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This paper uses a newly defined functional connectome and connectome values

calculated in time domain of simulated neurotransmitter release (NTR) from an

electrocorticogram (ECoG) to distinguish between conditioned and unconditioned

stimuli. The NTR derived from multiple channels releasing one quantum at the same

time suggests that one functional connectome occurs across those channels at that

time. During the first 600ms after conditional stimulation, the connectome indexes of

the 64-channel NTR trains were sorted from the 8 to 20Hz band obtained from filtered

rabbit ECoGs recorded from the visual cortices. In the small scale visual cortex area,

this association was significantly larger than the habituation, even though the trial-to-trail

variability of large scale synchrony after conditional stimulation is increased, which is also

consistent with the hypothesis that attention decreases coherence of lower frequency

within each cortical area. The increased conectome index suggests that the stimuli

related to association are able to generate stronger substantial responses in the small

scale visual cortex than habituation. That is, besides of the background cortical states as

well as attention-related decreases in synchrony of lower frequency, the increased part of

neurotransmitters released simultaneously from the pre-synaptic terminals of small scale

visual cortex for association is larger than habituation.

Keywords: functional connectome, connectome in time domain, neurotransmitter release, electrocorticogram,

association and habituation

INTRODUCTION

Different regions of the brain must communicate with each other to provide the basis for the
integration of sensory information, sensory-motor coordination, and many other functions that
are critical for learning, memory, perception and the behavior of organisms. Hebb (1949) suggested
that this is accomplished by the formation of assemblies of neurons whose synaptic connections are
strengthened whenever these cells are activated synchronously. This seminal concept has intrigued
investigators, and several methods for calculating synchronization from recorded biological
signals that are not spikes have been proposed (see Lachaux et al., 1999; Buzsâki, 2006 and
references therein). Current researches on multisensory integration showed that cross-modal
(for example, visual-somatosensory) cues that are spatial and temporal coincidence generally
enhance the responses of multisensory neurons in cat superior colliculus, whereas those that are
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spatially or temporally disparate often elicit response depression
or fail to be integrated (see Stein et al., 2014 and references
therein). In humans and other mammals, a key motif
of multisensory integration is the “top-down” control of
perception, wherein the primary sensory cortex activity is
modulated and controlled by feedback from higher-order
regions. In visual cortical areas, many neurons exhibit enhanced
responses to attended stimuli and several frontal and parietal
cortical regions have been implicated as the sources of top-
down modulation signals, especially the dorsolateral prefrontal
cortex and frontal eye field (Desimone and Duncan, 1995;
Squire et al., 2013; Zhang et al., 2014). In addition to
corticocortical projections, frontal eye field also projects to
the thalamus and other subcortical circuits that modulate
cortical processing (McAlonan et al., 2008; Saalmann et al.,
2012). Beyond identifying the signal sources, however, the
synaptic circuits mediating top-down modulation and the role
of each pathway are largely unknown. This paper aims to
use connectome values and simulated neurotransmitter release
(NTR) from electrocorticogram (ECoG) data to distinguish
between conditioned and unconditioned stimuli. Unlike the
usual functional connectomes that are calculated in frequency
domain from the phase-locking value (PLV), this newly defined
functional connectome is calculated in time domain directly
from the NTR train, which is spike-type and has biological
meaning. The NTR trains from multiple channels releasing
one quantum at the same time suggest that one functional
connectome occurs across those channels at that time. The ECoG
data used in this paper has been analyzed in Freeman and
Barrie (2000) using different methods. In Freeman and Barrie
(2000), FFT and principal component analysis were used to
derive spatial amplitude modulation patterns within the 20–
80Hz domain and to classify conditioned and unconditioned
stimuli. Using the methods in Freeman and Barrie (2000), no
distinctive spatial patterns emerged within the 2–20Hz domain.
In this study, sorting NTR trains from ECoG signals revealed
a role for the functional connectome related to association or
habituation. The striking observation in the present paper is that
association learning induces more connectome than habituation.
The new functional connectome index can distinguish between
association and habituation, while PLV only distinguish between
conditional stimulus (CS) onset vs. delay.

Functional connectivity is an observable phenomenon that
can be quantified with measures of statistical dependencies, such
as correlations of phase and synchrony of aligned individual
spikes. The distributed dynamics of hidden neuronal synaptic
activity states x(t) generally can be described using the following
equations:

ẋ = h(x, u, θ)+ w

y = g (x, u, θ) + w1

where h(x, u, θ ) describe the motion of hidden neuronal synaptic
activity (Friston, 2011). Since the states x(t) are hidden, we need
to assess the mapping g(x, u,θ ) from hidden states to observed
responses y(t). The parameters θ describe effective connectivity
and they control how hidden states in one part of the brain

affect the motion of hidden states elsewhere. Furthermore, u(t)
corresponds to exogenous inputs, w(t) and w1(t) are random
fluctuations in the motion of hidden states and observations.
As noted by Friston (2011), functional connectivity C =
diag

