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Abstract: In the present study, we depicted the complete mitochondrial genome of a valuable
medicinal plant, Vitex rotundifolia. The mitochondrial genome of V. rotundifolia, mapped as a circular
molecule, spanned 380,980 bp in length and had a GC content of 45.54%. The complete genome
contained 38 protein-coding genes, 19 transfer RNAs (tRNAs), and 3 ribosomal RNAs (rRNAs).
We found that there were only 38.73% (147.54 kb), 36.28% (138.23 kb), and 52.22% (198.96 kb) of
the homologous sequences in the mitochondrial genome of V. rotundifolia, as compared with the
mitochondrial genomes of Scutellaria tsinyunensis, Boea hygrometrica, and Erythranthe lutea, respectively.
A multipartite structure mediated by the homologous recombinations of the three direct repeats
was found in the V. rotundifolia mitochondrial genome. The phylogenetic tree was built based on
10 species of Lamiales, using the maximum likelihood method. Moreover, this phylogenetic analysis
is the first to present the evolutionary relationship of V. rotundifolia with the other species in Lamiales,
based on the complete mitochondrial genome.
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1. Introduction

Vitex rotundifolia is a land plant which belongs to the Verbenaceae and Lamiales, and it
is widely located along the seashores of eastern China, Japan, and Korea [1]. V. rotundifolia
has long served as a medicinal plant and is described in European pharmacopeias dating
back to the year 1618 in relation to its positive effects on injuries and inflammation [2]. In
China, V. rotundifolia is a traditional Chinese medicine, and its fruit is also listed in Chinese
pharmacopeias. To date, most of the previous research has spotlighted the pharmacological
characteristics and active ingredients of V. rotundifolia [1,3]. There are diverse active com-
pounds, such as flavonoids, phenylpropanoids, and diterpenes, that have been reported in
the fruit of V. rotundifolia [2]. The molecular mechanism of its active compounds’ synthesis
is uncertain. The complete plastid genome of V. rotundifolia was newly published last
year [4]; however, the mitochondrial genome has not been decoded.

Originating from prokaryotes, and increasing in size by continuing the duplication of
the intergenic region and acquiring DNA sequences from the chloroplasts and the nucleus
during evolution, the plant mitochondrial genomes range in size from dozens and hundreds
of kilobases to a few megabases [5–7]. In addition to the different genome sizes, the structure
and gene contents are also different in the plant mitochondrial genome. The in vivo
structure of plant mitochondrial genomes is enigmatic; however, it has been reported
that plant mitochondrial DNAs (mtDNAs) typically interconvert between a ‘master circle’
conformation that consists of all genome sequences and a set of subgenomic circles caused
by repeat-mediated recombination [8]. For instance, the complete mitochondrial genome of
the monkeyflower (Mimulus guttatus DC. line IM62) maps as a master circular molecule
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which is 525,671 bp in length [9], and that of the cucumber maps as 3 entirely, or largely
autonomous, circular molecules that are 1556, 84, and 45 kb in length, respectively [10].
Moreover, the circular map is not an exact depiction of the plant mitochondrial genome
structure in vivo, and we use circular maps of plant mitochondrial genomes in genome
sequencing publications today, as they are acceptable indicators of genome content and
sequencing completeness [9].

Notably, gene contents of the plant mitochondrial genome also display diversity. It
has been reported in Viscum scurruloideum that an exceptional reduction in gene content is
accompanied by its size reduction. Additionally, this reduction especially derives from the
loss of respiratory complex I (NADH dehydrogenase), which is also detected in many other
angiosperms [7]. In the mitochondrial genome of the S. conica and S. noctiflora, there are only
two or three tRNA genes, which are far fewer than in most angiosperms [11]. Although
the genome size, structure, and gene contents of mitochondria have been characterized in
plants in the last few years, the number of plant mitochondrial genomes that have been
reported is also limited.

Therefore, we sequenced a line of V. rotundifolia cultivated at Huizhou University by
means of second- and third-generation sequencing technology. Based on these data, we
assembled the mitochondrial genome using the GetOrganelle toolkit and NextDenovo soft-
ware. We characterized the size, structure, and gene content of the mitochondrial genome.
We helped to reveal the genetic code of the V. rotundifolia mitochondrial genome by showing
its organization, repeat elements, the acquisition of sequences from the plastid genome, and
the phylogenetic analysis of the ten Lamiales species based on the mitochondrial genome
and the genes under selection.

