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Abstract

Nasal mucosa and olfactory bulb are separated by the cribriform plate which is perforated

by olfactory nerves. We have previously demonstrated that the cribriform plate is permissive

for T cells and monocytes and that viruses can enter the bulb upon intranasal injection by

axonal transportation. Therefore, we hypothesized that nasal mucosa and olfactory bulb are

equipped to deal with constant infectious threats. To detect genes involved in this process,

we compared gene expression in nasal mucosa and bulb of mice kept under specific patho-

gen free (SPF) conditions to gene expression of mice kept on non-SPF conditions using

RNA deep sequencing. We found massive alterations in the expression of immune-related

genes of the nasal mucosa, while the bulb did not respond immunologically. The absence of

induction of immune-related genes in the olfactory bulb suggests effective defence mecha-

nisms hindering entrance of environmental pathogens beyond the outer arachnoid layer.

The genes detected in this study may include candidates conferring susceptibility to

meningitis.

Introduction

The nasal mucosa is a location of many facultative pathogenic germs, such as Haemophilus,

Staphylococcus and Neisseria, which are potential causes of meningitis [1]. Meningitis is an

often lethal infectious disease which can affect also children and adolescents without known

immune defect. Neisseria meningitidis is a commensal resident of the human pharyngeal

mucosa [2] where binding of neisserial colony opacity-associated protein adhesins (Opa) to

carcinoembryonic antigen-related cell adhesion molecule CEACAM 1 induces an inflamma-

tory response [3]. It has been calculated that less than 1 in 25,000 natural infections in humans

lead to invasive meningococcal disease during endemic periods [4] rendering likely genetic

variants driving invasive disease as it has been shown for deficiencies in the complement sys-

tem [5]. Thus, the nasal mucosa is likely to be a site of permanent interaction with infectious
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agents which by their presence induce the expression of gene products required for successful

defence. Knowledge of these genes may be of help to identify alleles conferring risk for the

development of certain forms of meningitis.

Here, we reasoned that the respective mRNAs are expressed only at low levels in mice kept

under specific pathogen free (SPF) conditions. Allowing commensalism by transferring sub-

groups of mice from SPF to open housing and subsequent comparison of mRNA expression

using next generation deep sequencing should then provide a list of defence genes which

become pathogen-induced in nasal mucosa cells or become present due to specific cell inva-

sion into the nasal mucosa. In fact, massive impact of housing on immune status has just been

shown [6,7]. Since we have previously shown that olfactory nerves can serve as entrance routes

for virus [8] and that the cribriform plate is permissive for cells [9,10], we also tested as to how

far the olfactory bulb senses and responds to commensalism. We show that the nasal mucosa

—but not the olfactory bulb—exhibits massive changes in gene expression upon being

opposed to an open environment.

Material and methods

1. Samples and animal ethics

Animal husbandry was performed in the animal facilities of the Faculty of Medicine, Univer-

sity of Leipzig according to European (Council Directive 86/609/EEC) and German (“Tiersc-

hutzgesetz”) guidelines for the welfare of experimental animals and approved by the local

authorities (Landesdirektion Sachsen; T69/13; T32/14). Mice were housed in a 12 h/12 h light-

dark cycle with access to food and water ad libitum. Thirty male C57/Bl6J mice (six weeks old)

with SPF status were purchased from Janvier Labs. Animals were kept together in the central

breeding facility of the Medical Faculty of the University of Leipzig for one week to allow for

acclimatization. Afterwards 15 mice were transferred to a satellite animal facility and kept

under non-SPF conditions for additional one or two weeks, respectively. The SPF husbandry

had stable overpressure in all rooms, the air was filtered and the air temperature and humidity

was stable. The cages were cleaned mechanically every week and rinsed with 80˚C water

afterwards. Only animal care personnel had access to the rooms and changed into hygienic

clothing, breathing protection and gloves previous to entering. Every three years a worm pro-

phylaxis was conducted and there where routine health controls according to FELASA stan-

dard protocols. In the satellite facility the animals were kept in a room, freely accessible to all

scientists and employees. The cages were washed manually every 14 days and had no filter lid.

