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Abstract
The formation of novel and disappeared climates between the last glacial maximum 
(LGM) and the present is important to consider to understand the expansion and 
contraction of species niches and distributions, as well as the formation and loss of 
communities and ecological interactions over time. Our choice in climate data resolu‐
tion has the potential to complicate predictions of the ecological impacts of climate 
change, since climate varies from local to global scales and this spatial variation is 
reflected in climate data. To address this issue, we downscaled LGM and modern 
(1975–2005) 30‐year averaged climate data to 60‐m resolution for the entire state 
of Alaska for 10 different climate variables, and then upsampled each variable to 
coarser resolutions (60 m to 12 km). We modeled the distributions of novel and dis‐
appeared climates to evaluate the locations and fractional area of novel and disap‐
peared climates for each of our climate variables and resolutions. Generally, novel 
and disappeared climates were located in southern Alaska, although there were cases 
where some disappeared climates existed within coastal and interior Alaska. Climate 
resolution affected the fractional area of novel and disappeared climates in three 
patterns: As the spatial resolution of climate became coarser, the fractional area of 
novel and disappeared climates (a) increased, (b) decreased, or (c) had no explain‐
able relationship. Overall, we found the use of coarser climate data increased the 
fractional area of novel and disappeared climates due to decreased environmental 
variability and removal of climate extremes. Our results reinforce the importance of 
downscaling coarse climate data and suggest that studies analyzing the effects of 
climate change on ecosystems may overestimate or underestimate their conclusions 
when utilizing coarse climate data.
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1  | INTRODUC TION

Postglacial climate change provides a useful context and natural 
experimentation for assessing biotic responses to global climate 
change (Davis, 1990; Overpeck, Bartlein, & Webb, 1991; Webb III, 
1992). The late quaternary, which includes the last glacial maximum 
(LGM) 21,000 years ago, matches the magnitude of predicted an‐
thropogenic climate change and contains the largest manifestation 
of natural climate change preserved in the geologic record (Mix, 
Bard, & Schneider, 2001; Overpeck et al., 1991). Our awareness and 
understanding of past ecological responses to climate change is im‐
portant as it enables ecologists to predict the potential responses of 
ecosystems to anthropogenic climate change now and in the future.

Niche theory predicts that n‐dimensional changes in the environ‐
ment (e.g., precipitation and temperature) will cause shifts in species 
distributions and the formation of novel species assemblages, since 
every species responds individualistically to its abiotic and biotic 
environment (Hutchinson, 1957; Jackson & Overpeck, 2000). This 
assumption has been supported by large changes in species ranges 
where past climates lacked modern analogs, leading to the forma‐
tion of novel LGM species associations and biomes with no modern 
equivalent (Williams & Jackson, 2007). Therefore, variations of cli‐
mate in space and time (e.g., LGM vs. Modern n‐dimensional envi‐
ronment) are thought to be an important factor in understanding 
the formation of novel and disappeared climates, as well as the ex‐
pansion and contraction of a species' niche and distribution (Ackerly 
et al., 2010; Jackson & Overpeck, 2000; Williams & Jackson, 2007). 
Novel climates are climatic environments with no‐analog conditions 
in the past, whereas disappeared climates are climatic environments 
with no‐analog conditions today (Ackerly et al., 2010; Chen, Hill, 
Ohlemuller, Roy, & Thomas, 2011; Fitzpatrick & Hargrove, 2009; 
Glassberg, 2014; Hobbs et al., 2006; Radeloff et al., 2015; Williams 
& Jackson, 2007).

There are many ways climate data can be used to describe shifts 
in climate, with the most extreme description being the detection of 
no‐analog climates. No‐analog climate techniques identify a location 
or period the climate of which is dissimilar to that in another context 
(Ford et al., 2010), and then classify the climate into spatial and/or 
temporal categories (Mearns et al., 2001). For example, spatial and 
temporal classifications of no‐analog climates typically describe local 
climate change using a dissimilarity metric (Grenier, Parent, Huard, 
Anctil, & Chaumont, 2013; e.g., Standardized Euclidean Distance) 
at the same grid cell between climate variables at two difference 
time periods, and then compare the climate realization for each land 
gridpoint from one time period the climate realization of all land grid‐
points of the other time period, while retaining the minimum dis‐
similarity metric value (Ackerly et al., 2010; Fordham, Saltré, Brown, 
Mellin, & Wigley, 2018; Grenier et al., 2013; Ordonez, Williams, & 
Svenning, 2016; Williams, Jackson, & Kutzbacht, 2007). Other ap‐
proaches have computed no‐analog climates relying only on tempo‐
ral classifications of novel and disappeared climates. For example, 
Fitzpatrick and Hargrove (2009) utilized techniques employed by 
species distribution models to identify no‐analog climates in the 

future (areas where the current climate conditions of a study area 
do not exist in projected future climate), Burrows et al. (2014) cal‐
culated shifting climates using climate velocity (Burrows et al., 2014; 
Dobrowski et al., 2013; Loarie et al., 2009) to identify source (novel) 
and sink (disappeared) areas, and Wiens, Seavy, and Jongsomjit 
(2011) employed PCA analysis to collapse multidimensional climate 
into a single climate space to derive polygons encompassing current 
and future climate space to identify persisting climates, disappearing 
climates, and novel climates.

A key aspect of quantifying climate, including the identification 
of novel and disappeared climates, is the choice of spatial resolution. 
Spatial resolution has the potential to complicate the prediction of 
ecological impacts of climate change because climate varies dra‐
matically at local scales and this variation is undetectable in coarse 
resolution climate data (Bellard, Bertelsmeier, Leadley, Thuiller, & 
Courchamp, 2012; Dobrowski, Abatzoglou, Greenberg, & Schladow, 
2009; Franklin et al., 2013; Seo, Thorne, Hannah, & Thuiller, 2009). 
Long‐term climate patterns observed across the globe are a result 
of a combination of many different processes that occur at varying 
spatial scales. Most modeled climate data (regional and general cir‐
culation models) are coarse scale (>50 km), and these datasets are 
unlikely to incorporate many spatial features known to influence 
climate at finer scales (e.g., elevation gradients, coastal effects, tem‐
perature inversions, and rain shadows; Daly, 2006; Dobrowski et al., 
2009; Levin, 1992).

Spatial variability in climate can be nested into macroclimates 
(global), mesoclimates (regional), topoclimates (landscape), and mi‐
croclimates (local; Ackerly et al., 2010; Geiger, Aron, & Todhunter, 
2009). Macroclimates are the broad patterns of atmospheric circula‐
tion across >50 km scales, such as the North–South rainfall gradient 
along the state of Alaska (Ackerly et al., 2010). Mesoclimates are vari‐
ations at 1–50 km reflecting marine air and mountain range proper‐
ties, such as rain shadow effects (Ackerly et al., 2010). Topoclimates 
include landscape scale effects such as aspect, slope, elevation, and 
terrain that affect surface radiation, wind, and cold‐air drainage at 
the 10‐m to 1‐km scale (Ackerly et al., 2010). Lastly, microclimates 
have the finest scale variability and are determined by vegetation 
cover and fine‐scale surface features (<10 m; Ackerly et al., 2010). 
Finer spatial scales (topo and micro) create unique combinations of 
climate variables within a very limited area (Ackerly et al., 2010) and 
can provide significant processes that buffer against larger regional 
and global climate trends (e.g., temperature inversions; Randin et 
al., 2009; Willis & Bhagwat, 2009). For example, mesoscale PRISM 
mean global temperature variability is limited to 3°C, while a finer 
toposcale mean global temperature surface at 30 m found a global 
temperature variability as high as 8°C (Ackerly et al., 2010; Daly, 
2006).

