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Immuno-oncology not only refers to the multifaceted relationship between our immune 
system and a developing cancer but also includes therapeutic approaches that harness 
the body’s immune system to fight cancer. The recognition that metabolic reprogram-
ming governs immunity was a key finding with important implications for immuno-on-
cology. In this review, we want to explore how activation and differentiation-induced 
metabolic reprogramming affects the mevalonate pathway for cholesterol biosynthesis 
in immune and cancer cells. Glycolysis-fueled mevalonate metabolism is a critical path-
way in immune effector cells, which may, however, be shared by cancer stem cells, 
complicating the development of therapeutic strategies. Additional engagement of fatty 
acidy oxidation, as it occurs in regulatory immune cells as well as in certain tumor types, 
may influence mevalonate pathway activity. Transcellular mevalonate metabolism may 
play an as yet unanticipated role in the crosstalk between the various cell types and may 
add another level of complexity. In humans, a subset of γδ T cells is specifically adapted 
to perform surveillance of mevalonate pathway dysregulation. While the mevalonate 
pathway remains an important target in immuno-oncology, in terms of personalized 
medicine, it may be the type or stage of a malignant disease that determines whether 
mevalonate metabolism requires training or attenuation.
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MevALOnATe MeTABOLiSM in iMMUne CeLLS

Glycolysis-Driven Mevalonate Metabolism in immune effector 
Cells
Immune cell activation is associated with shifts in cellular metabolism (1, 2). In contrast to naïve 
T cells, T helper (Th) cells including type 1 (Th1), type 2 (Th2) as well as type 17 (Th17) display a 
reprogrammed metabolic phenotype, which is characterized by increased rates of aerobic glycolysis, 
leading to fatty acid synthesis (FAS) and mevalonate metabolism (Figure  1). Glycolysis-driven 
lipogenesis is induced by Akt signaling and depends on sterol regulatory element-binding protein 
(SREBP) transcription factors. All these changes are promoted by the metabolic checkpoint kinase 

Abbreviations: ABCA1, ATP-binding cassette transporter A1; ACAT-1, acetyl-CoA acetyltransferase 1; apo-AI, apolipoprotein 
A-I; ATP, adenosine triphosphate; ACL, ATP citrate lyase; BTIC, brain tumor-initiating cell; BTN, butyrophilin; CoA, coen-
zyme A; CPT1, carnitine palmitoyltransferase 1; CTLA-4, cytotoxic T lymphocyte-associated protein-4; DMAPP, dimethy-
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FiGURe 1 | Glycolysis-driven mevalonate metabolism versus fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS). Glycolysis-derived pyruvate can 
enter the mitochondrion and fuel the tricarboxylic acid (TCA) cycle to drive OXPHOS. Cells thus generate energy in the form of adenosine triphosphate (ATP). 
However, activated immune or cancer cells can also export citrate to the cytosol, where it is converted back to acetyl-coenzyme A (acetyl-CoA) by ATP citrate lyase. 
Abundance of cytosolic acetyl-CoA enables both, fatty acid synthesis (FAS) and mevalonate metabolism, collectively referred to as lipogenesis. Three molecules of 
acetyl-CoA are required to generate HMG-CoA. HMG-CoA is the substrate of HMG-CoA reductase, the mevalonate-generating enzyme, which catalyzes the first 
committed step and thus initiates the pathway leading to farnesyl diphosphate, also known as farnesyl pyrophosphate (FPP = branching point). Whereas FPP is the 
precursor in cholesterol biosynthesis, both, FPP and geranylgeranyl diphosphate (GGPP), represent activated isoprenoid moieties in posttranslational protein 
prenylation. Concurrent FAO may influence the availability of acetyl-CoA for mevalonate metabolism, because FAO usually serves to drive OXPHOS and thus diverts 
acetyl-CoA from lipogenic pathways.
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mechanistic target of rapamycin (mTOR) that controls protein 
translation, cell growth, and metabolism (3, 4). The serine/
threonine kinase mTOR exists in two complexes, mTORC1 and 
mTORC2, which have distinct functions. TCR triggering induces 
in an Akt–mTOR–SREBP-dependent manner the expression of 
all genes encoding mevalonate-generating and mevalonate-
metabolizing enzymes (5), highlighting the importance of this 
metabolic pathway for T cell activation (6).