The room had no air filtering system and no overpressure. No worm prophylaxis was per-

formed and there were no routine health control according to FELASA standard protocols.

Furthermore, mouse hepatitis virus (MHV) and syphacia species was attested in this animal

husbandry by using contact sentinel mice.

2. Tissue preparation for RNA isolation

Isoflurane (Baxter) was used to anesthetize the mice, which were quickly decapitated after-

wards. To avoid differences due to circadian gene expression all animals were prepared

approximately at the same daytime (3 pm). The dissecting set and workplace were cleaned

with RNaseZap1 (Qiagen) to eliminate the RNases. 1.5 ml tubes were cooled in dry ice and

filled with RNAlaterTM (Qiagen). The nasal dorsum was incised to gain access and isolate the

nasal mucosa. To extract the olfactory bulb the skull was opened via a Y-formed cut and care-

fully detached. The tissue was frozen immediately at -80˚C until the RNA preparation was

performed.
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3. Histology and microglial quantification

Mice were perfused with 4% paraformaldehyde (PFA) and fixed overnight with 4% PFA. After

decalcifying the mice heads with EDTA (ethylenediaminetetraacetic acid) for two weeks, stan-

dard sucrose solutions (10%, 20% and 30%) were applied consecutively. Samples were sec-

tioned with a cryostat. Gram staining and Immunofluorescence staining was performed

according to standard protocols. To visualize microglial morphology in the olfactory bulb

polyclonal IBA-1 antibody (WAKO, 1:200; second antibody Alexa goat anti rabbit 568, 1:500)

and DAPI (4’,6-diamidino-2-phenylindole dihydrochloride, 1:10,000) were used. For micro-

glial quantification five pictures at day 0 and day 5 from each husbandry condition were ana-

lysed. Activated and ramified microglia were counted with Image J [11] according to

Pouchoulen et. al (2015) [12]. Statistics was performed with Microsoft Excel.

4. RNA sequencing of olfactory bulb and nasal mucosa

Total RNA from isolated bulb and mucosa was extracted by using the TRI REAGENT™
(Sigma-Aldrich) as described in the manufacturer’s instructions. The quantity of the RNA was

measured using a spectrophotometer (Nanodrop ND 1000) and RNA quality of all samples

was examined on the Agilent 2100 bioanalyzer using the RNA 6000 Nano Chip (Agilent Tech-

nologies, Santa Clara, CA). We only included RNA samples with a RIN value above 8. Indexed

cDNA libraries were generated using TruSeq RNA Sample Preparation Kits v2 (Illumina, San

Diego, CA, USA) according to the manufacturer’s protocol, constructing libraries with an

average size of 300bp as evaluated on the Agilent 2100 bioanalyzer with DNA 1000 Chips. The

libraries were sequenced on the Illumina HiSeq 2500, generating 101-bp raw paired-end reads

on 4 flow cell lanes (Max Planck Institute of Evolutionary Anthropology, Leipzig). Briefly,

after quantification of the libraries using the Library Quantification Kit, Illumina/Universal

(KAPABiosystems) according to the instructions of the manufacturer products were used for

cluster generation. Library DNA at a concentration of 10 pM was clustered using an Illumina

cBot according to the PE_Amp_Lin_Block_Hybv8.0 protocol of the manufacturer. Sequencing

was performed using version 3 chemistry and the version 3 flowcell according to the manufac-

turer’s instructions. Median cluster density was usually about 600,000 clusters per mm2 or 80–

100 million raw clusters per lane. After intensities call, raw reads were separated according to

library indexes allowing up to one mismatch in the index sequence, but requiring that all bases

have a quality score above 15 (PHRED-scale). After assigning reads to samples we used an in-

house-sequencing pipeline to trim the adapters and remove reads, which were shorter than 60

bp or have more than five bases with a quality score below 15 (PHRED-scale). Reads were

mapped to the reference mouse genome (July 2007 NCBI37/mm9) with Ensembl v66 annota-

tions using Tophat 2.0.6. [13,14], which aligns reads using Bowtie2 (version 2.1.0). Mitochon-

drial reads and reads which did not map uniquely to a genome position were excluded. The

transcription level for each gene was obtained by intersecting mapping results with gene anno-

tations using BEDTools IntersectBed [15]. Using DESeq software package [16], differential

expression of genes under SPF and non-SPF conditions was examined. Only genes that were

expressed at least in half of the animals were included for analyses. Differentially expressed

genes (DEGs) with a p-value <0.05 were considered as statistically significant.