We selected climate surfaces commonly used in climate change 
and ecological analyses to identify and determine where novel, dis‐
appeared, and shared climates are distributed across the state of 
Alaska from the LGM to modern era. Previous studies have identi‐
fied multivariate no‐analog climates; however, we compute univar‐
iate no‐analog climates as species have been found to be limited 
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by a single environmental factor (Liebig's Law; De Baar, 1994; 
Berryman, 2003; Crimmins, Dobrowski, Greenberg, Abatzoglou, 
& Mynsberge, 2011), and we could identify which specific aspects 
of multivariate climate cause no‐analog climates. Polar regions are 
currently experiencing the highest rates of warming (Larsen et al., 
2014), making the state of Alaska, USA, an ideal location to study 
the impacts of spatial scale in climate change. To help clarify the 
effect of climate grid resolution on estimations of novel and dis‐
appeared climates, we analyzed how the amount of fractional area 
of novel, disappeared, and shared climates vary with climate grid 
spatial resolution by statistically downscaling coarse‐scale GCM 
(General Circulation Model) climate (~100 km) at scales ranging 
from 60 m to 12 km. We compared modeled distributions and frac‐
tional area of novel, disappeared, and shared climates across nine 
Alaskan ecoregions to ask the following specific questions:

1. Where are novel, disappeared, and shared climates located in 
Alaska from the LGM to modern era?

2. How does the fractional area of novel, disappeared, and shared 
climates differ depending on the resolution of modeled climate 
grid data used for analysis?

2  | METHODS

2.1 | Overview

The first step of our analysis was to perform a topographically me‐
diated downscaling of coarse‐scale modern and LGM climate sur‐
faces to a resolution of 60 m for the modern and LGM periods. 
Next, we upsampled these surfaces to coarser resolutions. Finally, 
we performed our analysis investigating the impacts of scale on the 
distribution of shared, novel, and disappeared climates throughout 
Alaska.

2.1.1 | Study area

Alaska, USA, is an ideal location for understanding the potential 
impacts of scale on climate change as polar regions currently ex‐
perience the highest rates of warming globally, and by the end of 
the 21st century will be at least 40% higher than the global mean 
(Larsen et al., 2014). There is agreement between several coupled 
atmosphere–ice–ocean climate models that global warming should 
be enhanced in the Arctic (Raisanen, 2001). Additionally, Alaska has 
a diverse and complex physiography and presence of long‐term me‐
teorological stations.

The total land area in Alaska is approximately 151,773.3 km2, with 
over 54,563 km of tidal shoreline, including islands, and stretches in 
latitude by nearly 20°. Seventeen of the 20 highest mountain peaks 
of North America are in Alaska, with the highest elevation at Mt. 
McKinley (6,150 m.a.s.l), and lowest at the Pacific Ocean coastline 
(0 m.a.s.l). Presently, there are approximately 100,000 glaciers cov‐
ering 75,109.9 km2 (5% of the total land area of Alaska); however, 

during the LGM, glaciers covered an estimated 30% of the state. 
Present mean temperature is 16.8°C during the summer, and 
−11.0°C during the winter.

2.2 | Climate downscale

2.2.1 | Input data

Weather station data

Spatially explicit monthly weather station data were collected from 
the National Oceanic and Atmospheric Administration's (NOAA) 
Global Historical Climatology Network (GHCND; Menne, Durre, Vose, 
Gleason, & Houston, 2012). We compiled records from 415 stations 
across the period of 1975–2005, although the period of record for 
each station varies. Missing data fields as well as extreme outliers were 
removed from the weather dataset by identifying observations >3 
standard deviations from the means of all observations across time for 
minimum temperature (Tmin), maximum temperature (Tmax), mean tem‐
perature (Tave), and total monthly precipitation (P) (Aggarwal, 2016).

Digital elevation map and transforms

An elevation surface was assembled for the entire state of Alaska 
using U.S. Geologic Survey (USGS) 1 arc‐second (~60 m) digital el‐
evation maps (DEM; USGS, 2016). The digital elevation map (DEM) 
was resampled and reprojected to Alaska Albers Equal Area Conic, 
ensuring grid cells of exactly 60 m. From this dataset, we calculated 
slope, aspect, and the topographic convergence index (TCI) for 
Alaska (Wolock & McCabe, 1995). TCI was calculated with TauDEM 
using a D‐infinity flow accumulation algorithm (Tesfa et al., 2011). 
Regions where slope was 0° were given a placeholder value of 0.001 
when calculating TCI to avoid divide‐by‐zero issues.

General circulation model climate data

Coarse‐scale (1°) general circulation model (GCM) climate grids were 
collected from the National Center for Atmospheric Research's (NCAR) 
Community Climate System Model version 4 (CCSM4) for near surface 
(2 m) Tmin, Tmax, Tave, precipitation, short wave radiation (Icloud), and wind 
(U, V; Gent et al., 2011; Kluzek, 2011). All climate surfaces were pooled 
into two 30‐year averages, ~18,000–18,030 ya (years ago; t1) for the 
LGM and 1975–2005 (t2) for modern climate. All GCM surfaces were 
reprojected to the Alaska Albers Equal Area Conic projection and resa‐
mpled to 60‐m resolution using bilinear interpolation. The wind speed 
vector surfaces were converted to wind speed and direction.

2.2.2 | Downscaling models

Shortwave irradiance

Solar radiation can regulate temperature in complex terrains as 
topography produces varying solar angles and can reduce ter‐
rain winds that diminish boundary layer mixing during the win‐
ter months (Daly, 2006; Dobrowski et al., 2009; Urban, Miller, 
Halpin, & Stephenson, 2000). Therefore, solar radiation is an im‐
portant physiographic parameter to consider when downscaling 
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temperature to topo and microscales. Mean monthly daily clear‐
sky irradiance at a location x,y (I(x,y,t), W/m2) was modeled using 
the r.sun algorithm (Suri & Hofierka, 2004) running under GRASS 
GIS 7.1. This algorithm uses topographic elevation, slope, aspect, 
and geographic latitude as inputs referenced against solar angles. 
GRASS GIS's r.sun algorithm is a complex and flexible solar radia‐
tion model that has been found to outperform other similar prod‐
ucts (SolarFlux, Solei, Solar Analyst, and SRAD) because it performs 
especially well for large areas at fine resolutions with complex ter‐
rain and can be used for long‐term calculations at different scales 
(Hofierka & Suri, 2002; Ruiz‐Arias, Tovar‐Pescador, Pozo‐Vázquez, 
& Alsamamra, 2009). To create “true sky” clouded irradiance sur‐
faces for both the LGM and today, we acquired coarse modeled 
surface downwelling shortwave radiation (100 km) that was cal‐
culated by the Coupled Model Intercomparison Project (CMIP5, 
Modern) the Paleoclimate Modeling Intercomparison Project 
(PMIP5, LGM; Taylor, Stouffer, & Meehl, 2012). These groups cal‐
culate surface downwelling shortwave radiation using additional 
modeled climate surfaces produced from the same CCSM4 LGM 
and modern historical runs used in our temperature and pre‐
cipitation downscale models. To transform our high‐resolution 
“clear‐sky” irradiance to “true‐sky” irradiance, we calculated the 
ratio of true‐sky to clear‐sky irradiance for each month for both 
the LGM and today, and then applied each corresponding ratio to 
each monthly high‐resolution clear‐sky irradiance surface to cre‐
ate twelve monthly LGM and Modern “true‐sky” surface radiation 
surfaces that are capable of considering coarse atmospheric prop‐
erties (e.g., cloud cover) of each era with our clear‐sky radiation 
surfaces. We then summarized our monthly radiation surfaces into 
an annual average radiation surface to compute novel and disap‐
peared radiation climates for later analysis. Mean radiation was 
created by computing the yearly average of all monthly radiation 
surfaces for both the LGM and modern eras at 60‐m resolution.

