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Abstract: Three-dimensional (3D) bioprinting is an additive manufacturing process that utilizes
various biomaterials that either contain or interact with living cells and biological systems with the
goal of fabricating functional tissue or organ mimics, which will be referred to as bioinks. These
bioinks are typically hydrogel-based hybrid systems with many specific features and requirements.
The characterizing and fine tuning of bioink properties before, during, and after printing are therefore
essential in developing reproducible and stable bioprinted constructs. To date, myriad computational
methods, mechanical testing, and rheological evaluations have been used to predict, measure, and
optimize bioinks properties and their printability, but none are properly standardized. There is a lack
of robust universal guidelines in the field for the evaluation and quantification of bioprintability. In this
review, we introduced the concept of bioprintability and discussed the significant roles of various
physiomechanical and biological processes in bioprinting fidelity. Furthermore, different quantitative
and qualitative methodologies used to assess bioprintability will be reviewed, with a focus on the
processes related to pre, during, and post printing. Establishing fully characterized, functional bioink
solutions would be a big step towards the effective clinical applications of bioprinted products.

Keywords: bioprinting; printing fidelity; bioink; hydrogel; extrusion; printability; bioprintability;
tissue engineering

1. Introduction

Three-dimensional (3D) bioprinting is an additive manufacturing technique, used to create
complex tissue and organ structures that can support live cells and other biological factors. Several
bioprinting strategies have been explored for the main goal of achieving viable functional constructs for
tissue engineering applications [1]. Of these strategies, extrusion-based bioprinting has been the most
applicable in the field of tissue engineering due to its facility in printing bioactive bioinks [2]. Other
modalities such as inkjet, laser, and stereolithography-based bioprinting have been developed and
increasingly used in tissue engineering applications over the past decade, but they typically introduce
some complex functionality and at times run at a higher cost than the extrusion technique [3].

Inkjet bioprinting is a non-contact printing modality that deposits small ink droplets into a
predetermined location driven by thermal or piezoelectric actuation [4]. This method is relatively
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fast and offers the high-resolution printing of single cells. Laser-based printing has the ability to
print biological material such as cells, DNA, and peptides at a relatively high resolution at the
microscale [5,6]. However, due to the pulsed laser source in this technique, cell viability can be
compromised. Stereolithography is a bioprinting strategy that uses a photo-crosslinking light source to
crosslink desired patterns from a bioink reservoir onto a movable platform [7]. This modality is highly
tunable and prints in a layer-by-layer manner with relatively high fidelity and speed, depending on
the scale of the desired construct. Utilizing these diverse bioprinting strategies, tissue-engineered
constructs can be fabricated and tailored at rapid rates with defined, consistent structures and properties,
hence providing multidisciplinary platforms for research and biological exploration.

Bioink printability, i.e., the ability to deposit/form stable and viable volumes of material, plays a
critical role in the fabrication process. Characterization, tuning, and optimization of bioprintability
require an in-depth understanding the flow behavior of the bioink, such as viscosity and shear
thinning [8]. To date, a variety of bioink solutions have been commercialized in a variety of biomedical
applications (Table 1).

Table 1. Commercially available bioinks.

Product Company Materials Advantages

Viscoll 3D Bioprinting Solutions,
Moscow, Russia Type I collagen

Can be supplemented with
growth factors, biocompatility,

cell printing, rapid
polymerization [9]

CELLINK A
CELLINK A-RGD

CELLINK, Gothenburg,
Sweden

Alginate
L-arginine-Glycine-L-aspartic

Acid peptide

Cartligae, bone and
mesenchymal stem cells, can

be used for drug delivery and
cell differentiation [10]

GelMA
Bio Conductink

GelMA A

CELLINK, Gothenburg,
Sweden

Gelatin methacrylate
GelMA and carbon nanotubes

Gelatin methacrylate and
alginate

Designed for neural, cardiac,
and skeletal muscle cells,

facilitates electrical potential,
photo-crosslinkable [11]

Fibronectin-functionalized
synthetic peptide
hydrogel bioink

Regemat 3D, Granada,
Spain Fibronectin

Form nanofibrous network,
mimics extracellular matrix,

tunable mechanical and
chemical properties [12]

3D-Bioplotter HT PCL EnvisionTEC, Gladeck,
Germany Polycaprolactone

Versatile thermoplastic, bone
and cartilage regeneration,
biodegradable, excellent

mechanical stability, allows for
controlled drug release [13]

PhotoHA® Advanced BioMatrix,
Carlsbad, CA

Methacrylated hyaluronic acid Has been used in cartilage
tissue applications [14]