M1 macrophages, classically activated by the Th1 cytokine 
interferon-γ (IFN-γ) plus lipopolysaccharide (LPS), are myeloid 
effector cells, which are characterized by the expression of high 
levels of pro-inflammatory cytokines, reactive nitrogen and 
oxygen intermediates, promotion of Th1 response, and strong 
microbicidal and tumoricidal activity (7). Like Th cells, M1 mac-
rophages also depend on glycolysis and mevalonate metabolism 
(2, 8). Finally, dendritic cells (DCs), which encounter bacterial 
components such as LPS as well as T or NK cell-derived IFN-γ 
during infection likewise operate glycolytic metabolism (2) and 
require mevalonate pathway activity for effector cytokine produc-
tion (9).

M1 macrophages and DCs engage glycolysis-fueled lipoge-
nesis to expand cellular compartments such as the endoplasmic 
reticulum and the Golgi as well as to prepare the entire secretory 
machinery for effector responses (10). For this purpose, glucose-
derived cytosolic pyruvate enters the citric acid cycle, also known 
as the Krebs cycle or tricarboxylic acid (TCA) cycle, which takes 
place in the mitochondria of eukaryotic cells. However, instead 
of being fully oxidized in the TCA cycle, some of the pyruvate-
derived mitochondrial citrate can be exported into the cytosol. 
ATP citrate lyase, which is phosphorylated by Akt (11), cleaves 
citrate and thus generates cytosolic acetyl-CoA, the precursor of 
FAS and mevalonate metabolism (12, 13) (Figure 1).

Colony-Stimulating Factors Promote 
Mevalonate Metabolism during 
Myelopoiesis and M1 Macrophage 
Activation
Myelopoiesis is driven by colony-stimulating factors including 
granulocyte/macrophage-colony-stimulating factor (GM-CSF) 
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and M-CSF, which are important for the development and function 
of monocytes and macrophages. In murine myelopiesis, M-CSF 
stimulation activated mTORC1 and mTORC1-driven glycolysis 
initiated a transcriptional program involving activation of the 
protooncogene Myc (14), which is well known to induce meta-
bolic reprogramming, including stimulation of lipogenesis (15). 
Accordingly, multiple genes involved in mevalonate generation 
and metabolism toward cholesterol were activated in response 
to M-CSF treatment (14). Attenuation of cholesterol biosynthesis 
gene expression by deleting SREBP cleavage-activating protein 
impaired myelopoiesis, highlighting the crucial role of meva-
lonate metabolism in macrophage development.

Granulocyte/macrophage-colony-stimulating factor plays a 
critical role in promoting glycolysis-fueled mevalonate metabo-
lism (8) in M1 macrophages. GM-CSF increases the glycolytic 
capacity of macrophages and primes them for high levels of acute 
glycolysis in response to LPS stimulation. LPS has long been 
known to promote glucose uptake in macrophages (2, 16) and 
this may in part be due to LPS-induced production of GM-CSF 
(17). GM-CSF primed macrophages not only contained higher 
levels of acetyl-CoA but also displayed upregulated mRNA and 
protein expression of HMG-CoA reductase (8), which is the 
target of the statins, a class of lipid-lowering drugs widely pre-
scribed for treatment and prophylaxis of coronary heart disease. 
GM-CSF primed macrophages produced significantly higher 
levels of the pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and 
IL-12 in response to LPS and, importantly, simvastatin prevented 
the GM-CSF priming effect. These observations indicated that 
mevalonate metabolism instructs the inflammatory response of 
GM-CSF primed M1 macrophages.