2. Materials and Methods
2.1. Plant Materials and DNA Extraction

The fresh leaves of a V. rotundifolia sample were collected from a line (vr-2101) cul-
tivated at Huizhou University, China (E 113◦ 51′ 78.06′′, N 22◦ 24′ 19.21′′). The fresh
leaves were stored in liquid nitrogen, and total genomic DNA were extracted from these
samples using 2% CTAB. The assessment of purity and quality of DNA was conducted
using 1.0% agarose gel and a Nanodrop spectrophotometer 2000 (Thermo Fisher Scientific,
Waltham, MA, USA). The samples of fresh leaves and extracted genomic DNA samples of
V. rotundifolia were stored in the herbarium of the Huizhou University Life Science College
(V. rotundifolia number: 202011010526XL).

2.2. DNA Sequencing and Mitochondrial Genome Assembly

V. rotundifolia total DNA was sequenced using the Nanopore platform (PromethION,
Oxford Nanopore Technologies, Oxford, UK) and Illumina Hiseq2500 platform (Illumina,
San Diego, CA, USA). Then, we performed de novo assembly using the third-generation
sequencing reads and NextDenovo v2.0-β.1 (https://github.com/Nextomics/NextDenovo
(accessed on 11 January 2022)). We obtained 2378 contigs, with a total size of 251 Mb.
To identify the mitochondrial contigs, the contigs were compared with 9 mitochondrial
genomes of the Lamiales species with BLASTn [12]. Meanwhile, the second-generation
sequencing reads obtained from the Illumina platform were de novo assembled by GetOr-
ganelle (v1.6.4) [1,13]. Moreover, two circular contigs from Nanopore long-read data
were used for resolving the repeat sequences in the mitochondrial graph from the Illu-
mina reads assembled using GetOrganelle. Additionally, the final circular molecules were
mapped to the second and third reads with BWA (v0.7.12-r1039) and SAMtools (v0.1.19-
44428cd) [14,15] to detect the coverage of the assembled mitochondrial genome.

2.3. Mitochondrial Genome Annotation and Genome Alignments of Lamiales

The sequence of the V. rotundifolia mitochondrial genome was annotated using the web
tool GeSeq (https://chlorobox.mpimp-golm.mpg.de/geseq.html (accessed on 5 February
2022)). Moreover, the mitochondrial genomes of Ajuga reptans (NC_023103) and Rotheca
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serrata (NC_049064) served as the reference genomes. Then, Apollo software [16] was used
to check the locations of the start and stop codons and the intron/exon boundaries. We used
tRNAscan-SE v2.0.7 [17] to identify tRNA genes in the mitochondrial genome. Finally, the
circular mitochondrial genome map was drawn using OrganellarGenomeDRAW [18]. We
deposited the sequences and annotation results of the two subgenomic circular molecules
in GenBank under the accession numbers OK563725.1 and OK563726.1.

To find the mitochondrial synteny blocks of the V. rotundifolia compared with the
other 9 species in the Lamiales, 9 pairs of mitochondrial genome sequences were aligned
using Mauve (version 20150226) with an LCB cutoff of 42 [19]. We used BLASTn with
the parameters “-word_size 7 -evalue 1 × 10−6” to identify the shared mtDNA of the
species pairs.

2.4. Analysis of Repeat Sequences and Repeat-Mediated Homologous Recombinations

The web application MISA (https://webblast.ipk-gatersleben.de/misa/ (accessed
on 8 February 2022)) was employed to detect the simple sequence repeat (SSR) locations
in the two circular molecules of the V. rotundifolia mitochondrial genome. Additionally,
the minimum numbers of the SSR search were set as 10 for the mononucleotide repeat
units, 5 for the dinucleotide repeat units, 4 for the trinucleotide repeat units, and 3 for the
tetra-, penta-, and hexanucleotide repeat units. The web application Tandem Repeats Finder
(https://tandem.bu.edu/trf/trf.advanced.submit.html (accessed on 12 February 2022)) [20]
was engaged to analyze the tandem repeat locations in the two circular molecules of the V.
rotundifolia mitochondrial genome. The parameters were as follows: 2, 7, and 7 for matches,
mismatches, and indels, respectively. The minimum alignment score and maximum period
size were set as 50 and 500, respectively. These parameters mostly referred to another report
of the mitochondrial genome of Scutellaria tsinyunensis, which also belongs to Lamiales, for
further comparative analysis [21].