5. Data analysis

We used tables of all significant differentially expressed genes (DEGs) from each tissue (bulb and

mucosa) of the distinct points of time (one and two weeks), which were altered when compared

between housing conditions. These sets were subjected to gene ontology (GO) analysis with

DAVID Bioinformatics Resources 6.7 [17,18]. With these lists we gained "functional annotation
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charts" only with DAVID’s 3 default GO term libraries. Only GOs with a p-value<0.05 and

FDR<0.1 were included into further analysis.

Results

1. Analysis of RNA-Seq data

We worked with 60 samples from 30 seven weeks old animals consisting of 30 nasal mucosae

(Fig 1) and 30 olfactory bulbs, 15 from SPF and 15 non-SPF animals, respectively. Of these 15

probes, 7 samples were taken from the specific housing condition after one week, 8 samples

derived from mice kept for 2 weeks in their environment (Fig 2). Each sample thus had three

qualities: the husbandry (SPF or non-SPF), the point of time (1 week or 2 weeks) and the tissue

(olfactory bulb or nasal mucosa). Using the DEseq software package for each analysis two of

these three factors were constant, e.g. bulb and 1 week. In this example, from the 60 samples

each one with the two qualities "bulb" and "1 week" was selected, resulting in 14 probes which

differed in the third factor “husbandry” of which 7 derived from SPF and 7 from non-SPF con-

ditions. Comparison of these 7 versus 7 probes resulted in a list of all genes which were differ-

entially expressed after one week. Table 1 shows the obtained mean of raw reads, reads after

quality control and of the uniquely mapped reads for all analyses. Altogether, we sustained an

average number of 35 million raw reads per sample. After quality control an average of 33.6

million reads remained. We used TopHat to align the reads to the reference mouse genome

(July 2007 NCBI37/mm9). Almost 26 million reads were uniquely mapped per sample whereat

mitochondrial reads were excluded. To verify the separation of the tissues we created a heat-

map of all mapped genes. Fig 3 illustrates the actual splitting of the two tissues.

2. Nasal mucosa shows strong immune response under non-SPF

conditions

Gene expression in nasal mucosa was compared between animals kept under SPF and non-

SPF conditions at two points of time. After RNA deep sequencing, the subsets of DEGs

Fig 1. Gram staining of a mouse whole head section. A horizontal section of a mouse head was stained by

Gram´s method to show the occurrence of gram positive bacteria at the nasal mucosa (*).

https://doi.org/10.1371/journal.pone.0187192.g001
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resulting from SPF vs non-SPF environment were compared after one and two weeks, respec-

tively. To this end, we selected from the 60 probes the 30 deriving from nasal mucosa, of which

15 came from SPF mice and 15 came from non-SPF mice. When compared between SPF and

non-SPF husbandry the mucosal probes after one week showed 500 differentially expressed

genes and the probes gained after two weeks resulted in 1.667 differentially expressed genes

(DEGs) (Fig 4). Overlap analysis discloses 79 genes differentially expressed at both points of

time (S1 Table). Further gene ontology analysis showed numerous immune-related GOs after

one week as well as after two weeks (Table 2). These include leukocyte activation, regulation of

lymphocyte activation and proliferation, as well as cytokine and chemokine activation.