Although the maintenance of immature antigen-presenting 
DCs is facilitated by fatty acid oxidation (FAO)-driven oxidative 
phosphorylation (OXPHOS) in a steady state (18), maturation 
into cytokine-producing, immunostimulatory DCs is again 
driven by glycolysis (2). The increased reliance of activated DCs 
on glycolysis is reflected by the observation that inhibition of 
hexokinase by 2-deoxyglucose prevents the DC maturation 
process (2). A major reason for the metabolic switch of maturing 
DCs is the increased need for citrate, which determines the levels 
of cytosolic acetyl-CoA, fueling not only FAS but also mevalonate 
metabolism (Figure 1). In this context, it may be of interest that 
human monocyte-derived DCs developing in the presence of 
GM-CSF and IL-4 produce substantial amounts of M-CSF (19). 
M-CSF synthesis is rapidly induced by GM-CSF during the first 
24 h of DC culture and then declines during the 5-day culture 
period. Given the importance of M-CSF in promoting mevalonate 
metabolism during myelopoiesis (14), the stimulatory effects of 
LPS and GM-CSF on glycolysis-fueled mevalonate metabolism 
may at least in part be mediated by M-CSF, which is induced by 
LPS and GM-CSF. However, M-CSF on its own is not capable of 
macrophage priming for enhanced inflammatory responses (20).

OXPHOS Fueled by FAO in Quiescent and 
Regulatory immune Cells
In contrast, other immune cell types such as naïve T  cells and 
quiescent CD8 memory T cells, whose major task is to survive, 
engage OXPHOS driven by FAO (21). In addition, immune cells 

responsible for the limitation of inflammation to ensure the return 
to homeostasis such as M2 macrophages (22), which develop 
in the presence of M-CSF and the Th2 cytokine IL-4, as well as 
regulatory T (Treg) cells (23) and tolerogenic DCs (24) also operate 
FAO-driven OXPHOS (2). The role of mevalonate metabolism in 
these cells is less clear. Interestingly, mTORC1 signaling in Treg 
cells has been shown to promote cholesterol and lipid metabolism. 
The mevalonate pathway turned out to be particularly important 
for coordinated Treg cell proliferation and for the establishment 
of Treg cell functional competence (25). These findings indicate 
that regulatory immune cells may concomitantly engage FAO 
and mevalonate metabolism. However, it seems possible that 
mitochondrial oxidation of acetyl-CoA for increased ATP syn-
thesis may limit its availability for mevalonate metabolism. If 
this proves to be true, mevalonate metabolism might represent 
an Achilles’ heel-like target and statins may be used to enhance 
immunotherapy by relieving cell-mediated immunosuppression.

MevALOnATe MeTABOLiSM in CAnCeR 
CeLLS

Uncontrolled growth of tumors is usually promoted by aerobic 
glycolysis, an observation originally made by Otto Warburg almost 
a century ago (26). Glycolysis-driven mevalonate metabolism is 
potentially oncogenic, most likely via excessive protein prenylation 
(27). Physiologically, the tumor suppressor p53 controls meva-
lonate pathway activity; however, p53 gain-of-function mutation 
can lead to uncontrolled mevalonate metabolism and subsequently 
to malignant transformation (28). Other cancers may lack feed-
back control of HMG-CoA reductase (HMGCR) or overexpress 
of HMGCR, leading to permanently increased flux through the 
mevalonate pathway (29, 30). Along the same line, ectopic expres-
sion of HMGCR also facilitated malignant transformation (31).