(

Ay

)− 1
2
(

Ay

)

diag(Ay )
−1
2 is assessed with the correlation

coefficient Ay =
〈

y, y
〉

, which are related to effective connectivity
θ by the observing equation for y and the motion equation for
x. Generally, the observed responses y(t) are a series of signals
or a measure of a series of signals. For example, a method,
called PLV measures the significance of the phase covariance
between two signals. It has been used to examine the role
of neural synchronies as a putative mechanism for long-range
neural integration during cognitive tasks (Lachaux et al., 1999).
Usually functional connectivity C is determined by PLV. Given
two series of signals yi (i= 1, 2) and a frequency of interest f, this
allows the computation of a measure of phase-locking between
the components of yi (i = 1,2) at the frequency f. By band-pass
filtering each signal between (f ± 2 Hz), its convolution with a

complex Gabor wavelet G(t, f)= exp(−t2

2σ 2
t
)exp(j2π ft) centered at

frequency f is computed, where σt = 7/f (Lachaux et al., 1999).
The phase of this convolution φi(t, n) (i = 1, 2) is extracted for
all time-bins t, where n= 1, 2, 3,. . . , N are trial numbers, and for
each of the pair of electrodes. The phase locking value (PLV) is
then defined at time t as the average value:

PLVt =
1

N

∣

∣

∣

∣

∣

N
∑

n=1

exp (jϕ(t, n))

∣

∣

∣

∣

∣

where ϕ (t, n) = φ1 (t, n)− φ2 (t, n), j=
√
−1.

As pointed out by Friston (2011), there is a complicated
relationship between functional connectivity and the underlying
motion of hidden states. In present paper, unlike (Lachaux
et al., 1999), a new functional connectome in time domain
and connectome values to measure the synchrony of aligned
individual neurotransmitter releases are defined. In Freeman
and Zhai (2007, 2009) the authors proposed that background
cortical states in awake and slow wave sleep could be produced
by Poisson-like spike trains propagating through scale-free brain
networks. The model used in present paper has been successfully
utilized to simulate the power-law and variation in slope of the
ECoGPSD in Freeman and Zhai (2007, 2009), helping explain the
role of the refractory periods of the spike activity from which the
level of background cortical activity is stabilized. This determines
the slope of the PSD. This explanation is especially relevant to
the change in slope of the PSD of human ECoGs, which averages
nearly−2 during awake state and nearly−3 during slow wave
sleep. In this sense, themodel used in this paper, in addition to the
model used in Freeman and Zhai (2007, 2009), are reasonable for
measuring hidden neuronal synaptic activity states x(t) in hidden
state-space. The results here are an advance over previous studies
(Freeman and Zhai, 2007, 2009). In this paper, we discover a
new functional connectome index related to association and
habituation by measuring the hidden neuronal synaptic activity
states directly. TheNTR derived frommultiple channels releasing
one quantum at the same time suggests that one functional
connectome occurs across those channels at that time. During the
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first 600ms after conditional stimulation (CS), the connectome
indexes of the 64-channel NTR trains were sorted from the 8
to 20Hz band obtained from filtered rabbit ECoGs recorded
from the visual cortices. The synchrony of aligned individual
neurotransmitter releases responding to stimuli is local in space
during the initial destabilization (≥600ms) of primary visual
cortex, which is also consistent with previous reports (Cohen
and Kohn, 2011; Harris and Thiele, 2011; Salkoff et al., 2015).
In the local visual cortex, this association was significantly larger
than the habituation, even though the trail-to-trail variability of
the synchrony over all visual cortex after CS onset (Figure 4A
shows that the CS dependent synchronies mainly consist of
∼5 channels) is increased comparing with before CS onset
(Figure 9A shows that the synchronies mainly consist of ≥30
channels), which is also consistent with the hypothesis that
attention decreases coherence of lower frequency within each
cortical area (Womelsdorf and Fries, 2007; Ruff and Cohen,
2016). The small scale increased conectome index suggests that
the stimuli related to association are able to generate stronger
substantial responses in the small scale of visual cortex than
habituation. That is, besides of the background cortical states
as well as attention-related decreases in synchrony of lower
frequency, the increased part of neurotransmitters released
simultaneously from the pre-synaptic terminals of small scale
visual cortex for association is larger than habituation.

In present paper, the mean-field model proposed by Freeman
and the second author in Freeman and Zhai (2007, 2009) is
extended to characterize the ensemble dynamics of a population
of neurons. Simulated neurotransmitter release (NTR) is a
mean-field quantity which is the ensemble of neurotransmitter
releases of the neurons within the population (an alternative
interpretation is the density of neurotransmitter release of a
typical neuron within the population). Mean-field models are
important because they are parameterized in biological terms.
This means their inversion allows one to ask questions that are
framed in terms of biological processes, rather than at a purely
phenomenological level. The definition of cortical state refers to
the dynamics of network activity on a time scale of seconds or

more. The defining characteristic of cortical state is the amount
of slow fluctuation in the summed activity of a set of neurons
(Harris and Thiele, 2011). Synchrony measures the extent to
which the timing of individual NTRs is precisely aligned, typically
on the timescale of <1ms. One functional connectome of k
channels at time t is one synchrony of k channels at time t, that
is, an aligned k individual NTRs from k channels respectively at
time t. We call synchrony small scale in case of k < 30, and large
scale in case of k > 30.

