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Abstract: This present study evaluated and rationalized the medicinal use of the fruit part of
Acacia nilotica methanolic extract. The phytochemicals were detected using gas chromatography–
mass spectrometry (GC–MS) while the in vivo antidiarrheal test was done using Swiss albino mice.
To determine the details of the mechanism(s) involved in the antispasmodic effect, isolated rat ileum
was chosen using different ex vivo assays by maintaining a physiological environment. GC–MS
results showed that A. nilotica contained pyrogallol as the major polyphenol present (64.04%) in
addition to polysaccharides, polyphenol, amino acid, steroids, fatty acid esters, and triterpenoids. In
the antidiarrheal experiment, A. nilotica inhibited diarrheal episodes in mice significantly (p < 0.05) by
40% protection of mice at 200 mg/kg, while 80% protection was observed at 400 mg/kg by the orally
administered extract. The highest antidiarrheal effect was observed with loperamide (p < 0.01), used
as a control drug. In the ex vivo experiments, A. nilotica inhibited completely in increasing concentra-
tions (0.3 to 10 mg/mL) the carbachol (CCh; 1 µM) and high K+ (80 mM)-evoked spasms in ileum
tissues at equal potencies (p > 0.05), similar to papaverine, a dual inhibitor of the phosphodiesterase
enzyme (PDE) and Ca++ channels. The dual inhibitory-like effects of A. nilotica on PDE and Ca++ were
further validated when A. nilotica extract (1 and 3 mg/mL)-pre-incubated ileum tissues potentiated
and shifted isoprenaline relaxation curves towards lower doses (leftward), similar to papaverine,
thus confirming the PDE inhibitory-like mechanism whereas its CCB-like effect of the extract was
confirmed at 3 and 5 mg/mL by non-specific inhibition of CaCl2-mediated concentration response
curves towards the right with suppression of the maximum peaks, similar to verapamil, used as
standard CCB. Thus, this study characterized the chemical composition and provides mechanistic
support for medicinal use of A. nilotica in diarrheal and hyperactive gut motility disorders.

Keywords: A. nilotica; antispasmodic; Ca++ channel blocker; GC-MC; phosphodiesterase inhibitor

1. Introduction

Gastrointestinal (GI) motility plays an important role in digestive and absorptive
processes of the gut, essential for pushing intestinal material, mixing this with digestive
juices, and preparing undigested foods for excretion. Diarrhea, characterized by an in-
creased frequency of bowel movements, wet stool, and abdominal cramps, is a serious
health problem [1,2]. Diarrhea can be caused by several factors, such as infections, food
intolerance, intestinal disorders, etc. [3–5], and might be a symptom of many other ailments,
including IBS and diabetes [6,7]. Gut motility is controlled via various physiological agents,
such as, acetylcholine (ACh), prostaglandin E2, serotonin (5-hydroxytryptamine or 5-HT),
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histamine, substance P, and cholecystokinins [8,9]. These chemicals cause excitatory actions
that eventually increase cytosolic Ca++ [10]. Thus, any material which has the ability to
interfere with the above specific pathways (PDE-inhibitory, adrenergic or opioid receptors
activation) or with non-specific suppressant activities (Ca++ channel antagonists) is thought
to be efficient in hypermotile gut conditions [9].

Currently available treatments for diarrhea are non-specific and generally, drugs
are used to reduce the uneasiness and discomfort of recurrent bowel movements [11].
Available antidiarrheal drugs such as loperamide used to reduce motility may prevent diar-
rhea, and antispasmodic drugs diminish intestinal contraction and decrease pain [12,13].
Antimuscarinic and other antispasmodic drugs are a valuable therapy in diarrhea includ-
ing IBS because the smooth muscle relaxant properties of these drugs reduce intestinal
spasms [12,13]. Since time immemorial, plants have been used as a source to provide
humankind with medicines having high therapeutic potential to treat health disorders and
to combat numerous pathogenic infections [14]. The healing property of medicinal plants
has been widely used in different traditional systems of medicine such as Ayurvedic, Unani,
and Chinese [15,16]. This healing ability is attributed to the presence of various classes of
compounds present in medicinal plants [17].