Myc-Driven Mevalonate Metabolism in 
Cancer Stem Cells
Recently, Myc has been shown to mediate its oncogenic effect 
by stimulating mevalonate metabolism in cancer stem cells (30) 
(Figure  2A), which share signaling and metabolic pathways 
with tumor cells upon epithelial–mesenchymal transition (32). 
Brain tumor-initiating cells (BTICs) were shown to exhibit 
enhanced mevalonate pathway activity (30). All genes encoding 
the enzymes that in a series of reactions convert HMG-CoA via 
mevalonate into farnesyl diphosphate (FPP) (Figure  1) were 
shown to be activated in BTIC models and induction of differ-
entiation caused suppression of these mevalonate pathway genes. 
In addition, targeting the mevalonate pathway in BTICs by RNA 
interference of HMGCR expression or by pharmacological inhi-
bition of HMGCR activity using statins attenuated proliferation, 
self-renewal, and tumorigenicity. Moreover, statin treatment of 
BTICs also reduced Myc expression.

TRAnSCeLLULAR MevALOnATe 
MeTABOLiSM

An additional level of complexity has been generated by the obser-
vation of extracellular or transcellular mevalonate metabolism. 
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FiGURe 2 | Mevalonate metabolism in immune and cancer cells. (A) Fatty acid metabolism makes the difference. Immune cells that realize effector functions 
depend on Myc-driven glycolysis that fuels lipogenesis. These cells engage mevalonate metabolism and fatty acid synthesis (FAS) but refrain from fatty acid 
oxidation (FAO). Unfortunately, cancer stem cells may have similar metabolic profiles. Although regulatory immune cells may still require Myc-driven glycolysis and 
FAS to some extent, they also engage FAO, which may occur at the expense of mevalonate pathway activity. These cells use FAO to realize their suppressive 
functions and to support survival. Distinct tumor types adopt a similar metabolic profile. In these cells, FAO may limit the availability of acetyl-CoA for mevalonate 
metabolism rendering it a potential Achilles’ heel-like target for therapeutic interventions. (B) Transcellular mevalonate metabolism. Starvation or p53 gain-of-function 
mutations lead to enforced uptake and use of extracellular isoprenoids in tumor cells. Intracellularly accumulating isopentenyl diphosphate (IPP) can bind to the 
B30.2 domain of butyrophilin 3A1 (BTN3A1), which leads to the activation of Vγ9Vδ2 T cells through a conformational change of the extracellular domain. In 
dendritic cells (DCs), the cholesterol efflux transporter adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1) may export mevalonate-derived IPP 
into the extracellular space. Extracellular IPP can bind to BTN3A1 on the DC cell surface resulting in the activation of Vγ9Vδ2 T cells. The ecto-ATPase CD39 is able 
to dephosphorylate IPP thus limiting the duration and strength of IPP-induced γδ T cell responses. The lipid scavenger CD36 may also mediate the uptake of 
extracellular isoprenoids. Cholesterol storage through ACAT-1-mediated esterification may limit T cell activity. (C) Training of mevalonate metabolism. Priming of 
monocytes with Bacillus Calmette–Guérin (BCG) or β-glucan leads to an Akt–mTOR-driven metabolic reprogramming that empowers these cells to respond to 
subsequent challenges with increased production of cytokines and reactive oxygen intermediates. This increased responsiveness represents a form of innate 
memory and is based on enhanced flux through the mevalonate pathway. Significantly upregulated reactions include the production of acetoacetyl-CoA (ACAT-1), 
phosphomevalonate, farnesyl diphosphate as well as squalene and 2,3 oxidosqualene, the latter being rate-limiting steps of cholesterol biosynthesis. Overall, more 
than 50% of the genes in the pathway are activated in trained cells.
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This term refers to a form of short distance intercellular commu-
nication, in which lipid intermediates synthesized and released 
by one cell type, can be incorporated and further metabolized by 
another cell type. Such interaction between different cell types 
by shared metabolism is a well-described phenomenon during 
eicosanoid biosynthesis (33). Among the secretory products of 
activated endothelial cells is arachidonic acid, the lipid precursor 
that initiates the eicosanoid cascade leading to the synthesis of 
prostaglandins, leukotrienes, and lipoxins. Human monocytes 
recruited by activated endothelial cells can respond to endothelial 
cell-derived arachidonic acid by activating not only the eicosanoid 
cascade but also the de novo pathway of FAS. As a consequence, 

arachidonic acid-pulsed monocytes acquire inflammatory phe-
notype and function (34).