Temperature and precipitation

For minimum, maximum, and average temperature, as well as pre‐
cipitation, we used an empirical downscaling approach as described 
in Dobrowski et al. (2009). This approach calibrates a downscal‐
ing model in which the high‐resolution climate variable is a func‐
tion of the coarse‐scale climate and various topographic predictors 
(Equation 1). We used the following general downscaling approach:

where observed Climate at location (x,y) at time t represents our 
high‐resolution weather station data. CCSM Climate at the same (x,y) 
locations and time t represents our coarse GCM modeled climate. 
Physiographic Inputs at the same (x,y) locations, and when applicable 
time t, represents our high resolution modeled physiographic sur‐
faces (e.g., elevation, cold‐air pooling, and radiation). We assume the 
topographic impacts on climate do not change in time, only in space, 

so the only varying predictors in our model are coarse‐scale climate 
and radiation inputs. Our other topographic‐based predictors re‐
main constant (e.g., TCI).

We calibrated these models using weather station data to repre‐
sent the high‐resolution climate linked with the GCM climate grids 
that correspond to the date of the weather measurement. To deter‐
mine variable selection, we used a random forest algorithm to derive 
variable importance statistics for all model parameters at a variety of 
spatial scales (60 m, 500 m, 1 km, and 5 km; Breiman, 2001). Using the 
most important variables, we produced three models for temperature 
(Tmin, Tmax, Tave) calibrated using 80% of the available weather station 
data (43,768 observations; Madsen & Thyregod, 2010). The remain‐
ing 20% of weather station data (10,943 observations) was used for 
model validation, in which we calculated the root mean square error 
(RMSE), Pearson's correlation coefficient, and percent bias. We cre‐
ated a precipitation model employing similar methods previously used 
to create our temperature models; however, the precipitation model 
was trained using a stratified sampling procedure (vs. 80% dataset) 
to ensure an equal proportion of measured weather station precipita‐
tion values were represented in the training dataset since the major‐
ity of weather observations recorded 0 mm/month precipitation. The 
training dataset was stratified in ~310 mm width bins from randomly 
sampling 80% of the original precipitation dataset. We then randomly 
sampled 5,000 precipitation values from each bin to create the final 
training dataset. Our testing dataset was comprised from the remain‐
ing 20% of the original precipitation dataset.

Generalized linear models (GLM) were chosen to generate all 
downscale models. GLMs are advantageous for downscaling be‐
cause they can extrapolate beyond the range of the model's training 
data, which is necessary when predicting LGM climates as the range 
of climates is likely different than the modern climate. Additionally, 
GLMs can handle more complicated situations; for example, they do 
not require a normal distribution of the response variable (Madsen 
& Thyregod, 2010). A variety of tests/exploratory models were cre‐
ated to check that all GLM assumptions were met. To ensure that all 
input predictors were independent of one another, all variables were 
plotted against one another to verify that there were no significant 
relationships between each variable. A correlation threshold of 0.95 
was used as a cutoff value preventing too great a multicollinearity 
between any pair of predictors. Additionally, an exploratory gener‐
alized additive model (GAM) was created to produce partial plots 
for each independent variable to verify linear behavior of all model 
inputs, although this method was not chosen for the final models 
to avoid spline interpolations on our predictors (Venables & Ripley, 
2002). Lastly, each model's residuals were examined to ensure that 
the residuals were normally distributed. The residuals were plotted 
against the predicted fitted values to ensure a homogenous struc‐
ture of each model's variance.

Temperature model

The model we used to downscale Tmin, Tmax, and Tave was found 
to be a function of elevation at x,y (Z(x,y)), mean monthly daily 
clear‐sky irradiance at a location x,y (I(x,y,t)), and TCI (C(x,y)) which 

(1)

ObservedClimate
HighRes

x,y,t
= f(CCSMClimate

CoarseRes

x,y,t

+Physiographic
HighRes

x,y,t
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is a proxy for local convective forcing's such as cold‐air pooling 
(Equation 2; Dobrowski et al., 2009; Katurji & Zhong, 2012). The 
final model form was

where T(x,y,t,t′) represents observed high‐resolution temperature 
(min, max, average) at a given station (x,y) and month (t), and T′(x,y,t,t′) 
is coarse modeled surface temperature (min, max, average). The 
coldest Tmin month (December for LGM, and January for modern) 
was used to represent the coldest annual temperatures. Likewise, 
the hottest month for Tmax (July for both LGM and modern) was used 
to represent the hottest annual temperatures.

Precipitation model

The model to downscale precipitation was found to require topo‐
graphic predictors at a variety of scales, not just the high resolu‐
tion 60 m predictors. Specifically, we used elevation at location x,y 
(Z(x,y)) at 60 m; topographic slope at location x,y at 1‐km resolution 
(mx,y); wind speed (m/s, (x,y,t,t′)) and wind direction at a given location 
(x,y) (degrees, (x,y,t,t′)) and month (t) at 100 km; and the angular dif‐
ference between geographic direction and topographic aspect to 
act as an orographic effect proxy (i.e., rain shadow) at 500‐m reso‐
lution (x,y,t,t′). Elevation and slope exhibited slight nonlinear trends 
which were corrected by applying a log‐transformation to each of 
the two predictor variables. A cubic root transformation was applied 
to (Px,y,t,t′) and (P′x,y,t,t′) so the model could not predict values below 
0 mm/month (Equation 3). The final model form was

Potential evapotranspiration

Plants must use energy and water to grow and reproduce; therefore, 
the primary effects of climate on plants are regulated by the inter‐
actions of energy and water (Stephenson, 1990). Through water 
balance equations, energy is represented by potential evapotranspi‐
ration (PET) and available water (Stephenson, 1998). PET was cal‐
culated at monthly time steps at 60 m for the LGM and modern era 
using the Penman–Monteith method which utilizes our downscaled 
temperature, elevation, wind speed, and cloud‐corrected irradiance 
surfaces as inputs (Allen, Pereira, Raes, & Smith, 1998; Monteith, 
1965; Penman, 1948). This method determines a reference evap‐
otranspiration from climate data and represents climatic water 
balance rather than physiological evapotranspiration. PET was cal‐
culated by using a standard hypothetical reference crop of height 
0.12 m with a fixed surface stomatal resistance of 70 s/m and albedo 
of 0.23. Annual PET for the LGM and modern era was summarized 
by computing the summation of all monthly surfaces for each era.