MATERIALS AND METHODS

Data generated by Freeman (see Barrie et al., 1996; Freeman and
Barrie, 2000; Freeman, 2005 for details) were used for analysis
in the present paper (http://person.zju.edu.cn/old/en/jzhai). In
Freeman (2005), two visual, four auditory, and three somatic
cortices measurements from a total of nine rabbits were used. The
data files used in the present paper included 64 channels of ECoG
data recorded from the visual cortex of rabbits (Figure 1). CS+
indicated the type involving reinforcement (association). CS−
indicated the type involving no reinforcement (habituation). Two
female New Zealand White rabbits were chronically implanted
onto the epidural surface of each left cortical hemisphere
with an 8 × 8 electrode (0.25mm diameter stainless steel,
epoxy-insulated wire) square array at an average spacing of
△d = 0.79mm (Barrie et al., 1996). Surgical clips were placed
onto the posterolateral aspect of the left cheek for unconditioned
stimulus (US) delivery. The restrained animal was placed into
an electrically shielded chamber with adequate ventilation and
a source of white noise at 72 dB (Barrie et al., 1996). After 1
week of postoperative recovery, each rabbit was familiarized with
the experimental setup while being placed in a restraining box
to decrease movement artifact in the ECoG recordings. After
familiarization, there was one basic experimental paradigm. Each
rabbit was classically conditioned to discriminate between two
different modality-specific stimuli (see Figure 1C): conditioned
stimulus CS+ vs. CS−. The recorded ECoG data for each rabbit

FIGURE 1 | Electrode array and basic summary of the experimental approach. (A) The electrode array was chronically implanted onto the epidural surface of the left

visual cortex. (B) Electrodes and their corresponding numbers. (C) Basic summary of the experimental approach.
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consisted of 40 trials with random alternations between CS+ and
CS− presentations. The time interval between the two trials was
randomized, ranging from 30 and 120 s. Each trial lasted 6 s with
an onset of CS at 3 s (duration was 10ms). During the recording
experiment, the rabbit was trained to discriminate between an
unreinforced stimulus (CS−) and a reinforced stimulus (CS+)
paired to a mild electric shock (unconditioned stimulus). CS−
consisted of a weak full-field flash. CS+ consisted of a strong
full-field flash paired with a mild electric shock (US), which
had sufficient intensity to elicit a skin twitch. The weak or
strong flash varied only in luminous intensity (3.6 vs. 2.8 ft.-cd.).
During presentation of visual stimuli, each animal was placed
in a dark chamber with no background light. The US arrived
at the end of the 6 s trial period and it consisted of four to five
electrical pulses (1–5mA) delivered in a window of 10ms. CS+
was the type with reinforcement (association). CS− was the type
with no reinforcement (habituation). At the beginning of the
recording experiment, each rabbit learned the task with increased
respiration in response to the CS+.

The ECoG was recorded monopolarly with respect to
that cranial reference electrode nearest the array and it was
amplified by fixed-gain (10K) ISO 4/8 differential amplifiers.
Each channel was filtered with single-pole, first-order analog
resistance/capacitance filters (6 dB/octave falloff) set at 100Hz (3
dB point) and 0.1Hz. Records of 64 12-bit samples multiplexed
at 10 µs were recorded at a 2-ms digitizing interval (500Hz)
for 6 s. These records were stored as signed 16-bit integers. The
incremental time delay caused by multiplexing of the ECoG
was corrected off-line. Bad channels associated with movement
artifact or electromyogram were identified by visual editing and
replaced off-line by averaging the signals of two vertically or
horizontally adjacent channels. These data have been analyzed by
Freeman et al. by utilizing power spectral density, in addition to
the distance between successive patterns obtained from filtered
ECoG signals and their Hilbert transformations (see Barrie et al.,
1996; Freeman and Barrie, 2000; Freeman, 2005 for details). Their
methods were not involved in the present study. In Freeman
(2005) temporal pass bands of 20–80 and 8–40Hz were adopted.
The reason to adopt data from the two visual cortices (40 trails for
each rabbit) was the same as in the above papers: the two sets of
correct classification values of CS+ vs. CS− showed separation
most strongly for the visual cortex and least strongly for the
auditory cortex (see the Table 1 of Freeman, 2005).

Here we introduce our method for measuring the synchrony
of aligned individual neurotransmitter releases and determining
the functional connectome index. The procedure followed four
steps.

Step 1. Simulate neurotransmitters using the Poisson process.
Neurotransmitters are prepackaged in discrete quantities of a
fixed size, called quanta that are identified as the synaptic vesicles
universally present at chemical synapses (Stevens, 1993). Some
neurotransmitter-filled vesicles (acetylcholine is the transmitter
at vertebrate neuromuscular junctions, glutamate is referred to
as an excitatory neurotransmitter while GABA is inhibitory) fuse
with the membrane of the axon terminus at special release sites to
discharge their contents into the synaptic cleft. Communication
in nervous system is mediated by action potential-initiated

exocytosis of these vesicles. Upon arrival at the postsynaptic
membrane, the neurotransmitter molecules induce elementary
endplate currents. A synapse has hundreds of release sites. Each
site is independent of others and can release either zero or
one quantum. A miniature endplate current comprises some
1,000 elementary endplate currents. The potential induced by
a miniature endplate current in the postsynaptic membrane
is called the MEPP (measuring ∼0.5mV). To depolarize the
membrane sufficiently to active an action potential in the soma,
some 10 MEPPs need to occur over a short time window
(Sakmann, 1992). Based on these biological results for neurons,
we simulated the electrical activity of neurons in both forms: NTR
trains at pre-synapses and waves of dendritic synaptic current.
Here a simulated NTR was regarded as a single-shock electrical
stimulation of an afferent pathway. The population activity at
the mesoscopic level was modeled by NTRs released by a macro-
synapse.