Collagen Lifeink® 200 Type I collagen
Superior cytocompatibility,

supports cellular remodeling,
highly biomimetic [15]

It is a general requirement that bioinks should be flowable and deformable in order to be bioprinted
along with being biocompatible and biodegradable [16]. After printing, the bioink should be stable
and retain the desired shape and architecture according to the design model. Whether the crosslinking
mechanisms are physical and/or chemical, the structural conservation must be compatible with living
functional cells and able to sustain the duration of cell culture or in vivo biological environments [16].
The effect of bioink viscosity in 3D bioprinting has been widely studied and has been shown to
be one of the most important parameters to consider in devising bioprinting strategies [17]. The
review will evaluate the basic printability requirements for the successful selection of bioinks for 3D
bioprinting processes.
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2. Bioink Requirements

Bioprinting must encompass both the qualities of typical 3D printing—reproducibility, structural
integrity, and fidelity—as well as using inks that are compatible with living organisms—non-toxicity,
degradability, adhesion to cells, and porosity [18–23]. Inks with living cells encapsulated, termed
bioink, are in conflict as the characteristics that make a stable print, like density or viscosity, are often
in direct contrast to sustaining life, as cells need a porous, compliable environment to grow and
migrate [24]. Rheological requirements of the bioink vary based on the modality of the bioprinting,
i.e., droplet-based or inkjet, laser-based, or extrusion-based printing, with the latter being the most
common bioprinting method [20,24–26]. Inkjet bioprinting lays a continuous stream of small sized
droplets to form the 3D structure. However, this process is usually time consuming and not efficient
for large (clinical)-scale tissue manufacturing [22]. Laser-based bioprinting uses a precise laser beam to
solidify the construct within a basin of bioink, but may damage the cells with heat [26] and is relatively
slow [25]. Extrusion-based bioprinting has a morphology of a filament or string of low viscosity
during the print which solidifies once on the print surface holds its shape and supports layering [22].
One main impediment in this method is that the applied extrusion pressure exposes the cells to a
noticeable level of (shear) stress as they pass through the syringe and nozzle (needle) which can cause
damages [23,25,27]. To limit this stress, the bioink must show less viscous behavior [28], but the risk of
this is deformation, collapse, and pore closure which will in turn lower the fidelity and resolution [24].

Hydrogels are a common extrusion-based bioink, because they can encapsulate and support
different types of cells and signaling molecules [18,25]. Natural hydrogels are more bioactive, but their
synthetic counterparts tend to be more cost efficient and yield more consistent material properties [25].
Most bioinks, including hydrogels, are stabilized with crosslinking strategies to preserve the shape
and mechanical integrity of the 3D-printed construct. Physical crosslinking utilizes temperature
and/or molecular interactions to strengthen the bonds. Chemical crosslinking is typically mechanically
stronger than physical crosslinking because it creates covalent bonds between polymer chains but
poses the risk of becoming cytotoxic depending on the agent used. Enzymatic crosslinking also
forms covalent bonds between polymer chains but is less controlled in the degree of crosslinking [19].
Controlling the degree of crosslinking is important in bio-implementations because it can modify the
stiffness of the construct, which can be used to match the affected tissue [29].

2.1. Tissue-Specific Bioinks and Their Requirements

Hard tissue bioinks: hard (or calcified) tissues are the types that show mineralized,
firm extracellular matrices (ECMs) in the body, including different types of bone, tooth enamel,
dentin, and cementum [30]. Bone tissues have the strongest mechanical properties in the human
body, with the typical stiffness of cortical bone being about 100 MPa and that of cancellous bone
being about 3–4 MPa [31]. Materials with high concentration and high viscosity, including ceramics,
poly(caprolactone) (PCL), polylactic acid (PLA), beta tricalcium phosphate (β-TCP), have been used to
generate bioinks for bone tissue bioprinting [32]. However, as most thermoplastic materials require a
high processing temperature and do not support live cell printing, hydrogel-based bioinks have become
a more favorable choice of current research [33–36]. Hydrogel-based bone bioinks typically consist
of a printable polymeric backbone from gelatin methacrylate (gelMA), hyaluronic acid, or alginate
units that is supplemented with several bone-derived and/or osteogenic minerals and factors, such as
beta-tricalcium phosphate (β-TCP), transforming growth factor-β(TGF-β), and bone morphogenetic
proteins (BMPs) [34,37].