Actual evapotranspiration and water deficit

The interactions of PET and available water can be described with 
additional water balance parameters: actual evapotranspiration 

(AET) and water deficit (DEF). AET and water deficit are biologi‐
cally meaningful parameters that are well correlated with the dis‐
tribution of vegetation types compared to other parameters such 
as temperature and precipitation (Stephenson, 1998). PET (i.e., 
evaporative demand) represents the total amount of energy avail‐
able in the environment; essentially, the evaporative water loss from 
a site with unlimited water and is used to derive estimates of AET 
and water deficit (Stephenson, 1990). AET is the evaporative water 
loss given the actual water availability at a site and therefore repre‐
sents the biologically usable energy and water in the environment 
(Stephenson, 1990). Water deficit refers to climatic water deficit, not 
soil water deficit, and represents the amount of evaporative demand 
that was not met by available water in other words: WD = PET − AET 
(Stephenson, 1990). While AET and water deficit are important for 
understanding the climatic controls of vegetation distributions, it is 
worth mentioning that all three parameters (PET, AET, and water 
deficit) are climatic products representing available water and en‐
ergy at a site, not biological products dependent of specific vegeta‐
tion types (Stephenson, 1998).

AET and DEF were calculated at monthly time scales at 60 m 
for the LGM and modern era, by using a snow hydrology model 
that models additional water and energy parameters that influence 
available water at a site (Dobrowski et al., 2013). Downscaled pre‐
cipitation, mean temperature, and radiation were used to estimate 
the fraction of precipitation arising as either rainfall, snowfall, 
snowpack, or snowmelt during a given month at 60‐m resolu‐
tion for both the LGM and modern eras (Lutz, Van Wagtendonk 
& Franklin, 2010; Dobrowski et al., 2013). These products were 
then used to calculate AET and DEF in combination with PET and 
a coarse soil water‐holding capacity surface (Dunne & Willmott, 
1996) to determine the available plant extractable water from 
rainfall or snowmelt from the previous month (Dobrowski et al., 
2013). A spatially constant available soil water‐holding capacity 
(AWC) value of 5.0 cm (the mean AWC of Alaska) was used rather 
than a spatially varying AWC due to a lack of high‐resolution AWC 
products in Alaska (Dunne & Willmott, 1996). The model first de‐
termines the amount of maximum potential available soil water at 
a site. If there is an excess of soil water, AET is the same as PET 
because evapotranspiration is not limited by water availability. 
However, if available water is less than the sites maximum poten‐
tial available water, AET will be less than PET (AET = PET − DEF), 
because maximum water evaporative demand cannot be met by 
the available amount of water present at the site. We created 
annual summaries of each surface (AET, DEF, snow, and rain) by 
computing the summation all monthly surfaces, for each climate 
variable, for each individual era.

2.2.3 | Climate aggregation and reclassification

To understand how climate grid resolution can potentially affect 
the distribution of novel and disappeared climates in Alaska, we ag‐
gregated each 60 m annual climate surface to coarser resolutions. 
Aggregation surfaces were created using a standard average pixel 

(2)Tx,y,t,t� =T�
x,y,t,t�

+Z(x,y)+C(x,y)+ I(x,y,t,t� ) +�

(3)
(

Px,y,t,t�
)1∕3

=
(

P�
x,y,t,t�

)1∕3

+ log
(

Zx,y
)

+ log
(

mx,y

)

+�x,y,t,t� +�x,y,t,t�

+Δx,y,t,t� +�
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aggregation of each 60 m annual climate surface using the following 
resolutions: 120, 240, 800 m (e.g., PRISM), 1 km (e.g., NASA Nex 
& WorldClim), 2, 3, 4, 5, 10, and 12 km (e.g., CMIP; Daly, Gibson, 
Doggett, Smith, & Taylor, 2004; Fick & Hijmans, 2017; Thrasher et 
al., 2013). Table 1 lists the final annual surfaces and grid units for our 
novel and disappeared climate analysis.

Annual climate variables at each of the 11 spatial resolutions were 
binned to simplify the ranges of possible climate values for analysis. 
We computed the 5th and 95th percentiles of each 60 m annual cli‐
mate variable and removed these values as outliers in each surface. 
The range of each 60 m annual climate variable was determined and 
used to create 25 equal‐sized bins for each variable to reassign pixel 
values. The value of 25 bins was chosen to avoid empty bins within 
the range of the coarsest (12 km) surfaces for all climate variables. Bin 
widths were computed for each surface using the following equation:

where MaxRange(LGM||Modern) is the maximum value of between 
the LGM or modern climate surface at 60 m, MinRange(LGM||Modern) 
is the minimum value between the LGM or modern climate surface 
at 60 m, and Max Bin Value is the maximum bin class value (25). To 
reclassify each annual climate surface at all resolutions, the bin 
widths were applied to each LGM and modern climate surface using 
the following equation:

where Climate Valuex,y,t is the climate surface value at location 
x,y and at time t (LGM or modern), and Min(Climate Surfacet) is the 
minimum value of the climate surface at time t. Pixels that fell within 
the removed 1st and 99th ranges were reclassified to either the low‐
est (0) or highest (25) bins for final reclassification.

Novel and disappeared climate distributions for each climate sur‐
face were computed at all resolutions and eras from the reclassified 
climate surfaces. Novel climates were defined as modern climate bins 
that did not exist during the LGM and disappeared climates as LGM 
climate bins that did not exist in the modern period (Figure 1a). Using 
these definitions, we then determined which bins constituted novel, 
disappeared, or shared climates for each climate variable and era. 
Pixels for each climate surface, resolution, and era were reclassified to 
(a) novel, (b) disappeared, (c) shared, or (d) novel and disappeared cli‐
mates based on each variable's novel and disappeared bin definitions. 
If a specific climate existed only during the LGM, the climate range 
was considered “disappeared” (blue pixels; Figure 1c). If a specific 
climate exists only in the modern era, the climate range was consid‐
ered “novel” (red pixels; Figure 1b). If a specific climate existed during 
both time periods, the climate was considered “shared” (black pixels), 
as that specific range of climate could be found either during the 
LGM or modern era within the extent of Alaska (Figure 1b,c). Lastly, 
it is possible for a specific climate range to be both novel and disap‐
peared at the same location. For instance, during the LGM, minimum 
temperatures at some locations were so cold they are not observed 
in the modern era. However, in the exact same location during the 
modern era, minimum temperatures may have warmed so much due 
to anthropogenic climate change that they were not present during 

(4)BinWidth=

(

MaxRange
(

LGM|

|

Modern
)

−MinRange
(

LGM|

|

Modern
))

MaxBinValue

(5)BinClass=
Ceiling

(

ClimateValuex,y,t,t� −Min
(

Climate Surfacet
))

BinWidth

Climate variable Units Min Max Mean SD

LGM

Annual AET mm 0.0 651.7 184.9 88.1

Annual Deficit mm 0.0 420.6 22.5 33.1

Annual PET mm 0.3 667.4 207.4 93.9

Annual rain mm 0.0 3,452.9 231.2 223.2

Annual snow mm 0.2 5,494.4 782.2 439.2

Annual radiation w 0.0 261.0 131.0 23.4

Tmax °C −21.0 30.5 16.9 8.1

Tmin °C −36.1 4.3 −21.9 3.4

Modern

Annual AET mm 0.0 445.4 183.5 49.0

Annual deficit mm 0.0 314.4 11.5 15.0

Annual PET mm 1.7 463.5 195.0 52.0

Annual rain mm 0.0 4,424.7 505.6 330.0

Annual snow mm 0.0 3,420.5 717.2 263.1

Annual radiation w 0.0 208.7 97.8 17.1

Tmax °C −13.2 31.3 21.0 3.7

Tmin °C −34.7 6.6 −18.1 5.4

Abbreviations: AET, actual evapotranspiration; LGM, last glacial maximum; PET, potential 
evapotranspiration.

