and venules caused 

Figure 2. (A): Patients with complete responses (CRs) exhibited hypermetabolism on both sides of the
pons (red) and hypometabolism on both sides of the lingual gyrus (blue) compared with the findings
in the NonCR group (partial responses and progressive disease) in the PET2 scan. (B): The CR group
displayed only hypometabolism in the left lingual gyrus and inferior frontal gyrus compared with
the findings in the NonCR group in the PET6 scan.

Table 2. Brain areas with significantly different glucose metabolism between the complete response
(CR) and NonCR (progressive disease and partial response) groups in the PET2 and PET6 scans.

Comparison Region
Talairach Coordinates

T Score
p Values

(Uncorrected)x y z

CR&NonCR (PET2)
hypermetabolism Right pons 1 10 −26 −50 1.96 0.026

Right pons 2 16 −24 −44 1.95 0.027
Left pons −14 −24 −40 1.76 0.041

hypometabolism Right lingual gyrus 28 −56 8 2.12 0.018
Left lingual gyrus −20 −56 8 2.33 0.011

CR&NonCR (PET6)
hypometabolism Left lingual gyrus −18 −54 8 2.30 0.011

Left inferior frontal gyrus −32 −38 2 2.55 0.006

4. Discussion

The patients who have received chemotherapy may suffer from impaired cognition
named chemobrain. The cognitive impairment includes changes in verbal and visual
memory, attention, concentration, language, and motor skills. The mechanisms of the
neurotoxicity are not well understood. Several explanations have been postulated includ-
ing increased expression of tumor necrosis factor alpha induced by chemotherapy [8],
which, together with oxidative stress and apoptosis, inhibits neuronal proliferation and
differentiation [9]. Most studies have mainly been conducted in patients with cancers such
as breast, rectal, and lung cancers. A few previous studies focused on lymphoma, especially
DLBCL and Hodgkin’s lymphoma (HL) by means of evaluating clinical symptoms and
psychological tests [10]. FDG PET/CT can be used to evaluate physiological processes
in the body including glucose consumption in the brain, which provides objective visual
evidence of the effects of chemotherapy. Because the brain is often included in the range
of the PET/CT scan in patients with DLBCL, this permits the study of changes in glucose
metabolism in the brain during the treatment period. To our knowledge, this study rep-
resents the largest analysis of DLBCL patients who underwent PET/CT both during and
after chemotherapy and assessments of brain glucose metabolism via SPM analysis.

The results of previously reported studies of brain metabolism changes in patients with
lymphoma have been contradictory. Chiaravalloti et al. [11]. reported significantly higher
metabolic activity in the right angular gyrus and significantly lower metabolic activity in
the bilateral prefrontal and orbitofrontal cortices and left anterior cingulate cortex after two
cycles of Adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) chemotherapy in
patients with Hodgkin’s lymphoma (HL). Nonokuma et al. [12]. demonstrated significantly
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increased metabolic activity in the bilateral parietal and occipital regions and decreased
metabolic activity in the bilateral cerebellar hemisphere, right putamen, bilateral insula, and
bilateral anterior cingulate regions after treatment in 30 patients, including 16 patients with
DLBCL. Conversely, a study by Adams et al. [13]. concluded that brain glucose metabolism
was not affected by R-CHOP therapy in patients with DLBCL.

We could not clarify the mechanisms of chemobrain in patients with DLBCL using
FDG PET/CT scans, but the changes in brain glucose metabolism to some extent reflect
the effects of R-CHOP therapy. The explanations of the decreases in cerebral glucose
metabolism reported in some studies after chemotherapy are uncertain. Several possible
reasons for decreases in metabolic activity in chemotherapy-treated patients have been
postulated as follows: chemotherapeutic drug penetration of the blood–brain barrier (BBB)
during chemotherapy [14]; an autoimmune reaction, named paraneoplastic syndrome,
caused by cytokines secreted from activated immune system cells [15]; the intravascular
invasion of lymphoma cells and occlusion of the arterioles, capillaries, and venules caused
by cell proliferation [16]; post-traumatic stress disorder (PTSD) caused by a cancer diagnosis
and depressive symptoms caused by the stress of having a life-threatening disease [17];
and other uncertain explanations.

