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BRIEF DEFINITIVE REPORT

    Follicular DCs (FDCs) reside in primary B cell 
follicles and germinal centers (GCs) ( 1 ). FDCs 
retain native immune complexes with comple-
ment and Fc �  receptors ( 2 ), and display them 
to B cells, which they embrace with intricate 
dendritic networks. This is thought to facilitate 
the GC reactions, and the selection of B cells 
that gives rise to high-affi  nity antibodies ( 3 ) and 
long-term memory B cells ( 4 ). But others ( 5 ) 
have questioned the importance of FDCs because 
primary immune responses, affi  nity maturation, 
and memory B cells arise in mice engineered 
to lack the retention of immune complexes by 
FDCs ( 6 ), and even in  Lta  � / �    mice that are de-
fi cient in lymphotoxin (LT) signaling and lack 
FDCs completely ( 7 ). Hence, the functional 
contribution of FDCs to affi  nity maturation re-
mains unclear. 

 Some biomarkers, including the comple-
ment receptors CD21/35 and the complement 
factor C4 ( 8 ), allow for FDC immunodetec-
tion in vivo, yet none of them are exclusively 

restricted to FDCs. A more specifi c marker is 
hybridoma clone 4C11, whose reactivity is con-
fi ned to FDCs and tingible-body macrophages 
(TBM � s) ( 9 ). The antigen recognized by 4C11 
was provisionally termed FDC-M1, but its iden-
tity has remained unknown. 

 Phagocytosis of apoptotic GC B cells, the 
remnants of which are recognizable as tingible 
bodies inside TBM � s, is thought to be a crucial 
function of TBM � s. Apoptotic cells are en-
gulfed upon opsonization by milk fat globule 
epidermal growth factor (EGF) 8 (Mfge8) ( 10 ), 
which binds bifunctionally to phosphatidylser-
ine on apoptotic cells and to integrins expressed 
by phagocytes ( 11 ). Originally identifi ed as a 
membrane component of milk-fat globules ( 12 ), 
 Mfge8  was reported to be expressed by various 
phagocytes, including TBM � s, activated peri-
toneal macrophages (PM � s), and immature 
DCs ( 10, 11 ). 

  Mfge8  � / �    mice suff er from impaired engulf-
ment of GC B cell corpses by TBM � s. Conse-
quently, their TBM � s carry supernumerary 
nonengulfed apoptotic B cells, which cause 
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action of 4C11 with immobilized rMfge8 was observed 
over several serial injections until binding had reached satu-
ration ( Fig. 1 D , I). When anti-Mfge8 antibody 2422 was 
subsequently injected, its binding was minimal ( Fig. 1 D , I, 
arrow, 2422), suggesting that 4C11 interfered with the bind-
ing of 2422 to rMfge8. Binding of anti-Mfge8 antibody 
18A2-G10, in contrast, was not aff ected ( Fig. 1 D , I, arrow, 
18A2-G10). Rat IgG2c did not interact with immobilized 
rMfge8 (not depicted). 

 Antibodies were then reinjected in a diff erent order. First, 
2422 was added until saturation was reached ( Fig. 1 D , II). 
4C11 was injected, yet it did not bind to rMfge8 ( Fig. 1 D , 
II, arrow, 4C11). In contrast, 18A2-G10 always bound to 
rMfge8, even in the presence of previously bound 2422 or 
4C11 ( Fig. 1 D,  I and II). Hence, the 18A2-G10 epitope is 
distinct from those of the other two antibodies. These results 
indicate that 4C11 and 2422 abrogate each other ’ s binding to 
Mfge8, either because they share a common or overlapping 
epitope, or because they sterically hinder each other. This was 
confi rmed by the next experiment: immobilized 18A2-G10 
was used to capture rMfge8. Then, the antibodies 18A2-G10, 
2422, and 4C11 were added in a sandwich design. Under 
these conditions, injected 18A2-G10 did not bind to surfaces 
decorated with 18A2-G10 – captured rMfge8, confi rming that 
18A2-G10 binds to a single epitope on Mfge8 ( Fig. 1 D , III). 
Subsequent injection of 4C11 resulted in a strong interaction 
with captured rMfge8. When 2422 was applied, no binding 
occurred. We then reversed the order of injections: 2422 was 
added before 4C11. In this case, the fi rst antibody, 2422, inter-
acted with 18A2-G10 – captured rMfge8, whereas 4C11 did 
not ( Fig. 1 D , IV). 