In addition to mechanical strength, bone tissue mimics should replicate the native tissue
microstructure and osteoconductivity to support the vascularization of the printed implants. Factors
such as osteoinduction and osteopromotion have a great impact on developing bioprinted functional
bone scaffolds. The recruitment of immature bone cells in bioprinted constructs and their stimulation
can lead to the formation of preosteoblasts, which can in turn induce osteogenesis, a vital part in the
bone healing process [38]. Therefore, biological molecules such as BMP and growth factors (VEGF,
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TGF, RGDs) are often added into the bioinks to induce bone signaling. Mineral particles including
silica, borate, calcium and phosphate are also blended with ECM components and multiple types of
cells, such as osteoblasts, mesenchymal stem cells (MSCs), and endothelial cells (ECs), in the bioink to
promote osteoinduction and to replicate the dynamic bone microenvironment [33,39,40]. In addition,
to facilitate the characterization and functional evaluation of the printed bone grafts, radioactive
pharmaceuticals 99mTc and 18F have been reportedly used to label BMP-2 in bioinks to enhance the
detectability of bone repair and regeneration in single photon emission CT (SPECT) and positron
emission tomography (PET) imaging [41–43].

Soft tissue bioinks: the bioprinting of soft tissues such as neural, lung and cardiac tissues has
distinct and specific requirements for the bioinks. Hydrogel-based bioinks which show relatively
low shear stress levels under modest pressure are commonly used for their ideal printing fidelity
and capability to maintain in vitro and in vivo cell viability [44–48]. Vascularization is a critical
consideration for the bioprinting of many tissues, particularly for cardiac tissues, due to the notably
high blood vessel density [49–51]. Sacrificial inks such as pluronic and gelatin are often incorporated in
the printing process to create hollow channels at diameters ranging from micrometers (capillaries) to
centimeters (arteries). Optimal cardiac-specific bioinks should exhibit an elastic modulus ranging from
1 to 16 kPa according to the contractile function of the cardiomyocytes (CMs), and should support
the matrix remodeling by the printed cells to achieve intracellular connectivity and high packing
density [52–58]. Therefore, fast-acting crosslinking reagents with negligible cytotoxicity have been
included in the bioinks to facilitate gentle crosslinking processes and to provide tunable mechanical
properties and degradation profiles of the printed constructs [59].

To achieve the specific functionalization of bioinks, biological and chemical modifications were
also employed to generate optimal printable formulations. Small molecules and ECM factors such
as BMP2/BMP4 and Wnt inhibitors (IWP2) are often used in cardiac tissue bioinks to promote CM
regeneration [60–66]. ECM proteins such as collagen, connexins, cadherins can be incorporated to
promote cell attachment, proliferation and matrix remodeling [57,67–71]. Secreted small molecules
such as transforming growth factor beta (TGFβ), interleukin (IL)-1, IL-6, tumor necrosis factor alpha
(TNFα), endothelin 1 and angiotensin II can also promote the maturation and vascularization of the
printed cardiac tissues [72,73]. Different cell types including MSCs, ECs and smooth muscle cells
(SMCs) can be co-encapsulated in the bioinks, along with CMs, to provide 3D scaffolding systems that
closely recapitulate the complex heart tissue. A main challenge in bioprinting such highly cellularized
bioinks which is a current research focus is the negative impact of large cell numbers on the rheological
properties and printing fidelity [74–77]. In addition, further research is needed to design and develop
non-invasive imaging modalities that enable the monitoring and evaluation of printed tissues, possibly
by incorporating various contrast agents in the tissue-specific bioinks to enhance the imaging signals
of magnetic resonance (MR) or computed tomography (CT) imaging [78,79].

Bioinks for other, non-cardiac, soft tissues also require specific properties to achieve both
physiological relevance and bioprintability. For instance, hepatic lobules have a complex organization
of hepatocytes, hepatic stellate cells, and ECM. Thus, liver bioinks are required to contain functional
ECM components, such as collagen type I, to allow for native cell interaction, reorganization, and
liver function maintenance [80,81]. Neural tissue bioprinting employs bioinks with ideal conductivity,
biological cues, and growth factors, including VEGF, for better neural cell growth and differentiation.
Lung tissue bioprinting might combine multiple bioinks in order to create the air–blood barrier
architecture, while skin bioinks need to support the co-culture of various cell types to recapitulate the
multi-layered tissue structure [82,83].