Acacia nilotica (L.) Wild ex. Del., commonly known as Mimosa nilotica (family Mi-
mosaceae), is a medium-sized tree that is known locally as ‘Babul’ or ‘Kikar’ [18]. Africa,
the Arabian Peninsula, and the Indian subcontinent have suitable environmental conditions
for the growth of A. nilotica [19]. Other Acacia species, such as A. arabica, A. abyssinica,
and A. seyal, are used in traditional medicine to treat leprosy, tuberculosis, skin ulcers,
dysentery, cough, smallpox, toothache, and malignancies, as well as used as astringents,
antispasmodics, antidysentrics, and aphrodisiacs [18–20]. Pods and tender leaves are used
to treat diarrhea [21] and are also thought to be very effective in treating diabetes mellitus in
folk medicine [22]. In recent studies, the plant has been reported for its intriguing bioactivi-
ties, such as antibacterial, hypolipidemic, and antidiabetic actions [23–25]. Phytochemical
analysis revealed the presence of polyphenolic chemicals and flavonoids in the flowers,
as well as glycosides, organic acids, carbohydrates, volatile oils, tannins, and coumarins
in the fruits [26]. A. nilotica is a possible source of antioxidant polyphenols [27–29], and
including these antioxidants in functional meals possibly might help in the prevention of
certain diseases.

Although A. nilotica, the plant applied in this research, is used in local folk medicine to
treat a range of ailments, there is no solid scientific data to support the use of A. nilotica fruit
extract in the treatment of diarrhea. As a result, the aim of the work was to use in vivo and
ex vivo experiments for phytochemical investigation using GC–MS as well as to discover
the exact mechanism(s) implicated in the putative gastrointestinal inhibitory effects of A.
nilotica fruit extract.

2. Materials and Methods
2.1. Extraction of Plant Material

After purchasing the fruit of A. nilotica from a local market in Dammam (Saudi Arabia),
it was identified and authenticated using macroscopic and microscopical examination by Dr.
Abuzer Ali, Department of Pharmacognosy, Taif University, Taif Saudi Arabia and matched
with a Pharmacopoeial standard. (The Unani Pharmacopoeia Part I issue IV; 2009). The
plant sample was preserved at the herbarium with the voucher # PL/0445/2020-21/P-008.
With the use of a mixer grinder, the plant material was powdered; 40 g of powdered crude
sample was placed in a Soxhlet device and extracted with 200 mL of methanol at 70 degrees
Celsius. The extract was concentrated using a rotary evaporator after rigorous extraction
(Buchi, R-215; Schaffhausen, Switzerland). For future investigation, the concentrated extract
was maintained in an airtight glass jar at 5–10 ◦C. The extract was GC–MS examined using
earlier reported methods [30,31].
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2.2. Chemicals

Sigma provided carbamylcholine (CCh), papaverine, isoprenaline, Ethylenediaminete-
traacetic Acid (EDTA), verapamil, acetylcholine perchlorate (ACh), and loperamide (St. Louis,
MO, USA). To make the physiological buffer solution (Tyrode), the following reagents (salts)
were used: magnesium sulphate, potassium chloride, glucose, potassium dihydrogen phos-
phate, calcium chloride, sodium chloride, and sodium bicarbonate (Merck, Darmstadt,
Germany). All of the substances were of analytical quality, except castor oil acquired from
a local drugstore.

2.3. Animals

From the Animal Care Unit, ‘College of Pharmacy, Prince Sattam bin Abdulaziz
University, Saudi Arabia’, Swiss albino mice (25–30 g) were obtained for in vivo studies
and rats (200–250 g) for ex vivo experiments and were kept at a temperature optimum
(22 ◦C), relative humidity (55%), and exposure to a light/dark cycle. All animals were fed
a regular diet of pellets and had unrestricted access to water. Prior to the ex vivo studies,
mice fasted for 24 h, and cervical dislocation was performed under light sedation, with
death confirmed by elimination of ear reflexes. All experiments (in vivo and ex vivo) were
carried out with caution and in accordance with the guidelines outlined in the NRC [32].
The Bio-Ethical Research Committee (BERC) at ‘Prince Sattam Bin Abdulaziz University’
approved the study protocol with the approval number BERC-004-12-19.