 These data show that the FDC-M1 antigen identifi ed by 
antibody 4C11 is Mfge8. The molecular identifi cation of FDC-
M1 expands the arsenal of tools for functional and morphological 
studies of FDCs in many ways. Because Mfge8 is secreted, its 
histological assignment by RNA in situ hybridization (ISH) is 
more informative of its cellular origin than immunohistology 
and will help defi ne the precise histogenesis of FDCs. Also, 
we found that anti-Mfge8 antibody 18A2-G10 labels FDCs on 
formalin-fi xed, paraffi  n-embedded tissue (unpublished data), 
thereby enabling the recognition of FDCs in archived tissue. 

 FDCs are the major source of Mfge8 in the spleen 

 The fi nding that Mfge8 is detected in TBM � s within splenic 
follicles ( 10 ) may be compatible with the above results if 
Mfge8 were secreted by FDCs and trapped by TBM � s. We 
tested this proposition in reciprocal BM chimeras between 
 Mfge8  � / �    and WT mice. FDCs are stromal and radioresistant, 
whereas TBM � s are mononuclear phagocytes of hematopoi-
etic origin and are thought to be radiosensitive ( 14 ). To pro-
vide an independent histogenetic marker, lethally irradiated 
 Mfge8  � / �    mice expressing the CD45.2 allelic variant were 
reconstituted with BM from CD45.1 congenic WT mice, 
and vice versa. 

 The mean reconstitution effi  ciency determined by FACS 
analysis of peripheral blood was 93.8  ±  3.6% (unpublished 

them to appear enlarged. This defect is associated with sys-
temic lupus erythematosus (SLE) and autoimmune glomer-
ulonephritis ( 10 ). In this report, we provide conclusive 
evidence that the FDC-M1 antigen identifi ed by clone 4C11 
is identical to Mfge8, that FDCs are the only source of splenic 
Mfge8, and that TBM � s only acquire surface Mfge8 if situ-
ated in the proximity of  Mfge8 -expressing FDCs or in lymph 
nodes that drain exogenous Mfge8. The absence of FDCs in 
mice lacking LTs or their receptors correlated with the pro-
found depletion of splenic Mfge8 in LT-defi cient mice, sug-
gesting that impairment of FDC homeostasis contributes to 
their autoimmune pathologies. 

  RESULTS AND DISCUSSION  

 FDC-M1 and Mfge8 are identical 

 The present report originated from our serendipitous obser-
vation that FDC-M1 +  networks were completely absent from 
splenic cryosections of  Mfge8  � / �    mice stained with anti – FDC-
M1 antibody 4C11 (Fig. S1, available at http://www.jem
.org/cgi/content/full/jem.20071019/DC1). This was un-
expected, because no FDC abnormalities had been reported 
in  Mfge8  � / �    mice despite progressive splenomegaly, enlarged 
splenic TBM � s, and hyperplastic follicles with increased 
numbers of peanut agglutinin – positive (PNA + ) GCs ( 10 ). 
The absence of 4C11 immunoreactivity in  Mfge8  � / �    spleens 
did not result from an absence of mature FDCs, because FDC 
networks were easily identifi able by CD21/35 immuno-
stains (Fig. S1). 

 The anti-Mfge8 antibodies 18A2-G10 and 2422 ( 11 ) 
identifi ed FDC networks and colocalized with 4C11 immuno-
stains ( Fig. 1 A ).  We therefore considered the possibility that 
FDC-M1 and Mfge8 are the same antigen. Indeed, preincu-
bation with excess rMfge8, but not with rEGF or recombinant 
prion protein (rPrP), inhibited the binding of both 18A2-
G10 and 4C11 to FDC networks. The presence of FDCs in 
these sections was independently confi rmed by PrP C -specifi c 
immunolabeling, which is abundantly expressed by FDCs 
( 13 ) ( Fig. 1 B ). 