The concept of transcellular lipid metabolism also applies to 
the mevalonate pathway. The contribution of extracellular meva-
lonate to mevalonate pathway activity is usually low (5%) but may 
increase to >30% during periods of starvation. In addition, unu-
sually high concentrations of extracellular isoprenols (>10 μM) 
may result in a relative contribution of up to 50% (35). Moreover, 
tumor cells carrying mutated p53, which enhances mevalonate 
metabolism instead of suppressing it, increasingly use extracel-
lular isoprenols resulting in a relative contribution of even greater 
than 50%. Finally, treatment with statins, which blunt mevalonate 
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metabolism by inhibiting HMG-CoA reductase, increased the 
use of extracellular isoprenols (35) (Figure 2B).

Isopentenyl diphosphate (IPP) can also be exported to the 
extracellular space. In DCs, the cholesterol efflux transporter 
ATP-binding cassette transporter A1 (ABCA1) has recently been 
shown to also mediate the efflux of IPP (36). Since cholesterol 
efflux serves homeostatic purposes, ABCA1-mediated IPP export 
will only occur in cells with high flux through the mevalonate 
pathway. Extracellular IPP may thus function as an indicator of 
hyperactive mevalonate metabolism that alerts the immune sys-
tem. IPP efflux to lipid-free apolipoprotein A-I (apoA-I) results 
in binding of extracellular IPP to butyrophilin 3A1 (BTN3A1) 
on the cell surface (37, 38). BTN3A1-mediated presentation of 
IPP subsequently activates Vγ9Vδ2 T cells, which are innate-like 
T cells with considerable antimicrobial and antitumor potential 
(39). BTN3A1 has been shown to also serve as a sensor of intra-
cellular IPP levels. Upon binding of IPP to its cytoplasmic B30.2 
domain, conformational changes of the BTN3A1 extracellular 
domain facilitate TCR engagement and Vγ9Vδ2 T cell activation 
(40). Vγ9Vδ2 T  cells activated by either pathway can then kill 
cells with a hyperactive mevalonate metabolism and thus contrib-
ute to the surveillance of infection or oncogenic transformation 
(Figure 2B).

Consistent with a role of extracellular IPP in immune surveil-
lance, the ecto-ATPase CD39 has recently been shown to also 
dephosphorylate and inactivate IPP and other mevalonate-
derived phosphoantigens, thus limiting the duration and 
strength of phosphoantigen-induced γδ T  cell responses (41). 
Additional evidence for transcellular mevalonate metabolism 
has been provided by a recent study demonstrating that the lipid 
scavenger receptor CD36 can also mediate the uptake of extracel-
lular isoprenoids (42). The earlier observation that statin treat-
ment resulted in the upregulation of CD36 had already pointed 
toward a role of CD36 as an isoprenoid scavenger receptor (43) 
(Figure 2B).

Along the same line, add-back experiments, in which meva-
lonate metabolism of immune (44–46) and cancer cells (35, 47) 
could be restored by exogenous isoprenoids during drug-induced 
pathway inhibition, further confirmed the relevance of transcel-
lular mevalonate metabolism. In such experiments, addition of 
FPP, or more often of geranylgeranyl diphosphate, was able to 
reinstate protein prenylation during statin or N-BP-mediated 
inhibition of mevalonate metabolism (48). An intriguing aspect 
of transcellular mevalonate metabolism is the possibility of 
crosstalk not only between immune cell subsets but also between 
immune cells, stromal cells, and cancer cells (49). The outcome 
of such shared metabolism is currently unclear and certainly 
deserves reinforced examination.