2.4. GC–MS Analysis

The phytochemical investigation of the methanolic extract of A. nilotica was per-formed
by GC–MS to detect the presence of several phytoconstituents. The chromatographic sepa-
ration of metabolites was carried on a capillary column 60 M TRX 5-MS (30 m × 250 µm I.D.
0.25 µm film) using 2 µL of sample injection volume. The oven temperature program was
as follows: 80 ◦C initially for 3 min and then ramped at a rate of 10 ◦C/min to 280 ◦C for
19 min. The carrier gas was set at a constant flow rate of 1.21 mL/min. The injection port,
transfer line, and ion source were set to 260 ◦C, and the mass-scanning range was set to
40 to 650 m/z in scan mode. The injection was executed in split mode with a 10:1 split
ratio, and a 3-min solvent delay time was set for the samples. Identification of individual
phytoconstituents was achieved using National Institute of Standards and Technology
(NIST) libraries and the mass spectra of literature [30,33].

2.5. In Vivo Antidiarrheal Study

Twenty mice were divided into five groups, each with an equal number of mice, at
random. Mice in the first group were administered an oral gavage of saline (10 mL/kg)
after a twenty-four-hour fast and were labeled as the negative control group. The second
and third groups (test groups) were given two increasing doses of A. nilotica methanolic
extract, 200 and 400 mg/kg, respectively, after a pilot screening for dose selection. As a
positive control, the fourth group of mice was administered loperamide (10 mg/kg). Each
animal was kept in the cage, with a blotting sheet on the floor to allow a blind observer to
determine the presence or absence of diarrhea. All mice were given castor oil (10 mL/kg)
orally after an hour. All blotting sheets from individual cages were checked for typical
diarrheal droppings after 4 h. If no diarrheal spots were noticed on the blotting sheet,
protection was documented [34,35].

2.6. Ex Vivo Experiments on Isolated Rat Ileum

A previously documented approach was used to sacrifice rats and to separate the final
part of the small intestine (ileum) [36]. Ileum tissues (2–3 cm) were cleaned from neighbor-
ing tissues and luminal feces and mounted in an isolated organ bath (emkaBATH, Paris,
France) attached to transducer and IOX software. The temperature was set to 37 ◦C, and a
freshly prepared Tyrode’s solution bubbled with carbogen gas was provided as a physiolog-
ical medium in the tissue baths (20 mL). The composition of Tyrode’s solution in mM was
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2.68 KCl, 136.9 NaCl, 1.05 MgCl2, 11.90 NaHCO3, 0.42 NaH2PO4, 1.8 CaCl2, and 5.55 glu-
cose, (pH 7.4) The tissues were stabilized for 30 min with the addition of acetylcholine
(0.3 M) at regular intervals (5 min) while 1 g tension was applied by clockwise rotation
of the transducer knob. CCh and high K+ (80 mM) were employed to induce prolonged
contractions after stabilization, and A. nilotica was added to the bath solution in increas-
ing concentrations until the maximal and/or complete relaxation of tissue was achieved.
The inhibitory effect of A. nilotica on CCh and K+-mediated contractions was observed,
which could indicate pharmacodynamics such as voltage-gated Ca++ channel blockade
and/or PDE inhibition. Multiple smooth muscles are depolarized by K+ (>30 mM), which
activates Ca++ channels (L-type), resulting in prolonged contractions [37]. PDE-inhibitors,
on the other hand, are agents that, at comparable concentrations, reverse CCh and high
K+-mediated contractions, whereas verapamil (CCB) shows significantly higher potency
against high K+ compared to CCh-mediated contractions [38].

2.7. Ca++ Inhibitory Confirmation

After the observation of preliminary relaxation of A. nilotica against high K+, ileum
tissues were incubated in Ca++-free Tyrode’s solution with EDTA (0.1 mM) for 45 min to
confirm Ca++ channel blocking (CCB). A Ca++-free solution was replaced with a K+-rich
and Ca++-free Tyrode’s solution at the following concentrations (mM): KCl 50, NaCl 91.04,
MgCl2 1.05, NaHCO3 11.90, NaH2PO4 0.42, glucose 5.55, and EDTA 0.1. After 45 min of
incubation in this solution in the presence and absence of increasing concentrations of A.
nilotica, CaCl2 CRCs were produced, and the findings were compared to the standard CCB
agent, verapamil [39].