 We then assessed whether anti – FDC-M1 antibody 4C11 
immunoprecipitates Mfge8. Paramagnetic beads were conju-
gated to immunoaffi  nity-purifi ed antibodies 4C11, anti-Mfge8 
antibody 2422, or rat IgG2c isotype control antibody. Beads 
were incubated with protein extracts from WT or  Mfge8  � / �    
spleens, and precipitated proteins were analyzed by Western 
blotting with anti-Mfge8 antibody 18A2-G10. After immu-
noprecipitation with anti-Mfge8 antibodies, two bands with 
molecular masses of  � 45 and 55 kD were detected ( Fig. 1 C ). 
After immunoprecipitation with anti – FDC-M1 beads, two 
signals were obtained with molecular masses matching those 
of the 2422 immunoprecipitation ( Fig. 1 C ). Both signals 
were absent in spleens from  Mfge8  � / �    mice, confi rming their 
identity as genuine Mfge8. 

 We next verifi ed the interaction of rMfge8 with anti –
 FDC-M1 antibody 4C11 by surface plasmon resonance 
(SPR). 4C11 was injected onto Biacore sensor chip surfaces 
covalently coated with rMfge8 or, for control, rPrP. Inter-
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stains of  Mfge8  � / �    →  Mfge8  � / �    (all CD45.2 + ) and WT → WT 
(all CD45.1 + ) spleens confi rmed the absence of cross-reactivity 
(Fig. S2). Two-color immunolabeling of  Mfge8  � / �    → WT 
spleens with antibodies against CD68 (cyan) and CD45.1 (red) 
confi rmed that TBM � s were not host derived, whereas TBM � s 
of WT →  Mfge8  � / �    spleens did not express CD45.2 (Fig. S2). 

data). The donor origin of TBM � s was confi rmed by multi-
color immunofl uorescence with antibodies against CD45.1, 
CD45.2, and CD68 in  > 50 follicles of fi ve mice per group. 
The results ruled out the possibility that host-derived TBM � s 
may have survived irradiation (Fig. S2, available at http://
www.jem.org/cgi/content/full/jem.20071019/DC1). Immuno-

  Figure 1.     FDC-M1 and Mfge8 are identical.  (A) Two-color immunolabeling of a WT spleen stained with anti-Mfge8 antibody 18A2-G10 (green) and 

anti – FDC-M1 antibody 4C11 (red), or anti-Mfge8 antibody 2422 (green) and 4C11 (red). Both anti-Mfge8 antibodies showed colocalization with 4C11. 

(B) Preincubation with 25  μ g/ml rMfge8 blocked the labeling of FDCs with 18A2-G10 or 4C11. To visualize FDCs, sections were stained with anti-PrP antibody 

POM2. For control, sections were preincubated with rEGF or rPrP. Bars, 100  μ m. (C) Splenic protein extracts (WT and  Mfge8  � / �   ) were immunoprecipitated 

with 2422 or 4C11, or to a rat IgG2c isotype control antibody. Control beads were coupled with 2422 or 4C11 but were not exposed to splenic extracts. 

Western blots were probed with 18A2-G10. Mfge8-specifi c bands are indicated (* and x). Arrows indicate nonspecifi c bands. (D) Sensograms indicating 

binding of each protein after subtraction of their binding to a control protein-coupled surface. Black arrows indicate antibody injections. (insets) Schematic 

representations of binding and competition events. For control, injections of all proteins were made on two fl ow cells, with one cell coated with control 

protein and another coated with the protein of interest.   
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a stromal origin ( 14, 16 ). Indeed,  Ptprc , which encodes CD45, 
was markedly reduced in MACS-enriched FDC clusters 
( 17 ), whereas  Mfge8  and  Cxcl13  (a B cell – attracting che-
mokine expressed by FDCs; reference  18 ) were increased 

Therefore, in all chimeras the overwhelming majority of 
TBM � s always originated from donor BM. 

 Early analyses of BM chimeras suggested a hematopoietic 
derivation of FDCs ( 15 ), but most current evidence favors 

  Figure 2.     Analysis of splenic  Mfge8  expression by immunofl uorescence and ISH.  (A) BM chimeras were stained with anti-Mfge8 antibody (clone 

2422; green) and anti-CD68 antibody (red). Mfge8 immunoreactivity of FDCs and CD68 +  TBM � s was only observed when FDCs were of WT origin. Figures 

show areas inside follicles. White squares mark the areas shown at a higher magnifi cation. Bars, 20  μ m. (B) Splenic  Mfge8  expression was assessed by ISH. 