The mathematical description of the Katz theory is a Poisson
process. The Poisson process is characterized by the mean rate
µ (t) (Poisson rate). The Poisson rate is constant or nearly
constant in most applications, and µ (t) is the average rate at
which NTRs occur in a synapse. The µ (t) is very low at rest and
it then increases dramatically following an action potential. The
Poisson process with the Poisson rate µ is denoted by {x(t): t≥0},
where x(t) expresses the total number of NTRs occurring in one
synapse. Additionally, x(t) starts at 0, remains unchanged for a
holding time t1 and probability P(t1 > t) = exp{−µt}, at time
t1 moves to 1 where it remains for an independent holding time
t2 − t1 and P(t2 − t1 > t − t1)= exp{−µ(t− t1) }. It then moves
to 2 at time t2, and so on. From this model, if an NTR happened
in a synapse at time tj, the next NTR will happen in the synapse
at time tj+1, with the probability P(tj+1 − tj > 1t)= exp{−µ1t}.
The probability that n NTRs occur in the same synapse between
times tj and tj + 1t is considered to be

P(n) =
(µ1t)n

n!
exp{−µ1t }.

Step 2. Integrate the hidden neuronal synaptic activity states x(t)
to simulate the ECoG. The population activity at the mesoscopic
level was modeled by p(t), which represented extracellular pulse
density, and v(t), which represented extracellular wave density
and the ECoG. The response v(t) to a single-shock electrical
stimulation (NTR) of an afferent pathway gave a compound
postsynaptic potential with a rapid rise rate, b, and a slower decay
rate, a, that could be approximately fitted with the sum of the
following two exponential terms (Figure 2D, see Freeman and
Zhai, 2009 for details)

v (t) ≈ p (t) = ke ∗ (b− a)[exp(−a ∗ t)− exp(−b ∗ t)] (1)

where ke was the forward gain parameter and (b− a) normalized
the output magnitude, p(t), with respect to the rate constants in
fitting the increase in firing density of population activity above
the mean background level after each spike occurrence, with
corresponding increase in excitatory synaptic current associated
with the increase in pulse density of neural output. The simulated
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evoked ECoG, v(t), was proportional to p(t) by an arbitrary
conversion factor between wave density and pulse density
(Freeman, 1975). The response to nNTRs occurring at time series
{t1, t2, t3, . . . , tn}

v(t) =
∑

1≤i≤n
ke ∗ (b− a)[exp(−a ∗ ti)− exp(−b ∗ ti)].

Step 3. By minimizing the error of these simulated ECoG signals
v(t) with real ECoG signals ECoG(t), we discovered the best
parameters {µ, ke, a, b} as well as the simulated series of NTRs,
where the signals ECoG(t) were derived from the recorded rabbit
ECoG signals by solving the inverse problem of conduction
equation to reduce the volume conduction (Lachaux et al., 1999).
Therefore, we sorted out the NTRs and the hidden neuronal
synaptic activity states xi(t) from the recorded ECoG signals for
each channel i= 1, 2, . . . , 64 (see Figures 2A,B, 3):

xi (t) = arg min {µi , kei ,ai ,bi} ‖vi − ECoGi‖l2 , i = 1, 2, . . . , 64.

Step 4. Compute the functional connectome index and
connection matrix from the correlation coefficient of the hidden

neuronal synaptic activity states {xi(t)}i= 1,2,...,64 (see Functional
Connectome Index and Results section for details).

Note that Equation (1) is used to simulate the sum of
excitatory part “ke ∗ (b − a)[exp(−a ∗ t)]” and inhibitory part
“ke ∗ (b − a)[− exp(−b ∗ t)].” Compare this with the work of
David and Friston (2003) who showed the excitatory part to
be v1 = t(He/τe)exp[(−1)t/τe] and the inhibitory part to be
v2 = −t(Hi/τi)exp[(−1)t/τi]. See Freeman and Zhai (2009)
for a serious discussion of the validity of our model used for
ECoG data. In particular, simply summing the simulated action
potentials cannot simulate the ECoG data because the ECoG
is the output of the dendrites that are synaptically driven by
action potentials. The simulation by integration must be done by
simulating the impulse response of the cortex, which is done by
fitting a curve of the cortical responses to a single-shock electrical
stimulation (NTR) of an afferent pathway. This impulse response
has the forms of a dendritic wave: an averaged evoked potential
(AEP) or a fluctuation in the firing density in a post-stimulus
time histogram (PSTH, Figure 2C). The impulse response shows
a rapid rise and a prolonged return to the background level

FIGURE 2 | The NTR trains sorted from rabbit ECoGs. (A) Upper: Recorded rabbit ECoGs filtered from the 8 to 20Hz band. Bottom: Sorted NTR trains from the

filtered ECoG data. (B) Calculating example for T(k) from sorted NTR trains of 64 channels. (C) Two examples of the impulse responses of the bulbar periglomerular

mutually excitatory population at lowest and highest stimulus intensities give decay rates of 40/s and 90/s, respectively, and rising rates of 500 and 300/s, respectively.

(D) Left: The relation for the stimulus intensity gives the threshold of the impulse response to an excitatory stimulus; Right: The relation of decay rate to stimulus.

Adapted from Freeman and Zhai (2009).

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 February 2018 | Volume 12 | Article 18

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Zhai and Zhai Functional Connectome in Time Domain

FIGURE 3 | Eight to twenty hertz band filtered rabbit ECoGs from a chronically implanted 64-channel electrode array and the sorted NTR trains corresponding to

connectome across more than 5, 10, and 30 channels. (A–D) from a CS+ trail. (E–H) from a CS− trail.
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(Freeman, 1975), owing to the reverberation of firing among the
thousands of neurons transmitting and re-transmitting to each
other.