Fig 2. Experimental setup. 30 mice were obtained for this experiment and kept together for one week in a

SPF facility for adaptation. Afterwards 15 mice were transferred to a non-SPF environment. After one week of

different husbandry conditions (SPF vs. non-SPF) 7 animals of each group were euthanized followed by the

removal of the olfactory bulb and the nasal mucosa. The same procedure was performed with the remaining

mice after two weeks.

https://doi.org/10.1371/journal.pone.0187192.g002

Table 1. Statistics of SPF and non-SPF mouse transcriptome of the olfactory bulb and the nasal mucosa after one and two weeks mapping to July

2007 NCBI37/mm9 reference mouse genome.

Sample raw read mean raw read mean

after quality control

filtered alignment mean (total unique mapping reads)

bulb, 1 week, SPF 28,741,596 28,005,180 22,695,537

bulb, 2 weeks, SPF 35,268,004 33,273,100 22,357,490

bulb, 1 week, non-SPF 47,813,480 47,022,748 36,626,425

bulb, 2 weeks, non-SPF 29,435,404 27,781,680 18,521,982

mucosa, 1 week, SPF 41,652,796 40,177,944 27,424,340

mucosa, 2 weeks, SPF 29,720,023 28,145,597 23,545,373

mucosa, 1 week, non-SPF 34,340,208 32,674,300 22,542,914

mucosa, 2 weeks, non-SPF 33,258,012 31,905,897 32,604,488

Mean 35,028,690 33,623,306 25,789,819

The samples of each tissue, divided by point of time and husbandry condition, were sequenced and the raw read mean was determined (mean� 35 mil

reads). After quality control an average of 33.6 million reads per sample remained, of which 25.8 million were uniquely mapped to the reference genome.

https://doi.org/10.1371/journal.pone.0187192.t001
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3. The olfactory bulb shows no immunological response

To investigate if the olfactory bulb senses commensalism of the adjacent mucosa, we kept a

group of 15 mice in an SPF breeding facility for comparison to 15 animals housed in a “dirty”,

Fig 3. Heatmap illustrating separation of olfactory bulb and nasal mucosa. The X axis exhibits the

particular probes of mucosa (e.g. mucosa after 2 weeks of SPF husbandry, probe 1 = "muc_2_spf_1") and

olfactory bulb. On the Y axis expression of all mapped genes is displayed. The hierarchical clustering on top

shows the actual splitting of the two tissues.

https://doi.org/10.1371/journal.pone.0187192.g003

Fig 4. Non-SPF environment evokes a strong immune response in nasal mucosa. Comparison of nasal

mucosa of both SPF and non-SPF conditions after one and two weeks showed a significant change of

numerous transcripts. Overlap analysis revealed 421 DEGs after 7 days and 1,588 DEGs after 14 days.) The

overlapping subset contained 79 DEGs.

https://doi.org/10.1371/journal.pone.0187192.g004
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non-SPF facility. There were 508 genes differently expressed significantly after one week,

whereas 524 DEGs were identified after two weeks when compared between SPF and non-SPF

husbandry. To identify genes which were differently expressed at both points of time, we con-

ducted an overlap analysis (Fig 5) which resulted in 70 DEGs (S2 Table). 438 and 454 genes

were differentially expressed only after one week and two weeks, respectively. Gene Ontology

(GO) analysis was performed to determine groups of differentially expressed genes for the

three subsets (differentially expressed only after one week, differentially expressed only after

two weeks, differentially expressed at both points of time). Gene ontology analysis revealed no

significant (p<0.05; FDR>0.1) GO for differentially changed transcripts after one week and

for the genes overlapping at both, one and two weeks (data not shown). One single GO (GO:

extracellular matrix) was identified for the two weeks data. Our data show that there are indeed

differences in the transcriptional response of the OB due to the different environments, but

this does not affect immunological candidates and pathways. Since these results were unex-

pected, we specifically analysed the expression of genes required for immune responses such

as antimicrobial peptides, interleukins, and interferons. However, we found no significant dif-

ferently expressed immune-related genes (S3 Table). Furthermore we performed MHC II/

IBA-1 double stainings to examine if the immunological answer in the olfactory bulb takes

place earlier than one week (after one, three and five days, respectively) of non-SPF environ-

ment. Eventually, no MHC II was detectable (data not shown). In addition Fig 6 reveals no

morphological differences in microglia regarding their activation state in olfactory bulbs of

mice with an SPF and non-SPF background, respectively. For further quantification we ana-

lyzed five pictures of olfactory bulbs from animals kept under SPF conditions and animals

kept under non-SPF conditions for five days in order to determine the rate of activated vs.