We identified dispersed repeats in the mitochondrial genome using BLASTn with the
parameters “-word_size 7 -evalue 1 × 10−6”, and a minimum length of 100 bp. Moreover,
the sequences of the repeats and 1000 bp of their up and down regions were extracted, and
the nanopore long reads were aligned to these sequences by the BWA. We then counted the
percentage of reads that supported the alternative conformation (AC) of the repeat pair.

2.5. Identification of Plastid Integration

The chloroplast genome of the V. rotundifolia deposited in GenBank (NC_050991.1)
served as the query. We used the BLASTn module in BLASTn to compare the sequences
of the chloroplast and mitochondrial genome of V. rotundifolia with the threshold of the
e-value set as 1 × 10−6 and a minimum match of 100 bp. The positions of mitochondrial
plastid sequences (MTPTs) of the circular molecule of the mitochondrial genome were
shown by a Circos map drawn using the advanced Circos module in TBtools [22].

2.6. Phylogenetic Analysis of the 10 Lamiales Species Based on Shared Mitochondrial
Protein Sequences

For revealing the phylogeny of V. rotundifolia, we collected 9 mitochondrial genomes of
Lamiales from NCBI to construct the phylogenetic tree using Nicotiana tabacum and Solanum
lycopersicum as the outgroup. A total of 26 shared mitochondrial genes, extracted using
PhyloSuite (v1.2.1) [23], form all 10 of the mitochondrial genomes. The nucleotide sequences
of these genes were aligned with MAFFT (v7.450) [24] implemented in PhyloSuite. The
nucleotide sequences were then concatenated and used to construct the phylogenetic trees
with the maximum likelihood (ML) method implemented in RAxML (v8.2.4) [25]. The
pipeline of RAxML was “raxmlHPC-PTHREADSSSE3 -f a -N 1000 -s vr.phy -n vrtree -m
GTRGAMMA -x 551314260 -p 551314260” -o o1,o2 -T 10”. The bootstrap analysis was
performed with 1000 replicates. Bayesian inference (BI) analysis was performed using
MrBayes (v3.2.7a) [26] on the CIPRES Science Gateway (V. 3.3) [27]. Nucleotide substitution
model selection was estimated with jModelTest v2.1.10 [28]. Additionally, the web tool
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iTOL (https://itol.embl.de (accessed on 15 February 2022)) was used to visualize the
phylogenetic trees.

2.7. Estimation of Nucleotide Substitution Rates and RNA Editing Predicting

For the assessment of the sequence divergence of the genes in the V. rotundifolia
mitochondrial genome, pairwise 26 protein-coding gene sequences of the mitochondrial
genome of Lamiales were prepared for the calculation of the non-synonymous substitution
rate (dN), synonymous substitution rate (dS), and the ratio of dN to dS. The calculation
was performed in PAML (v4.9) [29] using the yn00 module, conducting the estimation
at verbose = 0, icode = 0, weighting = 0, commonf3×4 = 0, and nDATA = 1. The results
of the pairwise dN, dS, and dN/dS values were presented using a boxplot drawn using
R-package (ggplot2) [30].

RNA editing events change the nucleotides in RNA molecules of the mitochondrial
genomes and increase the conservation of protein sequences across different species [31].
The RNA editing sites of the 35 protein-coding genes of the V. rotundifolia mitochondrial
genome were predicted using PREP-Mt [31] (http://prep.unl.edu/ (accessed on 6 March
2022)), with a cutoff value of 0.2.

3. Results
3.1. Organization and Rearrangements of the V. rotundifolia Mitochondrial Genome

To generate the sequencing data for the mitochondrial genome assembly, we used
the Illumina and Nanopore sequencing platforms to sequence the DNA sample of V.
rotundifolia. Overall, 68.68 million reads (Table S1) and 4.10 Gb of clean data were obtained,
respectively. The mitochondrial genome of V. rotundifolia was assembled as one circular
molecule 380,980 bp in length (Figure 1). The average short and long reads’ coverages
of the whole circular molecule were 159.77× and 50.45× (Figure 2), with a GC content
of 45.54%. The mitochondrial gene content of the V. rotundifolia was 60 unique genes in
total, including 38 protein-coding genes and 22 non-protein-coding genes (Tables 1 and 2).
The total length of the protein-coding genes was 34,074 bp, accounting for 7.35% of the
total length of the genome. The total length of non-coding proteins was 5129 bp (1.61%),
including 30 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes (rrn18, rrn5,
and rrn26). In addition, we found 8 genes with introns (ccmFc, nad5, rps3, rps10, nad1, nad7,
nad2, and nad4), containing 22 introns in total.