2.8. PDE Inhibitory Confirmation

The relaxing effect of A. nilotica against high K+ and CCh at identical concentrations
is an indication of PDE inhibition [40]; therefore, dose-mediated inhibitory curves of
isoprenaline against CCh in the presence and absence of A. nilotica were used to indirectly
validate PDE inhibition. PDE blockage was indicated by the potentiation of isoprenaline
curves to the left, similar to papaverine, a typical PDE inhibitor, utilized as a control [41].

2.9. Statistical Analysis

The statistical analyses were performed as the mean ± standard error of the mean
(SEM), with “n” being the number of experiments that were repeated. The median effective
concentrations (EC50) are geometric means with 95% confidence intervals (CIs). The
statistical criteria utilized for multiple comparisons of concentration–response curves
(CRCs) with controls were Student’s t-test or two-way ANOVA followed by Bonferroni’s
post-test. W the Chi-square (χ2) test, all groups were statistically compared to a saline
control group for diarrhea protection. p < 0.05 was regarded as statistically significant. For
CRC regression analysis, Graph Pad Prism (version 4) was used.

3. Results
3.1. Methanolic Extract Yield (%)

The fruits of A. nilotica yielded 36.47% of methanolic crude extract.

3.2. GC–MS Phytochemical Profiling

The phytochemical investigation of the A. nilotica methanolic extract revealed the
presence of 19 phytoconstituents representing 99.03% that were identified by compairing
with mass spectrum library of NIST. All separated phytoconstituents, peak area, % area,
retention index, and molecular formula with the chemical structure of A. nilotica are shown
in Table 1. Phytochemical investigation of methanolic extract showed the presence of
polysaccharides, polyphenol, amino acid, steroids, and fatty acid esters. Pyrogallol (64.04%),
4-O methylmannose (17.7), 9,12-Octadecadienoic acid (6.8%), methyl oleate (1.9%), methyl
linoleate (1.6%) and N,N-Dimethylglycine (1.3%) were the major phytoconstituents found



Molecules 2022, 27, 2107 5 of 12

in A. nilotica. These phytoconstituents were tentatively identified by compairing their mass
spectra with the NIST library (Table 1 and Figure 1).

Table 1. List of Phytoconstituents present in A. nilotica methanolic extract.

S. No. Compound Name %
Area

Retention
Index

MoleculaR
Weight

Molecular
Formula Chemical Structure Cas No Nature of

Compound

1 N,N-Dimethylglycine 1.3 824 103 C4H9NO2
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Compound
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Figure 1. GC–MS chromatogram of methanolic extract of A. nilotica.

3.3. In Vivo Antidiarrheal Effect

In comparison to the saline group, both increasing orally delivered dosages of A. nilotica
in mice showed significant antidiarrheal effects (Table 2). At the lower tested dose of
200 mg/kg, two out of five mice showed protection, suggesting 40% protection, whereas
the higher dose of 400 mg/kg demonstrated 80% protection from diarrhea. In all five
cages of mice treated with loperamide (10 mg/kg), no diarrheal spot was observed (100%
protection), as detailed in Table 2.

Table 2. Antidiarrheal activity of the methanolic extract of A. nilotica on castor oil (10 mL/kg)-induced
diarrhea in mice.

Treatment (p.o.), Dose (mg/kg) No. of Mice
with Diarrhea % Protection

Saline (10 mL/kg) + Castor oil 5/5 0
A. nilotica + Castor oil

200 (mg/kg) + 10 (mL/kg) 3 */5 40
400 (mg/kg) + 10 (mL/kg) 1 */5 80

Loperamide (10 mg/kg) + Castor oil 0 **/5 100

* p < 0.05 and ** p < 0.01 vs. Saline + Castor oil treated group (χ2-test).

3.4. Ex Vivo Antispasmodic Effects

As demonstrated in Figure 2A, A. nilotica completely inhibited CCh and high K+-
mediated spasm in rat isolated ileal tissues, with EC50 values of 5.48 mg/mL (4.85–6.26,
95 percent CI, n = 4–5) and 5.84 mg/mL (4.28–6.64, 95 percent CI, n = 4–5), respectively.
Papaverine had similar relaxing effects on CCh and high K+-induced spasms, with EC50
values of 9.82 M (8.46–10.22, 95 percent CI, n = 4–5) and 9.24 M (7.98–10.92, 95 percent CI,
n = 4–5), respectively (Figure 2B). As demonstrated in Figure 2C, verapamil had a much
higher potency to block high K+ than CCh-evoked spasms, with EC50 values of 0.14 M
(0.12–0.19, 95 percent CI, n = 4–5) and 2.82 M (2.44–2.94, 95 percent CI, n = 4–5), respectively.
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Figure 2. Concentration–response curves showing comparison of the (A) methanolic extract of
A. nilotica, (B) papaverine, and (C) verapamil, for the inhibitory effect against carbachol (CCh; 1 µM)
and high K+ (80 mM)-induced contractions in isolated rat ileum preparations. Values shown are the
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3.5. Phosphodiesterase Enzyme (PDE)-Inhibitory like Effect