TA B L E  1   Summary of annual 
downscaled (60 m) climates for the 
LGM and modern eras used in novel and 
disappeared climate analysis
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the LGM. If a specific climate was both novel and disappeared at the 
same location, the climate range was considered “both” (purple pixels; 
Figure 1d).

The locations of novel and disappeared climates were summa‐
rized by computing the fractional area of novel, disappeared, and 
shared climates for the entire state of Alaska, as well as the frac‐
tional area among nine “Level 2” Alaskan ecoregions defined by the 
U.S. Geologic Survey (Gallant, Binnian, Omernik, & Shasby, 1995). 
We used modern AK ecoregions for both the modern and LGM eras, 
since, to the best of our knowledge, no LGM ecoregion boundary 
datasets currently exist. We quantified the amount of novel, disap‐
peared, or shared climate at a given spatial resolution and used a 
Spearman's rank correlation coefficient to determine whether the 
relationship between novel, disappeared, or shared fractional cli‐
mate and spatial resolution was positive, negative, or no apparent 
relationship.

3  | RESULTS

3.1 | Downscale model evaluations

All temperature model (Tmin, Tmax, Tave) assumptions of GLMs meth‐
ods were met. Correlation coefficients (0.86, 0.86, 0.89), root mean 
square error (RMSE, 5.36, 5.96, 4.92°C), and percent bias (−0.041, 
−0.032, −0.37) for the final GLM for Tmin, Tmax, and Tave models sug‐
gest that all models were well calibrated (Figure 2a–c). Independent 
variables (TCoarse, elevation, TCI, and radiation) for all three tem‐
perature models had significant p‐values of <0.001, confirming 
the importance of all model predictors. In all three models, coarse 

modeled temperature, followed closely by radiation, was the most 
significant contributor to model performance. Elevation and TCI, 
while still important, were less significant as determined by explor‐
atory random forest model variable importance plots (Figure 3a–c).

All model assumptions of the precipitation GLM were met. As 
expected, our precipitation model correlation was lower than our 
temperature downscale models, with a higher RMSE and percent 
bias, because downscaling procedures for modeling precipitation 
are less well understood than downscale temperature methods. 
The Pearson's correlation coefficient (0.59), RMSE (0.90 mm), 
and percent bias (0.91) for the precipitation model indicated 
that the basic GLM model was not as well calibrated (Figure 2d). 
However, the precipitation model's correlation falls within the 
range of reported correlation values from other previously down‐
scale precipitation products, indicating that our precipitation 
model is acceptable given preceding precipitation model stan‐
dards (Cannon, 2011; Maraun et al., 2010; Wetterhall, Bardossy, 
Chen, Halldin, & Xu, 2006; Widmann, Bretherton, & Salathé, 
2003). Independent precipitation variables (Pcoarse, log(elevation), 
log(slope), wind direction, and orographic effects) had significant 
p‐values of <<.001, again, validating our choice in predictors. 
Wind speed was the least significant predictor for our precipita‐
tion model with a p‐value of .0961; however, wind speed was still 
somewhat beneficial in predicting precipitation patterns across 
Alaska. Overall, elevation was the most significant predictor of 
precipitation, followed by slope, coarse modeled precipitation, 
orographic effects, wind speed, and lastly, wind direction as the 
weakest predictor as indicated by our random forest variable im‐
portance plots (Figure 3d).

F I G U R E  1   Classification process for “novel,” “disappeared,” “shared,” and “both” climates. 2 km climate surfaces were used for 
visualization purposes for this figure, as “both” climates are almost nonexistent at 60‐m resolution. Novel climates are red, disappeared 
climates are blue, shared climates are black, and both novel and disappeared climates are purple. (a) Histogram of LGM and Modern radiation 
climate bin ranges to define novel, disappeared, and shared climate bins. (b) Novel/Shared climate locations at 10 km. (c) Disappeared/Shared 
climate locations at 10 km. (d) Union of maps b and c. Purple pixels are intersection locations where climate was both novel and disappeared 
at 10 km
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3.2 | Downscaled novel and disappeared climate 
distributions

Disappeared climates were defined as LGM climates that did not 
exist during the modern era. Seven of the eight downscaled climate 
surfaces contained disappeared climates across Alaska, with rain 
being the exception. Overall, disappeared climates covered 55.9% 
of Alaska from the LGM to modern era. Tmax displayed the highest 
amount of disappeared climates in Alaska, covering 33.6% of the 
state alone, while water deficit displayed the lowest amount of disap‐
peared climates at 2.9% (Table 2). For most ecoregions, disappeared 
climates covered <30% of Alaska, although >30% of some coastal 
ecoregions were covered by disappeared climates, especially for Tmax 
(Figure 4). Ecoregions most affected by disappeared maximum tem‐
perature climates were the Coast Mountain Transition (85.0%) and 
Pacific Mountain Transition (82.5%). The Coastal Rainforest ecore‐
gion displayed the largest amount of disappeared snow climates in the 
state, covering 40.0% of the region (Figure 4). Western Alaska also ex‐
perienced disappeared climates in the Aleutian Meadows and Bering 
Taiga ecoregions due to disappeared PET climates; however, the frac‐
tion of disappeared climates were not as high as the southern por‐
tion of the state at 37.1 and 43.9%, respectively (Figure 4). The Bering 
Tundra ecoregion contained the least amount of disappeared climates 
for all climate variables, containing <10% of disappeared climates for 
the entire region. All other ecoregions and climate variables contained 
varying amounts of disappeared climates across Alaska (Figure 4).

Novel climates were defined as modern climates that did not 
exist during the LGM. Of the eight downscaled climate surfaces, only 
radiation, rain, and Tmin contained novel climates in Alaska. Novel cli‐
mates were less common than disappeared climates in Alaska, cov‐
ering <10.0% across all of Alaska from the LGM to modern era. Tmin 
displayed the highest amounts of novel climates in Alaska, covering 
5.5% of the state, while radiation displayed the smallest amount of 
novel climates at 2.0% (Table 2). Most ecoregions were covered by 
<10% of novel climates for all three climate variables, except for the 
Aleutian Meadows and Coastal Rainforests ecoregions of Alaska 
from Tmin climates (Figure 5). Tmin contained the largest amounts of 
novel climates for both ecoregions, at 56.9% and 24.8%, respec‐
tively. While less than novel Tmin climates, novel rain also affected 
these ecoregions covering 29.7% and 17.6%, respectively (Figure 5). 
Radiation contained some novel climates in Alaska; however, all 
ecoregions in Alaska had <4% novel radiation climates present in 
Alaska from the LGM to modern era (Figure 5).