Table 2. Gene ontology analysis of differentially expressed genes of nasal mucosa after one and two

weeks when compared between SPF and non-SPF conditions revealed numerous immune-related

GOs.

Mucosa, 1 week p-value FDR

GO:0008009 ~ chemokine activity 1,76E-04 2,52E-01

GO:0006955 ~ immune response 1,78E-04 2,99E-01

GO:0042379 ~ chemokine receptor binding 2,04E-04 2,92E-01

Mucosa, 2 weeks p-value FDR

GO:0006955~immune response 2,54E-08 4,61E-05

GO:0002694~regulation of leukocyte activation 8,71E-07 1,58E-03

GO:0045321~leukocyte activation 9,90E-07 1,80E-03

GO:0002252~immune effector process 4,05E-06 7,36E-03

GO:0050670~regulation of lymphocyte proliferation 9,65E-06 1,75E-02

GO:0002684~positive regulation of immune system process 1,04E-05 1,88E-02

GO:0070663~regulation of leukocyte proliferation 1,41E-05 2,56E-02

GO:0051249~regulation of lymphocyte activation 1,72E-05 3,13E-02

GO:0002520~immune system development 2,51E-05 4,55E-02

GO:0019955~cytokine binding 3,53E-05 5,65E-02

GO:0006952~defense response 5,19E-05 9,42E-02

GO:0004896~cytokine receptor activity 5,60E-05 8,96E-02

GO:0032944~regulation of mononuclear cell proliferation 9,65E-06 1,75E-02

Gene ontology analysis of differentially expressed genes of nasal mucosa when compared between SPF

and non-SPF husbandry reveals in many significant (p-value<0.05;FDR<0.1) immune related GOs after

both one and two weeks.

https://doi.org/10.1371/journal.pone.0187192.t002
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ramified microglia. Fig 7 shows no difference of microglia.activation between SPF and non-

SPF husbandry. Hence we have neither histological nor transcriptional evidence to support

Fig 6. IBA-1 staining of olfactory bulb microglia of SPF and non-SPF mice show no morphological

differences in terms of activation. The olfactory bulbs of mice kept under non-SPF conditions for five days

and mice coming from a SPF environment were stained with the marker IBA-1 to examine if there are

morphological signs for microglial activation in either group. As shown above no activation could be detected,

as the microglia appears ramified in both conditions.

https://doi.org/10.1371/journal.pone.0187192.g006

Fig 5. The olfactory bulb does not react immunologically. After both one week and two weeks there were

significantly regulated genes in the olfactory bulb when comparing SPF to non-SPF conditions. To compare

the regulated genes at each point of time, an overlap analysis was performed. 70 genes were regulated at

both points of time (see S1 Table). 438 genes were regulated only after one week, 454 only after two weeks.

https://doi.org/10.1371/journal.pone.0187192.g005
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our hypothesis that commensalism due to non-SPF conditions induces immunological

defence mechanisms in the olfactory bulb.

Discussion

In this study we kept two subgroups of animals in an SPF and non-SPF environment, respec-

tively. We then isolated the nasal mucosa and olfactory bulb each to study the immunological

response within these tissues by using next generation sequencing of transcripts. It should be

noted that changes in mRNA levels can be either caused by regulation of gene expression or

changes in cell composition which both would be indicative of an immune response. We

regard it as our major finding that—against our hypothesis—expression of immune-related

genes was not changed in the olfactory bulb although the FELASA protocol notes the presence

of MHV and Syphacia species in sentinel mice of the animal facility. Although syphacia is not

known for infections of the central nervous system (CNS), at least some MHV strains are well

known neurotropic viruses [19], which can induce demyelinating disease when experimentally

infected. We have previously used VSV-eGFP to study the transportation of virus from nose to

bulb [8] and MHV-N to study immune defense mechanisms of the olfactory bulb [20]. In the

current study,the husbandry conditions were distinctly different in terms of hygiene, accessi-

bility and stable environment. We therefore considered it likely that at least genes coding for