Consecutive sections were immunolabeled with 4C11 and anti-CD68.  Mfge8  expression and 4C11 immunostaining was only found in WT mice irrespective 

of the BM genotype (top and second from bottom).  Mfge8  � / �    mice receiving BM from either  Mfge8  � / �    or WT mice showed no  Mfge8 -specifi c signal after 

ISH and no 4C11 immunostaining. Bars, 100  μ m.   
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(Fig. S3, available at http://www.jem.org/cgi/content/full/
jem.20071019/DC1). We conclude that FDCs do not express 
CD45, and were therefore not identifi able as host derived in 
CD45.1/CD45.2 immunostains. 

 BM-chimeric mice were immunized and boosted with 
OVA/alum to induce GCs before analysis. 9 wk after recon-
stitution, splenic Mfge8 and CD68 expression were analyzed 
immunohistochemically. Surprisingly,  Mfge8  � / �    mice that 
had received WT BM (WT →  Mfge8  � / �   ) completely lacked 
splenic Mfge8 immunoreactivity. Not only radioresistant 
FDCs but also BM-derived CD68 +  TBM � s were phenotyp-
ically Mfge8 negative ( Fig. 2 A , top) although they had 
clearly originated from  Mfge8 +/+   donors (Fig. S2).  In con-
trast, spleens of WT mice reconstituted with  Mfge8  � / �    BM 
( Mfge8  � / �    → WT) contained not only Mfge8 +  FDCs but 
also phenotypically Mfge8-positive TBM � s originating from 
 Mfge8  � / �    donors ( Fig. 2 A ). Irrespective of their genotype, 
therefore, TBM � s were always Mfge8 +  whenever FDCs ex-
pressed Mfge8, yet they were always Mfge8  �   whenever FDCs 
lacked Mfge8. 

 We then determined the transcriptional patterns of splenic 
 Mfge8  by RNA ISH. In WT → WT mice,  Mfge8  transcrip-
tion was restricted to follicles ( Fig. 2 B ) and was strongest in 
GCs, where FDCs reside. Some  Mfge8 +   cells were found in 
the periphery of follicles. These cells were radioresistant and 
may represent immature FDC precursor cells ( 19 ). Overall, 
the ISH visualized more Mfge8 +  cells than 4C11 immuno-
histochemistry, probably owing to the higher sensitivity of 
the former. 

 Consecutive sections were immunostained with 4C11 
and anti-CD68 antibodies. In this case, both Mfge8 immu-
nostains and  Mfge8  ISH visualized characteristic FDC net-
works, confi rming that Mfge8 is indeed produced by FDCs 
rather than being secreted by other cell types and taken up 
by FDCs ( Fig. 2 B ). No ISH signal was detected on  Mfge8  � / �    →
  Mfge8  � / �    chimeric spleens, confi rming the specifi city of the 
 Mfge8  in situ riboprobe ( Fig. 2 B ). 

 The  Mfge8  expression pattern in  Mfge8  � / �    → WT chimeras 
was identical to that of WT mice, whereas  Mfge8  expression 
was completely absent from WT →  Mfge8  � / �    chimeras ( Fig. 2 B ). 
Therefore, radioresistant cells including FDCs, rather than 
radiosensitive cells including TBM � s, are the source of Mfge8 
in the spleen.  Mfge8  expression in WT →  Mfge8  � / �    chimeric 
spleens was below detectability by quantitative RT-PCR 
( < 0.25% WT splenocyte RNA spiked into  Mfge8  � / �    spleno-
cyte RNA; not depicted), whereas  Mfge8  � / �    → WT spleens 
showed expression levels similar to WT → WT spleens (Fig. 
S4 A, available at http://www.jem.org/cgi/content/full/
jem.20071019/DC1). 

 We then searched for  Mfge8  transcripts within CD68 +  
macrophages by combining fl uorescent ISH (green) with 
CD68 immunofl uorescence stains on individual cryosections 
(Fig. S4 B). In immunized WT spleens, none of the CD68 +  
TBM � s (white arrows) colocalized with the green  Mfge8  ISH 
signal, which was absent in the  Mfge8  � / �    spleens. Conversely, 
all cells showing  Mfge8  transcripts were negative in the CD68 

immunostaining (Fig. S4 B, yellow arrows). Hence, FDCs but 
not TBM � s transcribe  Mfge8 . 