Shared climates were defined as climates that existed during both 
the LGM and modern eras. As expected, all eight climate surfaces con‐
tained shared climates throughout Alaska, since no climate surface was 
classified as 100% novel or disappeared. Overall, shared climates gen‐
erally covered more of Alaska than novel or disappeared climates, with 
a minimum fractional area of 40.6%. Shared water deficit climates cov‐
ered 97.1% of the state, indicating water deficit climates have changed 
least in Alaska (Table 2). Additionally, shared Tmax climates covered 
66.4% of Alaska, indicating that Tmax climates have changed the most 

F I G U R E  2   Downscale model 
evaluations. All plots are observed 
weather station data versus predicted 
downscaled climate values, with 
correlation, RMSE, % Bias, and a 1:1 
red correlation line to represent at 
hypothetical perfect correlation between 
observed and predicted values. (a) Tmin 
Model, (b) Tmax Model, (c) Tave Model, (d) 
Precipitation Model performance



12034  |     MORRISON et al.

in the state from the LGM to modern era (Table 2). This was expected 
as water deficit contained no novel climates and the lowest amount 
of disappeared climates, while Tmax contained no novel climates, but 
the largest amount of disappeared climates in Alaska. While all Alaskan 
ecoregions contained various amounts of shared climates, there were 
isolated cases where ecoregions were <80% shared, although this was 
expected whenever high novel or disappeared climates covered the 
same ecoregion and climate variable (Figure 6). The Arctic Tundra, 
Bering Tundra, and Intermontane Boreal ecoregions contained the 
highest overall shared climate distributions in Alaska at 84.9%, 98.28%, 
and 75.3%, indicating that these ecoregions are generally less af‐
fected by postglacial climate change (Figure 6). The Coast and Pacific 
Mountain Transition ecoregions experienced the lowest amounts of 
shared climates at 15.0% and 17.5%, indicating that these ecoregions 
are generally more affected by postglacial climate change (Figure 6).

While it is possible for downscaled novel and disappeared cli‐
mates to exist at the same location from the LGM to modern era, 
only a very small fraction of Tmin climates displayed this phenomenon 

in Alaska at 60‐m resolution and was determined to be insignificant 
as it only covered <0.001% (39.6 km2) of Alaska. At coarser resolu‐
tions, there was a noticeable increase in climates classified as “both” 
novel and disappeared for some climate surfaces at a location; how‐
ever, this portion of the results concentrates on our high‐resolution 
downscaled climate surfaces (“both” climates vs. spatial resolution is 
discussed in the next section).

3.3 | No‐analog climates versus spatial resolution

As spatial resolution becomes coarser, the fractional area of novel 
and disappeared climates generally increases, while the fractional 
area of shared climates generally decreases. All disappeared climate 
surfaces, except minimum temperature, had moderate (0.40–0.59) 
to very strong (0.80–1.00) Spearman's rank correlations between 
spatial resolution and fractional area, indicating that as the spatial 
resolution of climate becomes coarse, the fractional area of disap‐
peared climates increases (Figure 7). All novel climate surfaces had a 

F I G U R E  3   Variable importance plots 
for downscaled climate models based 
on random forest model preliminary 
investigations. (a) Tmin Model, (b) Tmax 
Model, (c) TAve Model, (d) Precipitation 
model. Bold precipitation model variables 
indicate variables selected from random 
forest importance and spatial resolution

Type AET Water deficit PET Snow Tmax Rad Tmin Rain

% Novel 0.0 0.0 0.0 0.0 0.0 2.0 5.5 3.7

% Disappeared 15.6 2.9 15.6 6.0 33.6 13.0 6.3 0.0

% Shared 84.4 97.1 84.4 94.0 66.4 85.1 88.2 96.3

% Both 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Abbreviations: AET, actual evapotranspiration; LGM, last glacial maximum; PET, potential 
evapotranspiration.

TA B L E  2   Percent cover (based on 
fractional area) for novel, disappeared, 
and shared climates for each climate 
variable in Alaska from the LGM to 
modern era
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strong (0.60–0.79) to very strong (0.80–1.00) Spearman's rank cor‐
relation coefficient between spatial resolution and fractional area, 
indicating that as spatial resolution of climate becomes coarser, the 
fractional area of novel climates increases as well (Figure 8). All cli‐
mate variables had a negative relationship between fractional area 
of shared climate and spatial resolution, as expected. The strengths 

of Spearman's rank correlations varied from moderate (−0.40 to 
0.59) to very strong (−0.80 to −1.00; Figure 9).

An exception to the previous patterns, disappeared Tmin, 
produced a very strong (0.80–1.0) negative Spearman's rank 
correlation of 0.81 (Figure 7). The negative relationship of 
this correlation coefficient suggests that as spatial resolution 

F I G U R E  4   Fractional area coverage of disappeared climates for the nine “Level 2” Alaskan ecoregions. [1] Alaska Range Transition, 
[2] Aleutian Meadows, [3] Arctic Tundra, [4] Bering Taiga, [5] Bering Tundra, [6] Coast Mountain Transition, [7], Coastal Rainforests, [8] 
Intermontane Boreal, [9] Pacific Mountain Transition

F I G U R E  5   Fractional area coverage of novel climates for the nine “Level 2” Alaskan ecoregions. [1] Alaska Range Transition, [2] Aleutian 
Meadows, [3] Arctic Tundra, [4] Bering Taiga, [5] Bering Tundra, [6] Coast Mountain Transition, [7], Coastal Rainforests, [8] Intermontane 
Boreal, [9] Pacific Mountain Transition
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becomes coarser, the amount of fractional disappeared Tmin cli‐
mates decreases.

The relationship between spatial resolution and fractional area 
of “both” novel and disappeared climates at the same locations was 
less clear than novel, disappeared, and shared climates (Figure 10). 
While “both” climates were virtually nonexistent at 60‐m resolution 
for all climate surfaces except Tmin climates, the occurrence of “both” 
climates noticeably increased for rain and radiation climate surfaces 
at coarser resolutions. Tmin climate surfaces did not have any notice‐
able increase in both novel and disappeared Tmin climates occurring 
in the same location at any resolution. “Both” climates for radiation 
displayed a very strong Spearman's rank correlation between spa‐
tial scale and fractional area, indicating that as radiation climate be‐
comes coarser, the amount of both novel and disappeared climates 
at the same location will increase. However, rain and Tmin had ex‐
tremely low correlations, indicating that an increased occurrence 
of both novel and disappeared climates at the same will not always 
occur as climate resolution becomes coarser (Figure 10).

4  | DISCUSSION

As climate changes, either from natural processes and/or human ac‐
tivity, novel and disappeared climates will arise (Jackson & Overpeck, 
2000; Williams & Jackson, 2007). Long‐term climate patterns that 
affect observed novel and disappeared climates, whether in the 
past, present, or future, arise not only from geographic and temporal 

changes in the environment, but also as a result of atmospheric and 
topographic processes that occur across many spatial scales (Ackerly 
et al., 2010).

Determining how climate resolution affects climate change pre‐
dictions is necessary to avoid under or overestimating the potential 
impacts of climate change for ecological analyses dependent on grid‐
ded climate data. We downscaled climate data at 11 spatial resolutions 
spanning three orders of magnitude to include climate data at reso‐
lutions used for previous climate change impact projections to iden‐
tify the distribution and abundance of novel, disappeared, and shared 
climates across Alaska, as well as how the spatial resolution of climate 
data used affects these estimates of climate (e.g., PRISM, BioClim, 
NASA Nex, CMIP; Daly et al., 2004; Fick & Hijmans, 2017; Thrasher et 
al., 2013). We found that novel and disappeared climates primarily af‐
fected Southern Alaska. Additionally, climate data generally increased 
the fractional area of novel and disappeared climates as the resolution 
became coarser; however, it was also possible, although rare, to de‐
crease the fractional area or have no apparent relationship between 
the fractional area of novel and disappeared climates and climate data 
resolution.