IFN-γ, TNF-α or IL-1 are induced e.g. by Toll-like receptor or NF-κB signalling. This was,

however, not the case (see S3 Table). Thus, in contrast to direct intranasal or ocular infection

where cytokines such as IL-1, IL-6, IFN-ß or TNF-α were strongly altered [21–24], stimulation

in our environment of interest apparently was not sufficient to provoke a similar response.

This environment, however, caused massive changes in the nasal mucosa of the animals kept

under non-SPF circumstances. The significantly changed gene ontology groups include che-

mokine activity and binding, leukocyte activation and proliferation as well as more general

terms such as defense response, immune response and immune effector process. Obviously,

our non-SPF environment of interest is adequate to trigger a broad immune response in the

nasal mucosa.These findings suggest that in a non-SPF environment, the nasal mucosa pro-

vides a sufficient border to prevent pathogens from progressing further down the olfactory

Fig 7. Quantification of activated and ramified microglia in the olfactory bulb under SPF and non-SPF

conditions shows no difference in morphological microglial activation. The olfactory bulbs of mice kept

under non-SPF conditions for 5 days and the olfactory bulbs of mice kept under SPF conditions were stained

with IBA-1. Five pictures of each group were analyzed and the number of activated and ramified microglia was

counted. No difference in microglial activation between SPF and non-SPF conditions was found.

https://doi.org/10.1371/journal.pone.0187192.g007
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route. Indeed, microglia which strongly upregulate MHC-II expression upon intranasal infec-

tion with vesicular stomatitis virus (VSV) (unpublished observation) remained immune nega-

tive after one, three, and five days under non-SPF conditions, and also did not exhibit

morphological signs of activation. A recent study showed that the immune system of labora-

tory mice kept under SPF circumstances massively varies from the one of pet shop mice. The

former were much more similar to new born babies than to adults raising concerns against the

common extrapolation of respective data to the human situation [6]. Furthermore, a study of

Reese et al. (2016) [7] shows that the immunological response to vaccines differs massively in

terms of gene expression, particularly cytokine expression, and quantity of antibodies between

mice kept in an immunological unchallenging barrier and mice which were previously co-

infected with common pathogenes such as helminths and herpesviruses. These recent observa-

tions indicate the importance of experiments involving immunological challenging environ-

ments for immunological research. We used such adjustement to a more realistic environment

to capture the transcriptomic response in the olfactory bulb and nasal mucosa involved in

homeostatic defense. Our data show that the mucosa appears to provide a sufficient response

to environmental pathogens as the challenge of open housing does not induce an immunologi-

cal reaction at the transcriptional level in the olfabctory bulb. The list of genes induced upon

moving from SPF to a more challenging environment may include candidates who’s mutations

may render risk for the development of meningitis.
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Our data show no significance in expression of these genes in the olfactory bulb when com-

pared between SPF and non-SPF environment.

(DOCX)

Acknowledgments

Competing Interests: The authors have declared that no competing interests exist.

Financial Disclosure: This project was supported by the Helmholtz Alliance ICEMED. CP

received a scholarship of the Medical Faculty of the Universität Leipzig to perform this work.

Author Contributions

Conceptualization: Carolin Piotrowski, Ingo Bechmann.

Open housing drives the expression of immune-response genes in the nasal mucosa

PLOS ONE | https://doi.org/10.1371/journal.pone.0187192 October 27, 2017 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187192.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187192.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187192.s003
https://doi.org/10.1371/journal.pone.0187192


Data curation: Carolin Piotrowski, Vera Lede.

Formal analysis: Carolin Piotrowski, Vera Lede, Nicole Kaiser.

Funding acquisition: Matthias H. Tschöp, Ingo Bechmann.
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