Functional Connectome Index
Cognitive acts require the integration of numerous functional
areas widely distributed over the brain that could be mediated
by neuronal groups that produce spatiotemporal patterns
of synchronization. These phenomena are called “functional
connectomes.” To find a reliable and robust method for
measuring such functional connectomes for recorded signals is
difficult because the recorded signals are not spikes. Instead,
they are local field potential (LFP). Unlike other methods,
such as network-based statistic in Zalesky et al. (2010)
(which was an approach originally suggested to compute
inferential statistics on derived networks), PLV in Lachaux
et al. (1999), power spectral density, and the distance between
successive patterns obtained from filtered ECoG signals and
their Hilbert transformations (Barrie et al., 1996; Freeman
and Barrie, 2000; Freeman, 2005), our method is based on
the Katz theory. The functional connectome value is obtained
directly from NTRs that are spikes and have biological
meaning.

Let k be an integer between 1 and 64. The NTR trains from the
k channels releasing one quantum during the same time window
[t−δ, t+δ] (for example, δ = 0.2ms) suggests that one functional
connectome of k channels, denoted by CNT(k,t), occurs across
those channels at time t. Let T(k) be the set of the times such that
t∈T(k) if and only if the number of channels having a sorted NTR
only at the time window [t−δ, t+δ] is larger than k:

T
(

k
)

=
{

t : ∃ CNT
(

j, t
)

with j ≥ k
}

.

That is, at each time window [t−δ, t+δ] with t∈T(k), there are
at least k channels simultaneously releasing a quantum (NTR).
We define the index of functional connectome across more than
k channels by the following equation:

ID(k) =
1

64

∑

t∈T(k)
{j : ∀ CNT

(

j, t
)

with j ≥ k}(2)

For example, in Figure 2B, t1 and t2, in addition to t3 belong to
T(6). Additionally, t1 and t3 belong to T(11), and t1 belongs to
T(31). During [t1,t3], the connectome index across more than 5-
channels is (31+6+11)/64. For 10-channels, it is (31+11)/64, and
for 30-channels, it is 31/64.

A larger index for the connectome implies a larger number
or larger scale of functional connectomes. Figure 3 shows
the 8–20Hz band-filtered rabbit ECoG from a chronically
implanted 64-channel electrode array and the sorted NTR trains
corresponding to connectome across more than k = 5, k = 10,
and k= 30 channels.

RESULTS

During the First 600ms after Stimulus, the
Connectome Index of the 64-Channel NTR
Trains Sorted from 8 to 20Hz Band ECoGs
with Respect to the Association (CS+) Is
Significantly Larger than the Habituation
(CS−) (p = 1.1×10−7, α= 0.05 t-Test for the
Connectome across More than 5 Channels)
From 3 to 3.6 s, the index for the NTR connectome across more
than 5 channels, 10 channels, and 30 channels [ID(5), ID(10), and
ID(30)] from trial 01 to trial 39 are shown in Figures 4A, 6A.

For connectome across more than 5 channels, the threshold
to distinguish association learning and habituation equaled 51.5.
Only two CS+ trials (trial 11, trial 14, 10.5%) were below the
threshold. Meanwhile, for the connectome across more than
10 channels, the threshold to distinguish association learning
and habituation equaled 50. Only three CS+ trials (11, 12, 14,
15%) were below the threshold. The results of the Kolmogorov-
Smirnov-test confirm that the data: (ID(5) for CS+)-(mean
value 56.8947) and (ID(5) for CS−) – (mean value 46.5263) are
independent random samples from normal distributions with
mean 0 as well as variance σ = 2 and 1.8 (5% significance
level, p = 0.0273 and 0.0315), respectively. Furthermore,
p = 1.1×10−7, α = 0.05 t-test for the connectome across more
than 5 channels, and p= 0.19, α = 0.2 t-test for the connectome
across more than 10 channels.

Here only the data between 3 and 3.6 s were used to distinguish
between CS+ and CS−. Varying the analysis window duration
from 100 to 600ms yielded a window length of 600ms as
optimal for pattern classification by the connectome across
more than 5 channels [ID(5), see Figures 4B,C], which is also
consistent with previous reports (Cohen and Kohn, 2011; Harris
and Thiele, 2011; Salkoff et al., 2015). As noted by Cohen and
Kohn (2011), in the absence of salient changes in the visual
scene, animals can only shift their attention approximately once
every 400ms. Even shifts in exogenous attention take 100–
200ms following an abrupt stimulus change. The window length
should be larger than the timescale of fluctuations in background
cortical state to eliminate the effect of the background cortical
state. The synchrony of aligned individual neurotransmitter
releases responding to stimuli is local in space during the
initial destabilization (600ms) of a primary visual cortex. In
the local visual cortex area, this association was significantly
larger than the habituation (p = 1.1×10−7, α = 0.05 t-
test for the connectome across more than 5 channels), even
though the trail-to-trail variability of the synchrony over all visual
cortex after CS onset (Figure 4A shows that the CS dependent
synchronies mainly consist of ∼5 channels) is increased
comparing with the indexes before CS onset (Figure 9A
shows that the synchronies mainly consist of ≥30 channels),
which is also consistent with the hypothesis that attention
decreases coherence of lower frequency within each cortical
area (Womelsdorf and Fries, 2007; Ruff and Cohen, 2016). The
increased conectome index suggests that the stimuli related to
association are able to generate stronger substantial responses in
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FIGURE 4 | (A) The connectome index in the 8–20Hz band from 3 to 3.6 s (just after CS onset) ranged from trail 01 to trial 39. The three rows show the results of

connectome across more than 5, 10, and 30 channels. The connectome index for CS+ was clearly larger than for CS− (p = 1.1 ×10−7,α = 0.05 t-test for the

connectome across more than 5 channels). (B) Varying the analysis window duration from 100 to 600ms yielded a window length of 600ms as optimal for pattern

classification by the connectome across more than 5 channels. CS+, red star; CS−, blue circle. (C) Successful probability vs. the window duration analyzed for

pattern classification for the connectome across more than 5 channels. (D) Successful probability vs. frequency windows.