Table 1. Genes predicted in the mitochondrial genome of V. rotundifolia.

Group of Genes CM1 CM2

Complex I nad1 *, nad2 *, nad3, nad4L, nad5, nad6 nad4 #, nad7 #, nad9
Complex II - -
Complex III cob -
Complex IV cox2, cox3 cox1
Complex V atp1, atp4, atp8 atp6, atp9

Cytochrome-c biogenesis ccmB, ccmC,
ccmFC #, ccmFN -

SecY-independent transport mttB -
Ribosomal protein small subunit rps3 #, rps4, rps10 #, rps12, rps13, rps14 rps10 #

Ribosomal protein large subunit rpl2, rpl5, rpl10, rpl16 -
Intron maturase matR -

Ribosomal RNAs rrn5, rrn18, rrn26 -

Transfer RNA

trnC-GCA, trnE-UUC, trnF-GAA, trnG-GCC,
trnK-UUU, trnM-CAU, trnM-CAU, trnM-CAU,
trnN-GUU, trnP-UGG, trnS-GCU, trnS-UGA,

trnY-GUA, trnK-UUU,
trnQ-UUG

trnH-GUG,
trnW-CCA,
trnS-GGA,
trnD-GUC

Succinate dehydrogenase sdh3 *, sdh4 -

“#”represents genes with more than two exons. “*” represents pseudogenes. -, absent.
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Figure 1. Schematic of the mitochondrial genome of V. rotundifolia. Genes on the inside are on the 
negative strand, and genes on the outside are on the positive strand. The inner grey circle shows the 
GC contents of the mitochondrial genome. The circle inside the GC content graph shows the 50% 
threshold. The colors of genes show different functional categories, and details are shown in the 
legend. Genes with introns were marked with (*). 

Figure 1. Schematic of the mitochondrial genome of V. rotundifolia. Genes on the inside are on the
negative strand, and genes on the outside are on the positive strand. The inner grey circle shows
the GC contents of the mitochondrial genome. The circle inside the GC content graph shows the
50% threshold. The colors of genes show different functional categories, and details are shown in the
legend. Genes with introns were marked with (*).
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and Nanopore long reads, respectively. The x axis shows the genomic positions, and the y axis 
shows the depth of mapped long reads. 
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Figure 2. Depth and coverage of the assembled mitogenome using Illumina and Nanopore long
reads. Panels (A,B) represent the depth and coverage of the assembled mitogenome using Illumina
and Nanopore long reads, respectively. The x axis shows the genomic positions, and the y axis shows
the depth of mapped long reads.

Table 2. Nanopore long reads support the recombination related to six repeat pairs in the mitochon-
drial genome of V. rotundifolia.

Repeat Length (bp) Direction Position
Reads Support
Master Circle
Conformation

Reads Support
Master Circle
Conformation

R1 5616 + 1–5616 40 48
+ 265,249–270,864 45.45% 54.55%

R2 4148 + 30,846–34,992 66 64
+ 305,624–309,771 50.77% 49.23%

R3 283 + 264,966–265,248 10 16
+ 380,698–380,980 38.46% 62%

R4 211 + 36,020–36,229 184 6
+ 130,730–130,940 96.84% 3%

R5 102 + 143,734–143,835 120 2
+ 233,534–233,634 98.36% 2%

R6 110 + 49,216–49,324 78 1
+ 205,946–206,055 98.73% 1.27%

To identify the genome rearrangements in Lamiales species, we counted the quantity
of shared DNA and obtained the Mauve alignment between the V. rotundifolia and the
other 9 Lamiales species (Figure 3 and Figures S1 and S2). It was found that the mito-
chondrial genome sequence of V. rotundifolia showed a low level of synteny and common
DNA compared with the other Lamiales species. For example, there were only 38.73%
(147.54 kb), 36.28% (138.23 kb), and 52.22% (198.96 kb) of the homologous sequences in
the mitochondrial genome of V. rotundifolia to the mitochondrial genome of Scutellaria
tsinyunensis, Boea hygrometrica, and Erythranthe lutea, respectively.
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Lamiales based on Mauve alignments. Left arrows show the shared amount of mtDNA, in kb and
percentage, of the V. rotundifolia and one other species, and right arrows show the reciprocal values.