2.2. Specific Bioink Requirements for Clinical Applications

The patient specificity of bioengineered implants has been increasingly designed and examined in
various tissue engineering and regenerative medicine applications. The coupling of the 3D bioprinting
technologies with advanced medical imaging modalities, such as MR and CT, have enabled major
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advancements in the fields of precision and personalized medicine [84]. For extensive use in clinical
applications, the bioink material, like other implant biomaterials, must demonstrate high levels of
biocompatibility, inertness, mechanical stability, and the ability to be remodeled by cells. There are
already many identified clinical applications for 3D printing and bioprinting, especially in orthopedics,
orthodontics, and other hard tissue applications. Biomaterials such as PLA and PCL are mainly
utilized as bioinks in the clinical printing applications, due to their excellent mechanical properties,
biocompatibility, and degradation rate [85]. There is, however, a demand for the development of
highly tunable and versatile novel bioinks that can be used in soft tissue applications. Bioinks that
contain cellular and antigenic components at times often elicit an immune response [86]. Tissue
decellularization has been used as an effective method to prepare highly bioactive, patient-specific
bioinks for various tissue bioprinting applications [87]. Naturally derived polymers such as alginate,
fibrin, HA, collagen, and gelatin are highly printable using extrusion-based bioprinting. They offer
a low donor-site morbidity and invoke a low immune response [88]. However, in vivo, they often
undergo rapid degradation and/or remodeling which decreases their mechanical stability and fidelity
over time.

3. Printability and Bioprintability

In 3D printing, printability generally refers to the ability of a material to be fabricated in a
layer-by-layer sequence into a 3D object with well controlled design [89]. For biomedical applications,
further criteria are needed to consider a material for 3D fabrication since these systems need to be
able to host and maintain cell proliferation. For instance, even though thermoplastic materials like
thermoplastic polyurethane (TPU) and PCL are biocompatible, they have only been used as support
structures which can be sacrificed post printing, since they have a high melting temperature (>90 ◦C)
which would be detrimental to cell cultures [90–92]. In addition, many 3D printable synthetic polymer
materials cannot be used in 3D bioprinting due to their low cell affinity [93] and high toxicity [94]
which can trigger inflammatory or other adverse response in clinical application [95].

As alternatives to traditional plastics and metal inks, bioinks have been developed for specific 3D
bioprinting applications with clinical targets including different artificial organs and tissues. Due to
their low fabrication temperature (~37 ◦C or lower), only a limited subset of polymer materials can
be used as bioinks for 3D printing processes since they need to satisfy several important criteria for
printability. These include: (i) rheological properties, i.e., the ability of the material to deform, flow, and
be precisely controlled to form a 3D shape [96]; (ii) viscosity [97]; and (iii) surface tension [98]. These
properties are strongly dependent on the printing techniques. For instance, the printability of bioinks
composed of glycerol–water solutions is determined by a combination of viscosity, surface tension, and
the density of the ink fluids in the fabrication method like inkjet printing [99]. In inkjet bioprinting, it
is important that the material needs to have a rheopectic behavior, thus allowing the gel-like material
to form a droplet shape after ejection due to the increasing viscosity [19]. Thus, only bioinks with low
viscosities in the range of 10 mPa·s are desirable in this bioprinting modality [100,101].

Other bioprinting methods such as extrusion-based printing requires the bioink to exhibit
thixotropy properties, i.e., reducing viscosity under applied shear stress. This requirement is mainly
due to the fact that microextruder bioprinters eject larger filament-like structures than the droplet sizes
(Figure 1) [26]. As a result, commonly used non-Newtonian fluids like hydrogels are the preferred
bioink type for extrusion-based bioprinting [19]. Another advantage of extrusion-based bioprinting is
that it can print highly viscous cell-laden bioinks by adjusting the air pressure during the pneumatic
deposition [98,102,103]. One disadvantage of this method is that the shear thinning property of bioink
can affect the cell viability during printing [104].
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Figure 1. Schematic illustration of the workflow to assess the bioink printability for extrusion-based
bioprinting [96].

Another common type of bioprinting is laser-assisted printing which can be divided into two
categories: laser-induced forward transfer (LIFT), and photo-induced polymerization known as
stereolithography [19]. In LIFT bioprinting, a pulsed laser is used as an energy source to induce a jet
formation to the substrate. This technique requires the bioink to contain a viscosity in the range of 1 to
300 mPa·s [5,98]. Due to these relatively low viscosity values, it is important that the 3D structure is
adequately crosslinked post printing to improve the mechanical integrity [5]. For stereolithographic
applications, photosensitive bioinks are used [19]. An advantage of this printing technique is that
it can utilize high-viscosity bioinks, while minimizing the mechanical stresses on the encapsulated
cells that is typically generated by more viscous hydrogels, thus enabling higher cell viability and
functionality [105].

4. Bioprintability Assessment

The assessment of bioprintability requires comprehensive measurements to be performed on the
created constructs at multiple scales. Printing fidelity is a critical parameter that has been frequently
used to describe the bioprintability of bioinks. Fidelity defines the level of structural differences
between the design and actual prints [26]. In general, higher printing fidelity indicates a lower level
of structural variability, demonstrating a closer match between the designed and printed structures.
Lower fidelity values illustrate larger differences between the design and bioprints. Due to the liquidity
and inherently low mechanical strength of hydrogel-based bioinks, it has always been challenging to
build 3D hydrogel constructs with high printing fidelity [98].