THeRAPeUTiC TARGeTinG OF 
MevALOnATe MeTABOLiSM

Training of Metabolic Skills
As outlined above, mevalonate metabolism is crucial for the 
inflammatory response of M1 macrophages (2, 8). Intriguingly, 
mevalonate metabolism can apparently be trained for enhanced 

innate immune responses, for instance by repetitive adminis-
tration of Bacillus Calmette–Guérin (BCG) (Figure  2C). Live 
attenuated BCG mycobacteria have a long history as a tuber-
culosis vaccine and as a cancer therapeutic. In fact, treatment 
with BCG is among the most effective cancer immunotherapies, 
and in high-risk, non-muscle-invasive bladder cancer, it is still 
the standard adjuvant treatment according to the European 
Association of Urology (EAU) guidelines (50, 51). BCG was 
used in seminal studies by Mackaness, who coined the term 
macrophage activation (classical activation) in the context of 
bacterial infection to describe the non-specifically enhanced, 
microbicidal activity of macrophages toward BCG (and Listeria) 
upon secondary pathogen exposure (52). The observation that 
vaccination with BCG also caused non-specific protective effects 
against non-related infections renewed the interest in this topic 
and led to the concept of “trained immunity” (53). At the cel-
lular level, a first treatment with BCG resulted in enhanced 
responsiveness of monocytes and macrophages, which produced 
higher levels of cytokines and reactive oxygen species upon a 
secondary stimulation with BCG or even with non-related 
pathogens. A similar priming effect has been observed with 
β-glucan, a major component of the C. albicans cell wall (54). 
This increased responsiveness, which represents a form of innate 
memory, was a consequence of Akt–mTOR-driven metabolic 
reprogramming in macrophages and, importantly, increased 
flux through the mevalonate pathway appeared to be prerequi-
site for the establishment of trained immunity. The relevance of 
mevalonate metabolism was demonstrated when statins were 
shown to prevent the generation of trained immunity. This was 
consistent with the previous clinical observation that statin 
therapy has been associated with tumor progression leading to 
radical cystectomy in patients treated for bladder cancer with 
BCG (55). In addition, RNA sequencing combined with metabo-
lomics revealed upregulation of multiple steps in the cholesterol 
synthetic pathway (54) (Figure 1).

Trained mevalonate metabolism leads to increased cholesterol 
biosynthesis, improving innate immunity. In addition, choles-
terol is critically required for T  cell growth and proliferation 
(6). T cell fitness has recently been demonstrated to specifically 
depend on high levels of free cholesterol in T  cell membranes 
(56). Cholesterol esterification for storage purposes can therefore 
limit T  cell activity (Figure  2B). Conversely, inhibition of the 
cholesterol esterification enzyme ACAT-1 was able to improve 
T cell responses and also improved the efficacy of immune check-
point blockade by anti-CTLA-4 antibody in a mouse melanoma 
model (57). These findings collectively confirm the importance of 
mevalonate metabolism for cholesterol biosynthesis in antitumor 
immunity. Intriguingly, the efficacy of anti-CTLA-4 in mouse 
melanoma models depended on the microbiota of these mice 
(58), raising the important question of how the microbiota affects 
immunometabolism.

Refraining from Undesirable Metabolism
Myc is obviously not only essential for tumor initiation via 
glycolysis-fueled mevalonate metabolism (30) but also for the 
maintenance of established tumors via FAO-driven OXPHOS  
(15, 59). For instance, triple-negative breast cancer displays a 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


6

Gruenbacher and Thurnher Mevalonate Metabolism in Immuno-Oncology

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1714

Myc-driven bioenergetic reliance on FAO (59). In addition, 
prostate tumors also exhibit low rates of glucose consumption 
and display increased OXPHOS driven by FAO (60). Particularly, 
prostate cancer, that becomes refractory to androgen depriva-
tion therapy (61), critically depends on OXPHOS for growth and 
metastasis (62, 63). Likewise, leukemia (64) and glioblastoma 
(65) have been shown to require FAO for growth and survival. 
Consequently, inhibition of FAO has been suggested as a 
potential therapeutic strategy for this particular subset of breast 
cancer and possibly also for prostate cancer, glioblastoma, and 
leukemia.