 PM � s express Mfge8 only upon stimulation 

 PM � s were previously found to express  Mfge8  upon stimula-
tion with thioglycollate ( 11 ). We analyzed  Mfge8  expression 
in stimulated PM � s isolated from BM chimeras.  Mfge8  ex-
pression was only detectable in PM � s from WT → WT and 
WT →  Mfge8  � / �    chimeras but not in those of  Mfge8  � / �    → WT 
and  Mfge8  � / �    →  Mfge8  � / �    chimeras, and was only detectable 
in stimulated but not in unstimulated cells (Fig. S5, available 
at http://www.jem.org/cgi/content/full/jem.20071019/DC1). 
These results confi rm that extralymphatic PM � s do not ex-
press  Mfge8  under normal conditions but only after stimu-
lation ( 11 ). 

 Naive, nonimmunized mice displayed  Mfge8 -expressing 
FDC networks, implying that FDCs express  Mfge8  constitu-
tively. In contrast,  Mfge8  transcription by PM �  appears to be 
dependent on infl ammatory stimuli and was never detectable 
in vivo in TBM � s, not even after immunization, when most 
TBM � s are highly immunoreactive for secondarily acquired 
Mfge8 protein. 

 TBM � s can acquire Mfge8 from extracellular sources 

 The above indicates that TBM � s appear immunohistochem-
ically Mfge8 +  because they take up FDC-derived Mfge8, 
either before or during the ingestion of apoptotic B cells. 
To further challenge this hypothesis, 10  μ g rMfge8 or rPrP 
was injected into the footpads of  Mfge8  � / �    or  Prnp o/o   mice, 
respectively. 20 h later, the draining popliteal lymph nodes 
were collected and immunostained for Mfge8. Although no 
Mfge8 immunolabeling was observed in the contralateral 
lymph node after PBS injection ( Fig. 3 , middle), Mfge8 was 
readily detectable in draining lymph nodes after Mfge8 injection.  
FDC networks, visualized by immunofl uorescence for the 
complement receptors CD21/35, were only weakly Mfge8 +  
( Fig. 3 , left), indicating that they trapped only small amounts 
of Mfge8. In contrast, CD68 +  TBM � s were strongly immuno-
reactive for Mfge8. No PrP immunoreactivity was observed 
in the draining lymph nodes of  Prnp o/o   mice 20h after injec-
tion ( Fig. 3 , right), indicating that TBM � s do not generically 
incorporate all soluble recombinant proteins. We conclude 
that Mfge8 is synthesized by FDCs, secreted, and eventually 
acquired by macrophages exposing appropriate receptors. 

 Lack of Mfge8 expression by FDCs impairs corpse engulfment 

  Mfge8  � / �    mice suff er from splenomegaly and a phagocytosis 
defect of TBM � s ( 10 ). We used BM chimeras to determine 
whether these phenotypes are caused by stromal or hemato-
poietic  Mfge8  defi ciency. Only  Mfge8  � / �    →  Mfge8  � / �    and WT →
  Mfge8  � / �    mice developed splenomegaly, with spleen weights 
approximately twice as high as those of WT → WT and 
 Mfge8  � / �    → WT mice (Fig. S6, available at http://www.jem
.org/cgi/content/full/jem.20071019/DC1). Therefore, the 
splenomegaly of aged  Mfge8  � / �    mice could be unambigu-
ously ascribed to the lack of  Mfge8  expression by stromal cells, 
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cells per CD68 +  TBM �  was determined in at least 13 PNA +  
GCs in each group of mice. TBM � s of  Mfge8  � / �    →  Mfge8  � / �    
and WT → WT mice were found to be associated with 6  ±  
1.8 and 2.4  ±  0.5 TUNEL +  cells, respectively. TBM � s of 
WT →  Mfge8  � / �    mice were associated with signifi cantly more 
TUNEL +  cells (5.8  ±  1.6) than TBM � s of  Mfge8  � / �    → WT 
mice (2.5  ±  0.9; P  <  0.0001;  Fig. 4 A ).  We conclude that the 
apoptotic load of macrophages was increased whenever Mfge8 
was absent from radioresistant stromal cells, supporting the 
contention that FDC-derived Mfge8 regulates the engulfment 
of apoptotic cells. 