4.1 | Novel, disappeared, and shared climate 
distributions

All our downscaled climate surfaces, except rain, contained disap‐
peared climates across Alaska. Rain was the only surface that did 
not contain disappeared climate because (a) rain values cannot reach 

F I G U R E  6   Fractional area coverage of shared climates for the nine “Level 2” Alaskan ecoregions. [1] Alaska Range Transition, [2] Aleutian 
Meadows, [3] Arctic Tundra, [4] Bering Taiga, [5] Bering Tundra, [6] Coast Mountain Transition, [7], Coastal Rainforests, [8] Intermontane 
Boreal, [9] Pacific Mountain Transition
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lower than 0 mm of precipitation (unlike temperature), and (b) en‐
vironmentally, warm modern climates produce more rain and less 
snow, which can only extend the upper limit of possible modern rain 
values.

Therefore, the combination of these two effects produced no 
unique rain values for our LGM climate surfaces. Overall, disap‐
peared climates primarily affected the southeastern Coast Mountain 
and Pacific Mountain Transition ecoregions, where modern climate 
has significantly warmed causing the extremely low maximum 
temperature climates of the LGM to disappear. Disappeared snow 
climates primarily affected the Southern Coastal Rainforest ecore‐
gion, where more precipitation now falls as rain, as opposed to snow 
during the LGM, causing high levels of LGM snow climates to disap‐
pear for the modern era. While the fractional area of disappeared 
climates in Western Alaska was not as high as Southern Alaska, 
the Aleutian Meadows and Bering Taiga ecoregions experienced 
some disappeared AET and PET climates, likely as a result of higher 
radiation climates during the LGM than the modern era. There is 
some evidence from paleoclimate simulations that suggests less 
atmospheric water vapor reduced the amount of low‐level clouds 
and increased the amount of high‐level clouds, which could result 
in increased surface radiation while still producing a cooling effect 
over arctic regions during the LGM (Webb, Rind, Lehman, Healy, & 
Sigman, 1997).

Only three of our eight downscaled climate surfaces contained 
novel climate distributions in Alaska. These surfaces included 

radiation, rain, and minimum temperature; however, novel climates 
were a rarer occurrence than disappeared climates. Less novel cli‐
mates, when compared to disappeared climates, are likely an arti‐
fact of possible climate ranges of Alaska, since we considered only 
Alaska as our reference area of interest for this study, which ignores 
all other possible climate ranges across Earth. Additionally, as with 
disappeared rain climates, novel rain, snow, radiation, AET, PET, and 
water deficit climates are environmentally restricted. Therefore, due 
to natural postglacial and/or anthropogenic climate change, only 
the southernmost portion of Alaska could experience significant 
amounts of novel climates. Modern climate change has led to in‐
creasingly warmer minimum temperatures in the southern Aleutian 
Meadows and Coastal Rainforest ecoregions. Consequently, this has 
eliminated extremely cold minimum temperatures that were pres‐
ent during the LGM, while simultaneously increasing the amount of 
rainfall in the state due to more precipitation being converted to rain 
over snow. Additionally, these ecoregions are along the southern‐
most portions of the state, which are lowest in latitude and should 
therefore be warmer than any other region of Alaska.

Since novel and disappeared climates identify areas most af‐
fected by climate change, shared climates fundamentally capture 
regions that have been least affected by postglacial climate change. 
Novel and disappeared climates largely affected Southern Alaska, 
resulting in lower fractional areas of shared climates in the south, 
and higher fractional areas in the North. As expected, the most 
northern ecoregions of the state, the Arctic Tundra, Bering Tundra, 

F I G U R E  7   Disappeared climate 
versus spatial scale plots. Spatial 
scale (60 m–12 km) plotted against 
fractional area of disappeared 
climates for each climate variable. 
The Spearman's rank correlation 
coefficient is included in each plot
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and Intermontane Boreal ecoregions, contained the largest amount 
of shared climates, while the southernmost ecoregions, the Coast 
and Pacific Mountain Transition ecoregions, contained the least 
amount of shared climates.

The occurrence of both novel and disappeared climates existing 
at the same location on our downscaled climate surfaces was virtu‐
ally nonexistent. Tmin contained a few pixels (11) classified as both 
novel and disappeared; however, this phenomenon was deemed in‐
significant because it covered such a small fraction of Alaska's area. 
At larger spatial resolutions, there are instances where some climate 
variables have a substantial increase in both novel and disappeared 
climates occurring at the same location. However, areas where both 
novel and disappeared climates occurred at the same location at 
resolutions >60 m were not considered for analysis on the distri‐
bution of novel and disappeared climates. Novel and disappeared 
climates are an important characterization of climate change that 
help identify the vulnerability of ecoregions, since they can push 
species beyond their ideal climate space and lead to ecologically 
risky scenarios such as migration, range shifts, and extinction. The 
Aleutian Meadows and Coastal Rainforests of Alaska stood out as 
the most vulnerable ecoregions to postglacial climate change. These 
two regions generally experienced both large amounts of novel and 
disappeared climates across all climate variables when compared to 
all other ecoregions in Alaska. Ecoregions with large shared climate 
distributions may have important implications for identifying glacial 
refugia because they represent regions that have experienced the 

least climate change through time and contain the most stable cli‐
mates in Alaska. The Bering Tundra was the least vulnerable Alaskan 
ecoregion to postglacial climate change, as all variables in the region 
contained extremely low fractional areas of novel or disappeared 
climates.

While we have identified the least and most climatically vulner‐
able ecoregions to postglacial climate change, large variations in the 
abundance and distribution of novel and disappeared climates will 
also affect the significance of each climate variable on a refugia as 
specified by the optimal niche species. Situations arose where one 
to few climate variables contained substantial amounts of novel or 
disappeared climates, while many others contained low to no novel 
or disappeared climates. This is important for two reasons: First, 
if an ecoregion contained significant fractional areas of novel or 
disappeared climates, it does not necessarily imply that all climate 
variables within the same ecoregion experienced high amounts of 
novel or disappeared climates. For instance, the Coast Mountain 
Transition ecoregion in Alaska contained the largest fractional area 
of disappeared TMax climates. Most other climate variables within 
the same ecoregion contained low amounts of disappeared climates 
(Figure 4).

Second, large fractional areas of novel or disappeared climate do 
not necessarily equate to ecological significance for a species (e.g., 
niche theory). For example, a species may have a large temperature 
threshold (generalist) with a low snow threshold (specialist). Even 
with the significant warming of the LGM (85.0% disappeared Tmax), 

F I G U R E  8   Novel climate versus spatial 
scale plots. Spatial scale (60 m–12 km) 
plotted against fractional area of novel 
climates for each climate variable. The 
Spearman's rank correlation coefficient is 
included in each plot
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Tmax climates may still fall within the optimal range of the species. 
However, while changes to LGM snow climates were low (2.3% dis‐
appeared snow), this change may be ecologically risky for the species 
if the changes fall outside its optimal snow range. In this case, dis‐
appeared snow climates are significant to a species, not disappeared 
Tmax climates, even though there was a far greater fractional area of 
disappeared Tmax climates. This suggests that disappeared or novel 
climates may only be important if they are a limiting factor or extend 
beyond the optimal niche for a species (De Baar, 1994; Vandermeer, 
1972). If the change in climate is a limiting factor, the risk of distribu‐
tion shifts or extirpation may increase for a species. However, if the 
change in climate is not limiting, the existence of novel and disap‐
peared climates may have minimal impacts on a species.