the small scale visual cortex than habituation. That is, besides
of the background cortical states as well as attention-related
decreases in synchrony of lower frequency, the increased part of
neurotransmitters released simultaneously from the pre-synaptic
terminals of small scale visual cortex for association is larger than
habituation.

In the basic paradigm, the US (consisted of four to five
electrical pulses of 1–5mA delivered over 10ms) arrived at the
end of the 6 s trial period for CS+ trials. Note that each rabbit
was trained on the basic paradigm once per week for a total of
three experiments per animal, and the CS−/CS+ contingencies
were reversed during the third week with the same animal (the
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CS+ that was initially paired with the US became the CS−
and vice versa). The effect of the flash varying in intensity on
connectome index was reduced. Furthermore, in next section,
we will show that the connectome index from 0 s to 3 s of trial
n was significantly large if the US was onset at the end of trial
n−1 (see Figure 1C). This suggests that the difference in the
connectome indexes is not due to the flash varying in intensity
for CS+ and CS− but this is instead due to association and
habituation.

Cumulatively, the results showed in Figure 4 suggest that
the connectome indexes reflect whether the rabbit learned the
association (CS+). On the other hand, Figures 4, 6A show
that for classification of CS+ and CS− from 3 to 3.6 s, the
indexes across more than 5 or 10 channels [ID(5) or ID(10)]
are most significant (p = 1.1×10−7,α = 0.05 t-test for
5 channels; p = 0.19, α = 0.2 t-test for 10 channels).
Thus from the definition of connectome index, the large
index across more than 5 or 10 channels for CS+ trials
from 3 to 3.6 s is due to numerous occurrences of functional
connectomes and not the large scale of functional connectomes.
The spatiotemporal patterns responding to CS± are local in
space during the initial destabilization of a primary receiving
area by sensory input, and the spatiotemporal pattern in the
8–20Hz band from 3 to 3.6 s responding to CS+ trials prefers
small scale functional connectomes to large scale of functional
connectomes.

Furthermore, Figure 5 shows which channels were involved
in the connectome process. For 1 ≤ k ≤ 64, the k-connection
matrix for CS± trial n (n = 1,2,3,. . . ,20) is defined by the
following equation:

{C±
n (i, j; k)}1≤i,j≤64 = {#{t : ∃CNT(l, t) such that l ≥

k and i, j ∈ CNT(l, t)} }1≤i,j≤64,

where # is the calculating operator of the number of the elements
of a set. Let C±

max(k) = max1≤i,j≤64
∑

1≤n≤20 C
±
n (i, j; k). The

normalized connection matrix can be represented as the
following:

{c±n (i, j; k)}1≤i,j≤64 =
64

C±
max

(

k
)

∑

1≤n≤20
C±
n

(

i, j; k
)

(3)

Figure 5A is the normalized connection matrix of CS+ trials
with k = 5, and Figure 5B is the normalized connection matrix
of CS− trials with k = 5. These show the spatiotemporal
connecting activities of CS± trials in the 8–20Hz band from 3
to 3.6 s across more than 5 channels. For CS+ trials, there are
clearly strong connecting activities from channel 17 to channel
20, channel 25 to channel 27 and channel 33 to channel 38 as
well as channel 41 to channel 45 in CS+ trials (p = 5×10−7,
α = 0.05 t-test). This suggests that the connectome indexes
reflect whether the rabbit learned the association (CS+), and the
association causes strong small scale connecting activities across
channel 17 to channel 20, channel 25 to channel 27, and channel
33 to channel 38 as well as channel 41 to channel 45 (active
channels/total channels<28%). The most significant connections
focus on neither medial nor lateral to the area of visual cortex
(see also Figures 1A,B).

Using the Connectome Indexes of the NTR
Sorted from the 8 to 20Hz Band of the
ECoGs before CS Onset or Long after CS
Onset, the Association and Habituation
Cannot Be Distinguished
We compared the results obtained from 3 to 6 s with the same
statistics from 0 to 3 s before the CS onset. We found that before
the CS onset, the index of the connectome for CS+ trials and
CS− trials is completely mixed. A similar phenomenon was also
observed as late as 2.4 s after CS onset.

Figure 6 shows that from 1.8 to 3 s just before CS+ or CS−
stimulus onset, the indexes of the connectome of the NTRs sorted
from 8 to 20Hz band-filtered ECoG data are completely mixed
for CS+ and CS− trials on both scales, including the small scale
(across more than 5 channels, successful probability < 0.62)
and the large scale (across more than 30 channels, successful
probability < 0.53). Similar phenomena were observed for time
window of 3.6 to 6 s or for the filter band at 20–80Hz. This
suggests that the functional connectome in the 8–20Hz band for
CS+ trials observed in the above subsection only is the short time
character of the association learning. The spatiotemporal patterns
responding to CS± are local in space (see the above subsection)
and time during the initial destabilization of a primary receiving
area by sensory input.