3.2. Repeat Sequences and Repeat-Mediated Homologous Recombinations in the V. rotundifolia
Mitochondrial Genomes

We identified the SSRs and tandem repeat sequences of the V. rotundifolia mitochon-
drial genome using MISA and Tandem Repeats Finder. A total of 94 SSRs were detected
in the V. rotundifolia mitochondrial genome (Table S2). The results show that the tetranu-
cleotide repeats were predominantly abundant, while hexanucleotide repeats were absent
in the V. rotundifolia mitochondrial genome. Four tandem repeats were identified in the
V. rotundifolia mitochondrial genome (Table S3).

We detected 6 direct repeats which were more than 100 bp in length in the V. rotun-
difolia mitochondrial genome. Then, we mapped the Nanopore long reads to obtain the
proportion of read pairs that supported AC of these six repeat pairs (Table 2). The location
of these repeat sequences in the circular map of the V. rotundifolia mitochondrial genome is
shown in the Circos map (Figure S3). For the 2 longer repeats, 5616 and 4148 bp in size,
nearly the same number of read pairs supported either the “master circle” conformation
or the AC (2 subgenomic circles) mediated by the homologous recombination. Moreover,
for the repeat that was 283 bp in size, the number of reads that supported the AC was
more than the reads that supported the “master circle” conformation. These results im-
ply a multipartite structure of the V. rotundifolia mitochondrial genome, consisting of a
“master circle” and two subgenomic circles (Figure 4). These alternate circles represent
subgenomes found as alternate, shorter versions of the MT DNA within our assembly of
the V. rotundifolia mitochondrial genome. The other 3 repeats had a low level (<4%) of
recombinants, suggesting that the “master circle” conformation also exists at relatively
high substoichiometric levels. It should be taken noted that this model is not the sole
representation of the proposed evolution of these repeats.
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Figure 4. Inferred multipartite structure mediated by the recombination of the three repeats in the
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in different colors. Note: the circles in the graph resulted from the genome assembly, and they do not
necessarily suggest the in vivo state of the V. rotundifolia mitochondrial genome.

3.3. Identification of Mitochondrial Plastid Sequences (MTPT)

For the identification of plastid-derived fragments in the V. rotundifolia mitochondrial
genome, we used the plastid genome of V. rotundifolia, which served as a reference genome
(NC_050991.1). The V. rotundifolia mitochondrial genome contained 26 transferred chloro-
plast fragments. The total length of the MTPT fragments was 8997 bp, accounting for 5.82%
of the plastid genome and 2.36% of the mitochondrial genome (Table S4). The size of MTPT
fragments in the circular molecules ranged from 115 to 887 bp.

3.4. Phylogenetic Analysis

The phylogenetic analysis was performed based on the 26 common mitochondrial
genes of 10 Lamiales species (Table S5). The model GTR + I+G was selected for ML analyses
with 1000 bootstrap (BS) replicates to calculate the BS values of the topology. As a result,
most nodes of the tree had support values of ML bootstraps that were more than 90, and BI
posterior probabilities that were 1. Phylogenetically, V. rotundifolia was close to Scutellaria
tsinyunensis, Ajuga reptans, and Rotheca serrata. The five species of Lamiaceae were clustered
in a clade in this tree (Figure 5).
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Figure 5. Molecular phylogenetic analysis of mitochondrial genomes of Lamiales. The tree was
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by 1000 replicates. The topology of the tree is indicated with ML bootstrap values and BI posterior
probabilities. Nicotiana tabacum and Solanum lycopersicum were used as outgroups.