Since fidelity ultimately determines the precision of the spatial control of bioink deposition, several
strategies have been developed aiming to preserve or enhance the fidelity of bioinks in bioprinting
processes. These strategies either rely on bioink modifications, or in situ crosslinking, or sometimes both.
Bioink modification focuses on the rheological properties of the material, with the most efforts centered
around viscosity [102]. A bioink with greater viscosity is likely to provide stronger mechanical support
and resistance against structural deformation (e.g., due to gravity) during bioprinting, resulting in
improved printing fidelity [24]. However, the excessive viscosity of bioinks often restricts the survival
and functionality of cells, reducing their bioactivity when cells are encapsulated [106]. Additionally,
bioinks with higher viscosity require a greater printing pressure to maintain the given printing flow rate,
which in turn could cause increased cellular damages [107,108]. Bioinks with lower viscosity are more
suitable for cells but they often face the issue of suboptimal printing fidelity and resolution. Therefore,
a delicate compromise between the printing fidelity and cytocompatibility for a bioink should be
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established to achieve optimal tissue bioprinting efficiency (Figure 2). Higher viscosity, however,
may not necessarily guarantee the high fidelity printing of soft tissue constructs [109]. Other bioink
properties, such as storage (G’) and loss moduli (G”), also play significant roles in bioprintability [110].
The storage modulus indicates the elastic behavior of the bioink while the loss modulus represents the
liquid aspect. Typically, a bioink with a larger G’ value compared to G” provides a higher printing
fidelity due to its increased mechanical stiffness. The bioprinting fidelity is identified according to the
ratio between G’ and G” (also known as the loss tangent, δ) which is highly dependent on the type of
the bioink polymer [111,112].
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Cone-and-plate rheometer and its application for evaluating the flow behavior and viscoelasticity of a
bioink. (B): Influence of loss tangent on printed strand fidelity. (C–D): Influence of bioink viscosity on
cell viability after bioprinting. A higher cell viability is found within lower viscosity (C) versus higher
viscosity (D) bioinks. Green represents live cells and red represents dead cells.

Rheological behavior of a bioink can be regulated using both physical and chemical methods.
The most straightforward way is to adjust the concentration of hydrogel materials or to blend them
with other materials [113]. However, regulating the rheological behavior is usually time consuming
and may not meet the biocompatibility requirement. Therefore, the second group of strategies,
the in situ crosslinking methods, were used. In situ crosslinking is known as “bioprinting while
crosslinking”, which is used to stabilize the extruded bioinks during the printing process [114].
It significantly improves the mechanical stability of the extruded bioinks in shape, thus maintaining
fidelity. Depending on the properties of bioinks, various crosslinking approaches have been tested.
The crosslinking of thermosensitive hydrogels is triggered by the control of printing temperature [111].
The printing fidelity of these hydrogel bioinks relies on their mechanical properties and normally
requires additional crosslinking due to their reversibility. For bioinks that can be crosslinked through
ionic bonding, a crosslinking medium (bath) can be used to promote the material stabilization, which
significantly reduces the spread of the bioink, thus preserving a higher printing fidelity [115]. This
method normally requires a stringent adjustment of the crosslinking bath to avoid printing failures,
which are introduced by the buoyance of the crosslinking agent [116].

In situ crosslinking approaches are also applicable for photo-crosslinkable bioinks [117]. During
this procedure, a light source is incorporated in the printing system for initiating the polymerization.
By controlling the light intensity or exposure time, the printing fidelity of bioinks can be tuned.
Due to limited crosslinking rates, maintaining the fidelity of printed filaments is not ideal via in
situ photo-polymerization, especially when bioinks with low viscosity are extruded [118]. The other
drawback of this method is that it may introduce extra exposure to the first few deposited layers,
leading to excessive stiffness and increased overall cell damage. An alternative method partially
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stabilizes the dynamic flow of bioinks within the light-permeable needle before extruding out. It creates
filaments with improved stability and uniformity and allows the printing of low-viscosity hydrogel
inks via the adjustment of light intensity and exposure time [119]. This unique approach requires a
light permeable needle which is normally custom-made from glass or silicon. An elaborate adjustment
of the light source is also necessary to ensure the uniform flow of bioink.