Furthermore, the connectome indexes for the 64 sequences
obtained from the same ECoG data with randomized time order
is shown in Figure 7. For 74% of the CS− trails, the connectome
indexes of more than 5 channels are larger than 98 [ID(5) ≥ 98].
Meanwhile, for 45% of the CS+ trails, ID(5) < 98. For 60% of the
CS+ trails, ID(10) < 90. For 52% of the CS− trails, ID(10) > 90.
For 25% of the CS+ trails, ID(30) < 65. For 79% of the CS−
trails, ID(30) > 65.

On the other hand, unlike typical method for defining
the functional connectome by calculating phase-locking, the
connectome in this paper is determined in time domain using
NTRs. Figure 8 shows the PLVs using the method given in
Lachaux et al. (1999). This was calculated from our ECoG data
from 2.4 to 3 s (the left column) and 3 to 3.6 s (the right column),
and filtered using the 8–20Hz band for CS+ trails (the upper
row) and CS− trails (the lower row), respectively. From 2.4 to
3 s (just before the CS onset), the maximum PLV for CS+ trails
is 0.0152 the maximum PLV for CS− trails is 0.0153. From 3
to 3.6 s (just after the CS onset), the maximum PLV for CS+
trails is 0.9907, the maximum PLV for CS− trails is 0.9863.
Comparing to the connectome index (Figures 4A, 5), there is no
significant difference between CS+ trails (Figure 8A) and CS−
trails (Figure 8B). The only significant difference before and after
the CS onset for both of CS+ and CS− is found. Thus, the PLV
in the 8–20Hz band only represents the CS onset.

The Index of the Connectome before CS
Onset in Trial n Contains the Information of
US at the End of Trial n−1 (see Figure 1C)
So far, the following rule pertaining to a trial and the index of
the connectome during the trial is as follows: if trial n is CS+

Frontiers in Behavioral Neuroscience | www.frontiersin.org 9 February 2018 | Volume 12 | Article 18

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Zhai and Zhai Functional Connectome in Time Domain

FIGURE 5 | Normalized connection matrix of connectome in 8–20Hz band from 3 to 3.6 s (just after CS onset) across more than 5 channels. (A) CS+ trails. (B) CS−
trails. There are clearly strong connections from channel 17 to channel 20, channel 25 to channel 27, channel 33 to channel 38, and channel 41 to channel 45 in CS+
trails (p = 5×10−7, α = 0.05 t-test). (C) The association causes strong local conneting activities across channel 17 to channel 20, channel 25 to channel 27, channel

33 to channel 38, and channel 41 to channel 45 in CS+ trails (active channels/total channels < 28%).

FIGURE 6 | The indexes of the connectome in the 8–20Hz band from 1.8 to 3 s (just before CS onset) for CS+ and CS− trails are random. (A) The successful

discriminating probability between CS+ and CS− by the connetome indexes in the 8–20Hz band from 1.8 to 3 s (just before CS onset) and the connectome

in the 8–20Hz band from 3 to 3.6 s (just after CS onset). (B) The successful discriminating probability between CS+ and CS− by the connectome indexes in the 8–20

Hz band from 3 to 3.6 s (red), 3.6 to 5.2 s (yellow), 5.2 to 6 s (blue), and by the connectome indexes in the 20–80Hz band from 3 to 3.6 s (red dash). (C) Indexes of

connectome across more than 30 channels in the 8–20Hz band from 1.8 to 3 s are completely random (successful probability < 0.53). CS+: red star. CS−: blue circle.

(CS−), then the index during trial n is called the connectome
index for CS+ (CS−). On the other hand, it is possible that the
index during 0 s to 3 s of trial n may include information on
whether a US stimulus was onset at the end of trial n−1. We call

the connectome index from 0 s to 3 s the former trial connectome

index, which is denoted by FID(k). The former trial connectome

index of trial n is CS+ (CS−) provided that trial n−1 is CS+
(CS−).

Figure 9 shows the new rule applied to the same data in
Figure 6C. In contrast, in the former subsection the old rule
fails to distinguish between CS+ and CS−. The successful
discriminating probability between CS+ and CS− by the former
trial index of the connectome in the 8–20Hz band from 1.8 to

3 s (just before the next CS onset) is significantly larger than
the successful discriminating probability using the old rule (the
successful probability of the index of the connectome more than
30 channels: the probability for the new rule≈0.7, the probability
for the old rule< 0.53). This clearly shows that if a US stimulus is
onset at the end of trial n−1, about 70% FID(30) of the 8–20Hz
indexes of the connectome across more than 30 channels from
1.8 to 3 s of trial n is larger than 70, and if there is no US stimulus
at the end of trial n-1, about 70% FID(30) < 70.

Cumulatively, the former trial connectome index across
more than 30 channels [FID(30)] for association learning is
significantly larger than habituation, and the connectome indexes
from 0 to 3 s of the trial n do include information on whether
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FIGURE 7 | The connectome indexes for the randomized ECoGs.