4.2 | Climate grid resolution and 
fractional area patterns

In our study, the amount of novel and disappeared climate dis‐
tributions was affected by climate grid resolution in two primary 
ways. First, as climate data becomes coarser, there is a positive re‐
lationship between the fractional area of novel and disappeared 
climates and spatial resolution. This pattern occurs for two reasons: 
(a) Coarser climate data reduced environmental variability, which 
in turn removes the extreme ranges of climate, and (b) there are 
fewer climates that fall within the shared climate bin definition, re‐
sulting in fewer climates classified as shared while simultaneously 

increasing the frequency of novel or disappeared climates simply 
due to the coarser scales (Figure 11). As expected, all shared cli‐
mates displayed a negative relationship between climate resolution 
and fractional area (Figure 9). Shared climates should display a neg‐
ative relationship because as the fractional area of novel and dis‐
appeared climates increases with spatial resolution, the fractional 
area of shared climates must decrease because it accounts for 
areas not classified as either novel or disappeared. Previous studies 
by Franklin et al. (2013), Heikkinen, Luoto, Kuussaari, and Toivonen 
(2007), and Seo et al. (2009) found similar results modeling species 
distributions, finding that coarse climate data predicts larger suit‐
able habitats compared to finer resolution climate data. Our study 
confirms this trend, although our analysis is focused solely on the 
distribution of climate as opposed to the distribution of species.

The positive relationship between spatial resolution and novel 
and disappeared climate distributions suggests that the use of 
coarse grid climate data may have led to the overestimation of novel 
and disappeared climate distributions in previous analyses, and 
thereby cause overestimates of potential impacts of climate change. 
This may lead to significant errors when trying to determine where 
postglacial climate change has occurred. Additionally, this error can 
be propagated into other analyses that depend on climate grid data, 
such as species distribution models, which implies that these studies 
may also over or underestimate predicted species ranges, refugial 
locations, and other climate‐species analyses (Franklin et al., 2013; 
Randin et al., 2009; Trivedi, Berry, Morecroft, & Dawson, 2008).

F I G U R E  9   Shared climate versus 
spatial scale plots. Spatial scale 
(60 m–12 km) plotted against fractional 
area of shared climates for each climate 
variable. The Spearman's rank correlation 
coefficient is included in each plot
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Second, as climate data becomes coarser, there can be a negative 
relationship between spatial resolution and the amount of novel and 
disappeared climates, although this trend only occurred with our Tmin 
disappeared climate surfaces. This pattern can occur when novel or 
disappeared climates are extremely spatially heterogeneous (i.e., 
patchy; Figure 12). At coarser resolutions, our Tmin climate aggrega‐
tion scheme successively grouped similar temperatures together at 
each progressively coarser resolution (Wu, 1999). Because our 60 m 
disappeared Tmin surface was extremely patchy, successively aggre‐
gating the surface to coarser resolutions averaged out the few pixels 
classified as disappeared Tmin climates and progressively reclassified 
coarser Tmin disappeared climates to Tmin shared climates. Randin et 
al. (2009) reported a similar negative pattern when comparing the 

distribution of alpine species; however, Randin's study considered 
climate resolution with varying study extents. The combination of 
climate resolution and study extent was found to cause a negative 
relationship between the amount of suitable alpine species habitats 
and climate resolution/extent as their species distribution models 
were unable to capture the full environmental niche of alpine spe‐
cies at regional scale climate resolutions or limited study extents. 
Therefore, the negative pattern between alpine species distributions 
and climate data resolution from Randin et al. (2009) was not a prod‐
uct of heterogeneously complex climate surfaces.

Although a negative relationship between fractional area and 
spatial resolution occurred on only one climate surface, this phe‐
nomenon suggests it is possible to underestimate the amount of 

F I G U R E  1 0   “Both” climate versus 
spatial scale plots. Spatial scale 
(60 m–12 km) plotted against fractional 
area of “both” climates for each climate 
variable. The Spearman's rank correlation 
coefficient is included in each plot

F I G U R E  11   Coarser resolutions 
can increase the amount of novel and 
disappeared climates in Alaska. Modern 
climate ranges are red bars, LGM climate 
ranges are blue bars, and the overlap of 
modern and LGM climates are dark blue 
bars. The red boxes are novel climate bins, 
blue boxes are disappeared climate bins, 
and purple boxes are shared climate bins
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novel and disappeared climates when using coarse gridded climate 
products. Again, significant errors may arise when estimating post‐
glacial climate change distributions leading to serious underestima‐
tions of novel and disappeared climate distributions, the potential 
impacts of climate change, and potentially propagating this error 
into other climate dependent analyses. However, this pattern is 
less likely to occur since it depends on the patchiness of novel and 
disappeared climates as opposed to gridded climate data's ability 
to capture landscape scale processes influencing climate patterns.

No significant relationship between fractional area of novel and 
disappeared climates and spatial resolution is possible, and this pattern 

did not visibly arise within our study. There were some cases where 
the Spearman's rank correlation was “moderate”, although this does not 
necessarily indicate a relationship. However, while all surfaces displayed 
moderate to strong correlations, there was a fair amount of variation in 
fractional area as spatial resolution became coarser. This suggests that 
there may be significant thresholds occurring at various spatial scales. 
The exact causes of this variation are still unclear, but we hypothe‐
size that this variation may be a result of distortion caused by aliasing 
artifacts when upsampling our 60 m downscaled climate surfaces to 
coarser scales (Haines‐Young & Chopping, 1996; Kennie & McLaren, 
1988), or may be caused by Moiré fringes (Gustafsson, 2000) producing 

F I G U R E  1 2   Coarser resolutions can decrease the amount of novel and disappeared climates in Alaska. Disappeared Tmin at 120 m 
displays regions with patchy, but random spatial distributions, while coarse disappeared Tmin climates display clustered distributions. Isolated 
patches of disappeared Tmin climates at high resolutions will be reclassified to shared Tmin climates when upsampling Tmin climates to coarser 
scales using standard pixel aggregation methods
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overlooked oscillations across a landscape. While Moiré fringes are a 
well‐known issue affecting raster image processing and visualization, to 
the best of our knowledge, no studies have investigated whether natu‐
rally occurring processes and phenomenon known to influence climate 
or other Earth systems, generate spatial Moiré distributions.

4.3 | Limitations

Annual averages are a limitation because summer temperatures 
are not so different from today; however, the rest of the year was, 
so annual averages do not capture the seasonal climate variation 
over Alaska. This is only an issue in terms of when we are talking 
about the interpretation of novel and disappeared climates impact 
on plants, not on how scale affects the amount of novel and disap‐
peared climates predicted since seasonality does not affect the defi‐
nition of a novel or disappeared climate. Future studies should look 
into seasonal variation of novel and disappeared climates.

5  | CONCLUSIONS

It is important to understand how climate change through time affects 
the distribution and abundance of novel and disappeared climates, as 
well as how choice in gridded climate data resolution affects our es‐
timations of climate change. If our 60 m downscaled climate surfaces 
accurately reflect physiographic processes affecting climate at multi‐
ple scales, our fine‐scale climate products should improve estimations 
of novel and disappeared climate distributions, compared to coarser 
climate products, especially in areas with high topographic complexity.
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