4.1. Experimental Methods for Bioprinting Fidelity Assessment

Printed filaments (strands) act as the building blocks for 3D structures in extrusion-based
bioprinting, and their shape fidelity (stability) directly affects the printing fidelity of the structure in
its entirety. Fidelity has been prevalently assessed through visual inspection after bioprinting-based
on the microscopic evaluation of printed single filaments or layers as models for the assessment [27].
These evaluations consist of both qualitative and quantitative analyses of the geometrical features of
printed models (Figure 3). The geometric characteristics that have been commonly used for fidelity
evaluations include filament diameter and uniformity [112,120]. The diameter describes the actual size
of filaments, and its similarity to the designed model can report on the bioprinting fidelity. Uniformity
quantifies the length of the printed filaments and is used to determine the consistency of the bioprinted
filaments in comparison to the designed model. Filaments with straight edges show higher uniformity,
and hence, printing fidelity. On the contrary, printed strands with bumpy or ragged edges would yield
lower bioprinting fidelity. The ability of bioprinted filaments to avoid collapse and maintaining their
shape has also been identified as a particularly important index for bioprinting fidelity evaluation,
when dealing with much softer materials (hydrogels) [24]. In comparison to the size and uniformity
assessments, which are typically obtained from single filaments or layers in the x–y horizontal plane,
the ability of filament to resist gravity and falling in an overhanging structure is assessed along the x–z
or y–z vertical planes. The bioprinting fidelity, which is quantified by the mid-span deflection angle,
relies on the yield stress of filament under gravity, as well as the structural gap size. This highlights the
role of the yield stress of a bioink to maintain the printed filaments from deformation as well as the
structural design to reduce the collapse along the vertical direction.
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The assessment of printing fidelity normally characterizes the outer geometry (e.g., height, width,
and length) and the inner structure (e.g., layer angle, pore size, porosity, and printing angle) of 3D
constructs. Like filament evaluation, the outer geometry is measured based on visual/microscopic
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inspection, and the printing fidelity is evaluated according to the comparison of size and shape
between the bioprinted structures and their CAD designs [111,112]. Layer angle and pore size,
which are created by the layer stacking, are often measured based on simplified models [22,121].
These models act as the unit element to form the entire structure following repetitive stacking, thus
recapitulating the basic characteristics of actual 3D structures. However, they are not able to quantify
the deformation of bioprints along the z direction and are therefore unable to represent the inner
quality of integrated bioprints after layer assembly. For this purpose, imaging techniques such as
micro computed tomography (µCT) have been used to rebuild the entire 3D structures of bioprints
and analyze the porosity [122,123]. One major issue for this technique is that the post processing
of bioprinted structures is normally required due to the relatively low density and weak X-ray
attenuation of hydrogel materials [123]. Such treatment on hydrogel-based constructs may partially
damage the printed structure and result in compromised accuracy. Alternatively, magnetic resonance
imaging (MRI) and ultrasound imaging (UI) have shown great potential for the characterization of
the hydrogel constructs [124,125]. However, both techniques face constraints to achieve high spatial
reconstruction within feasible scan times. A promising imaging technique that relies on synchrotron
X-ray propagation-based imaging in combination with CT imaging (SR-PBI–CT) has recently been
developed for the visualization and analysis of hydrogel-based 3D bioprinted constructs [114]. Through
introducing the X-ray refraction signal, the PBI–CT technique shows promise in the visualization of
low-density hydrogels due to the much larger refractive index variations. Combined with synchrotron
radiation which is highly brilliant and a coherent light source, SR-PBI-CT has presented great capacity
in visualizing hydrogels without the need for pre or post processing.

The printing angle is another prominent parameter that has been studied in 3D printing and
bioprinting applications, mostly to test its effect on print fidelity and the ultimate tensile strength
(UTS). Yao et al. discovered that the UTS of the 3D printed PLA materials decreases with the decrease
in the printing angle, from 90◦ to 0◦ (Figure 4). They reported a significant difference in the measured
UTS (52.29%) between the 0◦ and 90◦ printing angles [126]. The theoretical models utilized in this
study can aid in extracting important information on overall printing fidelity, to determine whether a
critical defect printing angle exists.
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4.2. Mathematical Models for Printing Fidelity Characterizations

The size of deposited bioink filaments is not only determined by the properties of bioink and
the crosslinking procedure, but also heavily depends on the printing process control [127]. To create
filaments with uniform size and faithful to the designed model, most printing attempts follow a
trial-and-error approach, through a series of re-adjustments of the printing process parameters, such as
pressure, temperature and moving speed, and evaluating the effect on fidelity [128]. Such approaches
are typically laborious and time consuming, requiring many repetitions which could also waste
significant quantities of bioinks (and biological contents). To avoid these “hit or miss” strategies,
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a simple mathematical model has been developed based on the relationship between the flow rate and
printing speed [129]. It is based on the prediction of the bioprinting flow rate, assuming that the bioink
is incompressible [108]. If the effects of swelling and gravity can be ignored, the diameter of printed
filament can be expressed as