3.5. Identification of Genes under Selection and RNA Editing Events

To comprehensively analyze the nucleotide substitution rates in the mitochondrial
genome of V. rotundifolia, we evaluated the pairwise non-synonymous substitution rate
(dN), synonymous substitution rate (dS), and ratio of dN to dS of the 26 common mitochon-
drial genes of the 9 Lamiales species with the yn00 module of PAML (v4.9). The dN/dS
values of ccmB, ccmFc, and mttB were over 1.0 in most of the Lamiales species, which
represented the possible positive selection of these genes (Figure 6 and Figures S4 and S5).
However, a low dN/dS value was found in atp1, atp9, cob, cox1, cox2, cox3, nad1, nad4L,
nad5, nad6, and rps12, which indicated a possible negative selection of these genes.
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We identified 439 C-to-U RNA editing sites in the 35 protein-coding genes of the V.
rotundifolia mitochondrial genome, and nad4 and ccmB presented the most editing sites
(Figure 7A). Moreover, there were 14 types of amino acid transformation at these RNA
editing sites (Figure 7B).
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4. Discussion

In this study, we sequenced and assembled the mitochondrial genome of a medicinal
plant, V. rotundifolia. The assembled mitochondrial genome sequence of V. rotundifolia was
380,980 bp in length (Figure 1), which was close to the length of 354,073 bp of another plant
of the Lamiales family, Scutellaria tsinyunensis. A total of 34 protein-coding genes were
identified in the mitochondrial genome of V. rotundifolia, 2 genes more than S. tsinyunensis.
A total of 19 tRNA genes, 5 genes fewer than S. tsinyunensis, and 3 rRNA genes were also
identified in the mitochondrial genome (Table 2).

The genome structure of plant mitochondrial genomes has always been mapped as a
single master circle and a collection of subgenomic circles because of the large, direct, repeat
recombination [8,10]. Although these circular maps do not present the exact structure of the
in vivo structure of the plant mitochondrion, they are reported and accepted as indicators of
genome content and sequencing completeness [9]. For example, the mitochondrial genome
of S. tsinyunensis was reported to have 2 conformations mediated by the recombination
of 1 direct repeat 175 bp in length. Similar to S. tsinyunensis, we also found that the
mitochondrial genome of V. rotundifolia can be mapped as a master circle or two subgenomic
circles arising from a large direct repeat. For the plant mitochondrial genome alignments, it
was reported that angiosperm mtDNAs diverge rapidly at the structural level and show
loss of synteny and shared DNA, even when compared with closely related species [32].
The research also demonstrated that only 51% (205 kb) of the 401 kb mitogenome of Vigna
radiata is homologous to the Glycine max mitogenome [33]. In our study, the V. rotundifolia
mitochondrial genome also only shared 26.12% (99.52 kb) to 52.22% (198.96 kb) homologous
sequences with the other 9 species of Lamiales.

Our data showed that tetranucleotide repeats were the most abundant and that hex-
anucleotide repeats were absent in the V. rotundifolia mitochondrial genome. These results
are consistent with the report on S. tsinyunensis, which is also a species of Lamiales. The
most abundant dispersed repeats were forward repeats and palindromic repeats, while
reverse repeats were not found in the V. rotundifolia mitochondrial genome. The results
were also reported in the S. tsinyunensis mitochondrial genome and the nine mitochondrial
genomes of Lamiales in the literature [21].

The topologies of the phylogenetic trees constructed in our study showed congruence
compared with the trees constructed by the sequences of the nine mitochondrial genomes
and chloroplast genomes of the Lamiales in the report of S. tsinyunensis. Additionally,
congruence with the tree constructed by the complete plastome sequences from the families
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of Lamiaceae, Mazaceae, and Phrymaceae was also presented [4]. In our study, the dN/dS
value of ccmB, ccmFc, and mttB was over 1.0 in most of the Lamiales species, and a low
dN/dS value was found in atp1, atp9, cob, cox1, cox2, cox3, nad1, nad4L, nad5, nad6, and
rps12. These results were also shown in the report on Lamiales [21], thereby enabling us to
predict the variation and evolution of these genes. For RNA editing sites, 487 C-to-U RNA
editing sites were detected in the PCGs of S. mukorossi mitogenome, of which the number
detected in our study was close. Similarly, the most editing sites were identified in ccmB
and nad4, and the conversion types of the most editing sites were from proline to leucine
and from serine to leucine of the S. mukorossi mitogenome [34].

5. Conclusions

Currently, the research focusing on the mitochondrial genomes of plants, especially
medicinal plants, is still limited and provides little information about the evolution and
species authentication based on the mitochondrial genomes. Our novel mitochondrial
genome will serve as a tool for us to unfold the phylogeny and species identification of
V. rotundifolia.
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rotundifolia; Figure S4: Boxplots of pairwise dN values for the mitochondrial genes among the ten
Lamiales plants; Figure S5: Boxplots of pairwise dS values for the mitochondrial genes among the
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