Although most studies reported decreased brain metabolism after chemotherapy,
a few observed higher metabolic activity in the angular gyrus after the second cycle
of chemotherapy in patients with HL [11], and increased FDG uptake was noted after
treatment in the parietal and cingulate cortices of patients with NHL [18]. The most
distinctive result of our study was the significant hypermetabolism found in nearly the
whole brain, excluding the bilateral prefrontal cortices and ventricles during chemotherapy,
and further increases in metabolic activity were observed at the end of treatment. Because
of the limited reported evidence and experience, the possible reasons for this difference,
based on our knowledge, are as follows: as cerebral glucose metabolism is affected by
the mental state of the patient, PTSD can play a role even after two and six cycles of
treatment, and increased attention or fear responses in patients lead to metabolic alterations
in regions of the brain cortex such as the parietal lobe. Patients are still shocked and
uncertain by the diagnosis at the time of the PET0 scan, and they are anxious regarding
the therapeutic outcome during the PET2 scan and worried about the possibility of disease
recurrence during the PET6 scan. Moreover, pre-treatment scans always exhibit a reduced
cerebral glucose metabolism, and most patients with DLBCL (55% in our study) exhibit
CRs at the end of treatment. This therefore suggests that regional metabolic changes in
the cerebrum are caused by the redistribution of FDG. In other words, FDG shifts from
lymphoma lesions to the brain because of the reduced tumor burden in the body. On the
contrary, most reports identified a decreased (and/or increased) metabolism in cerebral
regions after ABVD chemotherapy in patients with HL, a non-specific subtype of NHL,
and there was no consensus concerning cerebral metabolic changes associated with the R-
CHOP regimen in patients with DLBCL. Different drugs, based on their ability to penetrate
the BBB, may lead to specific chemotherapy-related cytotoxicity. This indicated that R-
CHOP, a regimen including one neurotoxic agent (vincristine) and one BBB-penetrating
drug (prednisone), affected the subjective perception of cognition after chemotherapy [19].
In addition, the increased levels of pro-inflammatory cytokines (e.g., IL-1Ra, CRP, IL-6)
during chemotherapy were found to correlate with greater brain glucose metabolism [20].
In addition to the aforementioned explanations, the different results between our study
and previous research could be attributable to heterogeneity concerning experimental
methodologies. Because no specific brain region is known to be protected against the
effects of chemotherapy, the FDG update in the entire brain was analyzed opposed to that
in specific regions. Thus, the SPM methodology, to some extent, is more objective than
visual inspection and standardized the uptake value calculation performed using regions
of interest, in which diffuse changes in brain metabolism might be underestimated [18].

Moreover, the therapeutic response and prognostic value of brain glucose metabolism
measurements are currently unclear for patients with DLBCL. Our results provide evi-
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dence that some focal brain regions exhibit hyper/hypometabolism, which may reflect
the response to R-CHOP treatment during and after chemotherapy. However, only a few
published studies have indicated a possible relationship between a low pre-treatment brain
glucose metabolism and worse outcomes [13]. The reason for this is that prior research only
concentrated on the pre-treatment status regarding survival opposed to the post-treatment
status concerning the therapeutic response. The significant changes in metabolism in some
brain regions, namely, the pons and lingual gyrus, could reflect the therapeutic response
based on our results. Specifically, a decreased glucose metabolism in the lingual gyrus
and an increased glucose metabolism in the pons after chemotherapy is possibly related
to good treatment responses. The lingual gyrus and pons are involved in logical analysis,
visual memory, and sleep regulation. We have no such experience with nor could we find
published data to explain this manifestation in patients with DLBCL. However, a similar
finding that the lingual gyrus might be a possible candidate region for predicting the
response to antidepressants and the maintenance of cognition was reported in patients with
major depressive disorder [21]. Furthermore, our results may provide objective evidence for
future research on the relationship between cerebral metabolism and prognosis in patients
with cancer.

The present study had several limitations. First, as this was a retrospectively study,
the patients’ mental state and performance were not evaluated objectively. We only could
find the patients’ complaints or symptoms from the medical records, whereas the hematol-
ogist failed to consistently notice mild-to-moderate neuropsychological symptoms during
treatment and record such findings in a timely manner. Hence, the main limitation is the
lack of clinical neuropsychological data such as questionnaire data, even though 17–75% of
all patients with cancer experience psychological side effects from cancer therapies [22].
Second, the changes in brain metabolism involve a complex web of interactions including
the patient’s internal status and external influences, in addition to chemotherapy. It is
difficult to precisely assess any specific phenomenon using functional imaging methods.
Third, the results of SPM analysis, derived from computer software, represent relative
values of brain glucose metabolism, differing from absolute quantitative assessments.

5. Conclusions

Brain glucose metabolism as assessed via FDG PET/CT continued to increase in most
brain regions during R-CHOP chemotherapy. The decreased glucose metabolism in lingual
gyrus and increased glucose metabolism in the pons after chemotherapy are possibly related
to poor treatment responses. Further studies integrating imaging modalities with clinical
neuropsychological evaluation and laboratory assessments are necessary to confirm the
existence of neurotoxicity, and these studies may support the development of appropriate
treatment strategies for patients with cancer.
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