Dp =

√
4Q
πVp

(1)

where Dp represents the diameter of the printed filament, Q is the volumetric flow rate of bioink,
and Vp represents the printing speed in horizontal plate. The large flow rate associated with lower
printing speed increases the filament diameter, while a small flow rate combined with higher printing
speed reduces the size. Using this equation, the geometry of printed filament can be readily regulated
following the steps: 1) based on the printing resolution, selecting the printing needle with the
appropriate size; 2) based on the needle size, establishing printing models with designed filament size;
3) adjusting the flow rate and printing speed to achieve a calculated filament size (using Equation (1))
that matches the predetermined size; and 4) bioprinting the filament and measuring its actual size.
Incorporating this mathematical model into pre-printing planning could therefore help remarkably to
adjust the starting printing parameters more efficiently and accurately, and to achieve the targeted
bioprinting fidelity.

5. Bioink Support for Cells and Other Biological Factors

As 3D bioprinted constructs are often fabricated with cells, it is crucial for the bioinks to
accommodate proper cell viability and function, while maintaining adequate mechanical properties for
bioprintability [26]. However, many studies that investigated the effects of bioink properties suggest
that there is a trade-off between the bioprintability and biocompatibility of the bioinks [27]. Often,
adjusting parameters that can reinforce printability, such as increasing concentration or lowering the
printing temperature, induces a harsh environment for cells to survive. Consequently, this compromise
narrows the biofabrication window, imposing difficulties in the simultaneous achievement of adequate
print fidelity and cell viability.

To address the challenge of cell survival during printing, several modifications have been made
to bioinks to enhance their bioactivity during and after printing. Many inert hydrogels have been
employed as bioinks due to their biocompatibility and mechanical similarity to the natural ECM [21].
However, the cells tend to show limited cell attachment, proliferation, and functionality in such
materials [19]. This is contributed to the fact that many hydrogel bioinks, despite their non-toxic
nature, lack the essential cell-supporting components such as cell binding sites. To address this issue,
cell binding peptides can be incorporated into the bioinks. Studies have shown that bioinks with
RGD peptides result in improved cell viability and proliferation [130,131]. Furthermore, hydrogels
with intrinsic cell binding sites are commonly used. Such natural materials, including fibrin and
gelatin-based bioinks, have inherent cell binding sites and can allow cell adhesion and proliferation
without the need for modifications [98].

Bioinks can further enhance the functionality of cells by entrapping growth factors and other
signaling proteins into the matrix. This allows the targeted delivery of important functional molecules
to the cells, thereby creating a favorable microenvironment for specialized cellular activities [21].
For instance, Skardal et al. demonstrated the use of a hyaluronic acid and gelatin hydrogel composite
infused with a liver ECM solution that contained a mixture of liver-specific growth factors [132].
Hepatocytes printed in the liver-specific hydrogel bioink were able to survive over 28 days and showed
increased liver functions compared to 2D cultures.

The functionalization of bioinks with small molecules or proteins is another way to direct cellular
responses via cell–material interactions. The immobilization of proteins in bioinks enables sustained
exposure and subsequent responses such as stem cell differentiation [133]. In one study, dopamine
was crosslinked to the gelMA bioink to promote neural differentiation (Figure 5) [134]. They found
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that gelMA functionalized with dopamine provided a favorable environment for neuronal stem cell
growth and differentiation into specialized cells compared to the gelMA alone. More recently, novel
methods to modify bioinks have been developed to incorporate various protein therapeutics or ECM
components to control cellular activities via cell–matrix interactions [135,136]. These strategies are
expected to further advance bioink designs to provide support for cell survival and functions.
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Decellularized ECM (dECM) has also gained attention as natural, potentially patient-specific
bioinks retain most natural ECM constituents and growth factors. Therefore, dECM bioinks not only
present the mechanical properties appropriate for both cell support and printing, but can also provide
the microenvironment suitable for tissue-specific cellular functions [137]. In a recent study, Lee et
al. printed mesenchymal stem cells and hepatocytes using a liver dECM-based bioink [138]. It was
demonstrated that the liver dECM has adjustable printability and provides a biochemical environment
that can stimulate stem cell differentiation as well as enhanced hepatocyte functions.