 We found apoptotic lymphocytes in various degrada-
tion stages within TBM � s of all chimeric mice, including 
 Mfge8  � / �    →  Mfge8  � / �    mice ( Fig. 4 B ). This points to the ex-
istence of hitherto unexplored, Mfge8-independent mecha-
nisms of corpse removal and may explain why  Mfge8  � / �    mice 
only suff er from mild SLE. Complement factors may also be 

and could not be corrected by any putative hematopoietic 
 Mfge8  expression. 

  Mfge8  � / �    spleens were found to host enlarged TBM � s, 
whose surfaces were loaded with nonengulfed apoptotic bod-
ies ( 10 ). In light of the above results, this phenotype may be 
attributed to the absence of FDC-produced Mfge8. We tested 
this possibility by quantifying the number of TdT-mediated 
dUTP-biotin nick-end labeling (TUNEL) – positive apoptotic 
cells associated with each TBM � . We fi rst determined the 
mean number of TUNEL +  cells associated with all macrophages 
within splenic white pulp follicles.  Mfge8  � / �    →  Mfge8  � / �    and 
WT →  Mfge8  � / �    chimeras displayed marginally increased num-
bers of macrophage-bound apoptotic cells over WT → WT 
and  Mfge8  � / �    → WT chimeras (unpublished data), but statisti-
cal signifi cance was not attained. We then performed the same 
analysis but counted only those macrophages that resided 
within PNA +  GCs. The mean number of TUNEL +  apoptotic 

  Figure 3.     TBM � s bind extracellular Mfge8.  Footpads of  Mfge8  � / �    mice were injected with 10  μ g rMfge8. For control, PBS or rPrP was injected into 

the contralateral footpad of  Prnp o/o   mice. 20 h later, popliteal lymph nodes were collected and analyzed by immunofl uorescence with anti-Mfge8 and 

anti-PrP antibodies. TBM � s and FDCs showed strong and weak Mfge8 staining, respectively. rPrP was undetectable in the lymph nodes of  Prnp o/o   mice. 

Bars, 50  μ m.   
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this prediction in  Ltbr  � / �   ,  Lta  � / �   , and  Ltb  � / �    mice, whose 
splenic follicles contain PNA +  clusters and few IgM low IgD +  
B cells ( 22 ) but are disorganized and contain no FDCs ( 23 ). 
We found splenic  Mfge8  to be decreased almost 200-fold in 
 Ltbr  � / �    mice and  � 70 – 90-fold in  Lta  � / �    and  Ltb  � / �    mice 
(Fig. S7, available at http://www.jem.org/cgi/content/full/
jem.20071019/DC1). We then compared the prevalence of 
TBM � -associated apoptotic cells in the spleens of  Ltbr  � / �   , 

involved, because FDCs are a source of splenic C1q ( 20 ) and 
 C1q -ablated mice develop SLE ( 21 ). 

 Effi cient degradation of apoptotic cells in splenic follicles 

depends on LT signaling 

 Because FDC development and maintenance require LT 
signaling, LTs may control  Mfge8  availability and, conse-
quently, removal of apoptotic cells from GCs. We tested 

  Figure 4.     Impaired engulfment of apoptotic bodies in the absence of stromal Mfge8.  (A) Apoptotic cells, TBM � s, and GCs were visualized by 

TUNEL, anti-CD68, and PNA, respectively, on splenic cryosections 9 wk after BM reconstitution and after immunization. (right) Each datapoint represents 

the mean number of TUNEL +  cells per TBM �  in one individual GC.  Mfge8  � / �    →  Mfge8  � / �    and WT →  Mfge8  � / �    mice showed increased numbers of TUNEL +  

cells per TBM � . Horizontal bars represent means. White circles (left) indicate GCs. Bars, 100  μ m. (B) Ultrastructural features of TBM � s of aged BM-chime-

ric mice 41 wk after reconstitution. Apoptotic cells in various degradation stages were observed inside TBM � s of all chimeric mice. (C) Engulfment of 