The FAO inhibitor etomoxir targets carnitine palmitoyltrans-
ferase 1 (CPT1), which catalyzes the cytosolic formation of acyl 
carnitines at the outer mitochondrial membrane for mitochon-
drial import and subsequent oxidation of FAs (66). The etomoxir-
mediated inhibition of FAO-driven OXPHOS decreases ATP 
levels and thus tumor cell viability and chemoresistance (64, 65).  
In addition, CPT1 inactivation in cancer cells resulted in 
increased sensitivity to oxygen and glucose deprivation as well 
as decreased tumorigenic potential in vivo (67). Unfortunately, 
however, clinical development of etomoxir has been discontin-
ued because of severe liver toxicity. Currently, other inhibitors of 
CPT1 are clinically tested although not yet for their antitumor 
potential.

Although c-Abl-specific tyrosine kinase inhibitors (TKIs) 
substantially extend the survival of patients with chronic myeloid 
leukemia (CML), TKIs fail to eliminate leukemic stem cells result-
ing in minimal residual disease. Recently, primitive CML cells 
were shown to rely on upregulated OXPHOS for their survival, 
and intriguingly, combination treatment with the TKI imatinib 
and tigecycline, an antibiotic that inhibits mitochondrial protein 
translation, selectively eradicated leukemic stem cells both 
in vitro and in a xenotransplantation model of human CML (68).

As outlined above in the context of regulatory immune cells, 
additional engagement of FAO may divert acetyl-CoA from 
mevalonate metabolism (Figures  1 and 2A). The mevalonate 
pathway might thus become an Achilles’ heel of such tumor 
types and might therefore be targeted with statins, possibly as 
an adjuvant therapy preceding primary treatment. Importantly, 
statins may exhibit a dual effect in such a setting, since they can 
inhibit tumor growth or survival as well as hold downregulatory 
immune cells.

COnCLUDinG ReMARKS

It is now becoming increasingly clear that mevalonate metabo-
lism governs immune surveillance. However, cancer cells and 
in particular cancer stem cells may likewise depend on this 
metabolic pathway. Such a similarity in metabolic orientation 
between tumor cells and immune effector cells infiltrating the 
tumor microenvironment inevitably leads to a competition 
for the nutrients, metabolites, and oxygen that are required for 
fueling mevalonate metabolism and may ultimately even turn 
into a struggle for survival. While pharmacological inhibition 
of mevalonate metabolism in tumor cells may attenuate growth 
and proliferation, tonic flux through the mevalonate pathway 
in innate immune cells such as macrophages may contribute to 
trained immunity.

The additional engagement of FAO as it has been described 
for breast and prostate cancer cells may limit the availability of 
acetyl-CoA for mevalonate generation and metabolism. As a 
consequence, immune cells (Treg cells and M2 macrophages) 
acquire regulatory function and tumor cells may undergo metas-
tasis. Inhibition of FAO therefore appears to be desirable either 
as the primary therapeutic approach or as an adjuvant preceding 
cancer immunotherapy. In addition, the limitation of mevalonate 
pathway activity resulting from enhanced FAO might increase the 
sensitivity of tumor cells and regulatory immune cells to statins. 
Future personalized cancer medicine should include the assess-
ment of the metabolic status of the patients’ tumor in order to 
develop the appropriate therapeutic strategies. Sequential therapy 
regimens might start with inhibitors of mevalonate metabolism 
and FAO to directly block tumor cells as well as regulatory immune 
cells, followed by immunotherapies that induce trained immunity 
in innate immune cells via mevalonate pathway stimulation.
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