6. Post-Print Bioink Properties

To obtain functional bioprinted constructs with high fidelity as well as appropriate cell viability
and function, the maintenance of fabricated constructs after the printing is just as important as the
various considerations during the bioprinting process. The first thing to consider is preserving the
shape fidelity throughout the crosslinking processes, which are traditionally categorized into chemical
and physical methods. Chemical crosslinking introduces covalent bonds, while physical crosslinking
is generated by electrostatic, hydrophobic or hydrogen bonding [139]. The most frequently used
chemical crosslinking methods include photo-crosslinking, enzymatic linkage, amidation, and Michael
addition reaction. On the one hand, supramolecular networks, thermally induced hydrogels and
cyclodextrin-based materials are largely explored examples of physical crosslinking. The time of
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introducing crosslinking is critical for maintaining intricate printed structures and should be planned
along with the rest of the bioprinting process control. For instance, the viscosity of materials used for
inkjet bioprinting and orifice-free bioprinting is generally low and often lacks the ability to self-stand
after being deposited onto the substrate. In such modalities, therefore, instantaneous crosslinking
should be implemented. Extrusion-based bioprinting, on the other hand, is able to handle more
viscous bioinks, with greater yield stress, that are able to sustain structural integrity for longer periods
before crosslinking [98]. Higher yield stress often requires higher concentration of materials, which
might compromise biocompatibility [140]. To overcome the dilemma between shape maintenance
and appropriate bioink concentration, strategies such as pre crosslinking, printing into supporting
self-healing hydrogel [141], and embedded bioprinting methods are proposed [142].

Aside from the timing of the crosslinking step, the degree of induced molecular interactions and
entanglement affect the fidelity and outcomes of functional printed constructs by influencing hydrogel
pore sizes, final mechanical properties, swelling behavior, as well as degradation rate. Thus, protocols
have been proposed for measuring the crosslinking degree of printed constructs. The equilibrium
swelling test is a traditional assay to determine the concentration of crosslinkers per unit volume,
which could be calculated from the swelling degree by measuring the weight of the hydrogel under
equilibrium swelling state and desiccated state [143]. Another candidate is the uniaxial compression
test. The degree of elastically effective physical and chemical crosslinking can be calculated based
on the equation derived by Flory et al. from the measured compression stress [144,145]. Solid state
nuclear magnetic resonance (NMR) spectroscopy measurement can also be used to assess chemically
effective crosslinking [143].

Another essential factor that might influence the fidelity and function of a bioprinted construct
for in vitro tissue modeling or in vivo regeneration is the volumetric changes caused by swelling
behavior and culture condition variations, including the temperature or pH changes, by which stimuli
responsible hydrogels are most influenced [146,147]. Although these events are difficult to avoid and
generally have a negative influence on the final fidelity of the printed constructs, more intricate print
process design and control can help neutralize some of these effects. Shape expansion caused by
swelling could be offset by incorporating temperature-sensitive polymers, such as poly(phenylene
oxide), with a hydrophilic-to-hydrophobic transition. Encapsulated cells can remodel the bioprinted
structure by fusion and self-assembly processes. Sun et al. developed a model that can predict the time
evolution of post-printing morphological structures [148].

In terms of temporal properties in the long term, the degradation behavior of bioprinted constructs
can have essential effects on their fidelity and function. Biodegradable or non-degradable materials
may be considered bioinks, according to the specific applications. Bioprinted constructs typically
exhibit distinct degradation rates in the in vivo versus in vitro settings [149,150]. Degradation can
be categorized into hydrolytic, oxidative, enzymatic degradation, and photo-degradation. Material
composition, pH, enzymes, construct structure, crosslinking, weathering, physical loading, and other
factors can influence the degradation rate [151]. Thus, a desired degradation rate can be adjusted by
taking these parameters into consideration.

7. Conclusions

Three-dimensional bioprinting is a rapidly evolving additive manufacturing strategy to develop
tissue constructs at the clinical and industrial scales, while providing highly tunable and reproducible
functionalities. The pioneering works in this field have proven the feasibility of bioprinting a variety
of biomaterials and cellular components to form rather complex tissue constructs. Although there
have been expansive efforts to advance this field, the lack of standardized methods to characterize
the optimal mechanical, rheological, and biological properties of bioinks have hindered particularly
the in vivo and clinical applications. As the commercial availability of novel bioink formulations
arises, there may be new metrics in place to aid the assessment of bioprinting fidelity. This review
provided current state-of-the-art methods, together with experimental and mathematical procedures
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that have been used to analyze bioprintability and develop optimized bioink solutions for tissue-specific
applications. While the experimental methods to assess and tune bioprinting fidelity typically rely on
repetitive trial-and-error steps, the emerging mathematical and computational models have shown
great promise in improving the efficiency and accuracy of these processes. These theoretical models,
however, would still require further enhancement, for instance, to incorporate and carefully assess the
cellular and biological factors involved in various bioprinting procedures.
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