FIGURE 8 | The phase-locking values (PLVs) obtained using the method given in Lachaux et al. (1999) calculated from our ECoG data from 2.4 to 3 s (left) and 3 to

3.6 s (right) filtered by the 8–20Hz band. PLV for CS+ trails (A) and PLV for CS− trails (B).
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a US stimulus was onset at the end of trial n−1, even though
the time interval between the two trials is larger than 30 to
120 s (see Figure 1C). This suggests that the spatiotemporal
pattern responding to US onset persists in time. Note that
US stimuli were delivered to the posterolateral aspect of the
left cheek by surgical clips. The large scale synchronies of
visual cortex responding to US onset must be induced by
communication between visual cortex and other cortical areas.
Figures 9C,D show the normalized connection matrix of former
CS+ trials and former CS− trials, respectively, with k = 30.
The connection matrices of former CS± trials were obtained
in the 8–20Hz band from 1.8 to 3 s across more than 30
channels. In former CS+ trials, there is clearly large-scale
strong connecting activity involving almost all channels (active
channels in former CS+/active channels in former CS−>2),
which suggests that the connectome indexes reflect whether
the rabbit learned the association (CS+). Furthermore, the
association causes strong large-scale connecting activities. The
most significant connections focus on channel 1 to channel
12, which correspond to the lateral area of the visual cortex
(Figures 1A,B, 9E).

DISCUSSION

A new functional connectome definition and computing method
using simulated NTR trains from ECoG are used to estimate
the connectome value and distinguish between conditioned vs.
unconditioned stimuli. Synchrony can be calculated directly from

NTR trains, which are spike-type and have biological relevance.
The small scale connectome indexes of the NTR among 64
channels with respect to association learning are significantly
larger than that for habituation. The results observed in the
present paper suggest that association learning locks the 8–
20Hz band in different space and time scales after CS+ or
US stimulus onset. This reflects the difference in information
processes between association and habituation, as well as the
different periods of association learning.

For classification of CS+ and CS− during the time interval [3,
3.6 s] in each trial, the connectome indexes across more than 5 or
10 channels [ID(5) or ID(10)] of NTR trains sorted from the 8–
20Hz band for the ECoG, are most significant. This suggests that
the spatiotemporal patterns responding to CS± are small scale in
space during the initial destabilization of a primary receiving area
by sensory input. The connection matrix in Figure 5 shows that
the most significant connections are focused on neither medial
nor lateral area of the visual cortex.

On the other hand, Figures 9A,B shows that the indexes of
the large scale connectomes of NTR from 8–20Hz before CS
onset in trial n reflect the information of US at the end of trial
n−1. If trial n − 1 is the CS+ type, about 70% FID(30) of the
indexes of the connectomes across more than 30 channels of
NTRs from 8–20Hz from 1.8 to 3 s of trial n are larger than
the threshold. Otherwise, there is no US at the end of trial n−1,
about 70% of the indexes of the connectomes across more than
30 channels from 1.8 to 3 s of trial n are less than the threshold.
Therefore, the former trial connectome index across more than

FIGURE 9 | Former trail connectome index. (A) The successful discriminating probability between CS+ and CS− trails based upon the connectome index before CS

onset and the former trail index of the connectome in the 8–20Hz band from 1.8 to 3 s (just before the next CS onset). (B) Former trail index of the connectome in the

8–20Hz band from 1.8 to 3 s across more than 30 channels. Former trail CS+: red star. Former trail CS−: blue circle. (C,D) Normalized connection matrix of former

trail connectome in the 8–20Hz band from 1.8 to 3 s across more than 30 channels. There is clearly large scale strong connecting activity after US on set (p = 3

×10−88, α = 0.05 t-test). (E) The most significant connections focus on channel 1 to channel 12, corresponding to the lateral area of the visual cortex.
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30 channels for association learning is significantly larger than
that for habituation, and the connectome indexes from 0 to 3 s
of trial n do include the information on whether a US was onset
at the end of trial n−1, even though the time interval between
two trials is larger than 30 to 120 s (see Figure 1C). This suggests
that the large scale synchronies of visual cortex responding to US
onset persist in time and induced by communication between
visual cortex and other cortical areas. Figures 9C,D shows the
connection matrix of former CS+ trials and former CS− trials,
respectively. In former CS+ trials, there is clearly large-scale
strong connecting activity involving almost all channels (active
channels in former CS+/active channels in former CS−>2),
which suggests again that the connectome indexes reflect whether
the rabbit learned the association (CS+). The most significant
connections focus on channel 1 to channel 12, consisting of
the lateral area of the visual cortex (Figures 1, 9E). We also
found the t-test result (p = 0.12, α = 0.15) for the successful
discriminating between CS+ and CS− by the former trial index
of the connectomes across more than 30 channels of NTRs from
8 to 20Hz from 1.8 to 3 s. The t-test result coincides with the
successful probability 0.7.

Unlike typical methods for defining the functional
connectome by calculating phase-locking, the connectome
in this paper is determined in time domain using NTRs. Figure 8
shows the PLVs using the method given in Lachaux et al. (1999).
These are calculated from our ECoG data from 2.4 to 3 s (the left
column) and 3 to 3.6 s (the right column)filtered by the 8–20Hz
band for CS+ trails (the upper row) and CS− trails (the lower
row), respectively. From 2.4 to 3 s (just before the CS onset), the
maximum PLV for CS+ trails is 0.0152, and the maximum PLV
for CS− trails is 0.0153. From 3 to 3.6 s (just after the CS onset),
the maximum PLV for CS+ trails is 0.9907, and the maximum
PLV for CS− trails is 0.9863. Comparing to the connectome
index (Figures 4A, 5), there is no significant difference between
CS+ trails (Figure 8A) and CS− trails (Figure 8B). The only
significant difference before and after the CS onset for both of

CS+ and CS− is found. Thus, the PLV in the 8–20Hz band only
refers to the CS onset.
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