apoptotic cells by TBM � s in WT,  Mfge8  � / �   ,  Ltbr  � / �   ,  Lta  � / �   , and  Ltb  � / �    mice was analyzed by TUNEL (green) and CD68 (red) staining. WT TBM � s contained 

copious TUNEL +  material. The latter was also observed in  Mfge8  � / �    mice, but most TUNEL +  cells were large and intact.  Ltbr  � / �   ,  Lta  � / �   , and  Ltb  � / �    macro-

phages were small and only contained intact TUNEL +  cells. At least three mice per genotype and  ≥ 10 follicles per mouse were analyzed. Bars, 20  μ m.   
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 This model predicates a functional interaction of two dis-
tinct cell types, FDCs and TBM � s, in the removal of apoptotic 
cells from GCs. This is plausible for physiological and ana-
tomical reasons. Apoptosis of GC B cells is very frequent, and 
their rapid and effi  cient removal seems important to avoid auto-
immunity. But the paucity of scavenging cells, TBM � s, may 
limit the removal process. However, it would be wasteful for 
TBM � s to produce both Mfge8 and its receptors,  �  V  �  3  and 
 �  V  �  5  integrins. Conversely, these data suggest a tunable mecha-
nism, with FDCs establishing a gradient of Mfge8 availability 
within GCs. Through their strategic microanatomical position-
ing within follicles, FDCs arm TBM � s for engulfment only in 
the vicinity of apoptotic B cells. Accordingly, the apoptotic body 
load was dramatically increased in macrophages residing within 
GCs. Because of their intimacy with GC B cells, FDCs may di-
rectly decorate negatively selected B cells with Mfge8 ( Fig. 5 ).  
This two-tiered mechanism may help ensure that numerous dy-
ing cells are recognized and degraded by far fewer TBM � s. 

 Lack of LT signaling, which results in the absence of FDCs, 
suppressed splenic  Mfge8  expression, and combined TUNEL 
assays and CD68 immunostains indicated that the effi  cient re-
moval of apoptotic cells was also impaired. These fi ndings hint 
to a signaling hierarchy that is driven by LTs, enrolls LT � R-
dependent signaling within FDCs, and enables topographically 
controlled apoptotic cell removal within GCs. 

 Lta  � / �   , and  Ltb  � / �    mice immunized with OVA ( Fig. 4 C ). 
TBM � s of WT mice contained tingible bodies identifi able 
as small TUNEL +  particles inside TBM � s ( Fig. 4 C , far left). 
Small degraded TUNEL +  bodies were also observed in 
 Mfge8  � / �    mice ( Fig. 4 C , second from the left). In contrast, 
although  Ltbr  � / �    follicles contained some CD68 +  cells bind-
ing TUNEL +  cells, the latter appeared largely intact, and 
the accumulation of small characteristic TUNEL +  tingible 
bodies within TBM � s was absent ( Fig. 4 C ). Similar results 
were observed in mice devoid of LT �  or LT �  ( Fig. 4 C ), 
confi rming a severe impairment of macrophage-mediated deg-
radation of apoptotic cells in the GCs of all mice defective in 
LT signaling. 

 The realization that FDCs are the major source of 
Mfge8 in GCs points to a previously unrecognized role for 
these cells in GC homeostasis. In addition to modulating 
the survival of GC B cells, FDCs appear to regulate their 
removal once these cells have undergone apoptosis. These 
results indicate that FDCs provide Mfge8 to GCs, which 
then binds to phosphatidylserine on apoptotic B cells and 
targets them for removal by TBM � s. This would explain 
why TBM � s register as Mfge8 +  upon ingestion of apop-
totic B cells, and indeed, we were able to show that TBM � s 
take up extracellular Mfge8 after subcutaneous injection of 
rMfge8 ( Fig. 3 ). 

  Figure 5.     Mfge8-dependent removal of apoptotic cells from the GC.  (A) In acute infl ammatory conditions, macrophages secrete  Mfge8  (step 1; 

reference  30 ), which targets apoptotic bodies (step 2) and allows macrophages to bind them via integrins (step 3). The Mfge8 – integrin interaction results 

in engulfment (step 4). (B) Revised model of splenic Mfge8-dependent engulfment. In this case, Mfge8 is not produced by macrophages but by FDCs. 

These establish a local Mfge8 gradient within GCs (step 1). TBM � s are therefore licensed for selective engulfment at the sites of apoptosis (step 2). Apop-

totic cells are presumably decorated by Mfge8 while in contact with FDCs (step 3).   
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donor BM cells i.v. Reconstitution effi  ciency was assed after 5 wk by 

FACS analysis of blood leukocytes. 6 wk after engraftment, mice were im-

munized i.p. with 100  μ g OVA (Sigma-Aldrich) in alum (Imject Alum; 

Thermo Fisher Scientifi c). 2 wk later, mice were boosted with the same 

dose of OVA. 

 RNA ISH.   Digoxigenin (DIG)-labeled  Mfge8  riboprobe was obtained by 

transcription of pBluescript II KS+ (Stratagene) containing the open reading 

frame of  Mfge8 . ISH was performed on spleen cryosections. For fl uorescent 

ISH, sections were prestained with biotinylated anti-CD68 antibody and 

postfi xed in 4% paraformaldehyde, followed by acetylation. After prehybrid-

ization, 200 ng/ml of DIG-labeled RNA probe was added to the hybridization 

buff er and incubated at 72 ° C overnight. For detection, either anti-DIG – 

alkaline phosphatase or anti-DIG – fl uorescein antibody with a fl uorescent 

enhancer kit (Roche) was used. 

 FDC cluster isolation and quantitative real-time PCR analysis.   FDCs 

from lymph nodes were isolated as described previously ( 17 ). FDC-

enriched and fl ow-through fractions were lysed in TRI zol . RNA was 

isolated and cDNA was synthesized. Quantitative real-time PCR was per-

formed using the SYBR Green PCR Master Mix (QIAGEN) on a 7900HT 

Fast Real-Time PCR System (Applied Biosystems) using the default 

cycling conditions. Expression levels were normalized using  Gapdh . The 

following primers were used:  Gapdh  forward primer, 5 � -CCACCCCAG-

CAAGGAGACT-3 � ;  Gapdh  reverse primer, 5 � -GAAATTGTGAGGGA-

GATGCT-3 � ;  Mfge8  forward primer, 5 � -ATATGGGTTTCATGGGC-

TTG-3 � ;  Mfge8  reverse primer, 5 � -GAGGCTGTAAGCCACCTTGA-3 � ; 

 Cxcl13  forward primer, 5 � -TCGTGCCAAATGGTTACAAA-3 � ;  Cxcl13  

reverse primer, 5 � -ACAAGGATGTGGGTTGGGTA-3 � ;  Ptprc  forward 

primer, 5 � -AAACGATCGGTGACTTTTGG-3 � ; and  Ptprc  reverse primer, 

5 � -AGCTCTTCCCCTTTCCATGT-3 � . 

 Electron microscopy.   Samples were fi xed in 2% glutaraldehyde in 0.1 M 

cacodylate buff er (pH 7.4), washed and postfi xed in a mixture of 1% OsO 4  

and 1.5% K 4 Fe(CN) 6  in 0.1 M cacodylate buff er (pH 7.4), dehydrated, and 

embedded in Epon 812 (Fluka). The resin specimens were trimmed, and 

70 – 90-nm sections were cut. Ultrathin sections were collected on copper 

6200 grids and contrasted with uranyl acetate and lead acetate before exam-

ination with a transmission electron microscope (CX 100 II; JEOL Ltd.). 

 Online supplemental material.   Fig. S1 shows that  Mfge8  � / �    mice lack 

FDC-M1 +  networks. Fig. S2 reveals that TBM � s are donor derived. Fig. S3 

depicts  Ptprc  expression as down-regulated in FDC-enriched clusters. Fig. 

S4 shows that  Mfge8  expression is absent in spleens with stromal  Mfge8  de-

fi ciency and that CD68 +  TBM � s do not contain  Mfge8  RNA. An analysis 

of  Mfge8  expression in PM � s is depicted in Fig. S5. Fig. S6 shows that stro-

mal  Mfge8  defi ciency causes splenomegaly. Fig. S7 demonstrates that splenic 

 Mfge8  expression depends on LT signaling. Online supplemental material is 

available at http://www.jem.org/cgi/content/full/jem.20071019/DC1. 
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