Pretreatment with A. nilotica (1 and 3 mg/mL) confirmed PDE inhibitory activity
by shifting the isoprenaline-induced inhibitory CRCs to the left (Figure 3A), indicating a
potentiating impact. Papaverine (1 and 3 µM) generated a comparable leftward shift in
the isoprenaline curves, as seen in Figure 3B, while verapamil had no potentiating impact
(Figure 3C).
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Figure 3. Inhibitory concentration–response curves of isoprenaline against carbachol (CCh)-induced
contractions in the absence and presence of different concentrations of (A) the methanolic extract of
A. nilotica, (B) papaverine, and (C) verapamil in isolated rat ileum preparations. Values shown are
the mean ± SEM, n = 4–5.

3.6. Calcium Channel Blocking (CCB)-like Effect

To confirm the Ca++ inhibitory activity, preincubation of ileum tissues with A. nilotica
methanolic extract skewed the Ca++ CRCs curves at tested dosages of 3 and 5 mg/mL
(Figure 4A) towards the right with suppression of the maximum effect. Similarly, ve-
rapamil and papaverine, at respective preincubated concentrations (0.01 and 0.03 µM;
verapamil) and (1 and 3 µM; papaverine), also deflected Ca++ curves towards the right
with suppression of the highest peaks as shown in Figure 4B,C.
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4. Discussion

To provide the basis to the traditional medicinal report of A. nilotica in diarrhea and
gut spasms [42], the methanolic extract of A. nilotica was evaluated scientifically using
rodents while its phytochemical analysis was determined by GC–MS. In vivo, A. nilotica
was examined in a castor oil-evoked diarrhea model and found to have dose-mediated
antidiarrheal action by preventing the characteristic diarrheal drops as compared to the
saline control group. Castor oil is known to increase intestinal fluids, causing diarrhea
indirectly through the formation of recinoleic acid, which ultimately alters the electrolytes
and water transport and elicits excitations in transverse and distal segments of the colon [43].
Similar to the positive control drug, loperamide, a popular antidiarrheal treatment [44],
pre-administration of A. nilotica protected mice from diarrhea in a dose-dependent manner.
The methanolic extract of A. nilotica was examined at cumulative doses in isolated rat
ileum to determine the possible pharmacodynamics involved in the observed antidiarrheal
activity [45]. Based on earlier results that antispasmodic drugs mediate gut inhibitory
effects via Ca++ channel blocking [44] and/or PDE inhibition [46], we evaluated A. nilotica
extract on the evoked contractions in rat ileum by CCh and high K+ [47]. The EC50 values
obtained from both types of inhibitory curves of A. nilotica against CCh and high K+

showed no statistical difference (p > 0.05). Similarly, papaverine, a dual Ca++ channel
and PDE inhibitor [38], suppressed both CCh and high K+-evoked spasms at comparable
concentrations, but verapamil, a typical CCB [39,48], selectively inhibited high K+ at a
lower concentration compared to CCh. This indicates that, similar to papaverine, A. nilotica
has dual inhibitory mechanisms for PDE inhibition and Ca++ channels. PDE-inhibitors,
which block PDE, result in a cAMP increase in tissues and thus cause relaxation. PDE
hinders smooth muscle relaxation by converting cAMP into its inactive form (AMP) [49].
Hence, A. nilotica was evaluated indirectly for PDE-inhibition and cAMP elevation by
constructing isoprenaline-induced inhibitory CRCs in the absence and presence of pre-
incubated tissues with the test substance. In pre-incubated ileum tissues of A. nilotica,
potentiation of isoprenaline’s inhibitory CRCs towards lower dosages (leftward) verified
its PDE-inhibitory character, and the results were equivalent to papaverine, a known PDE-
inhibitor [50]. CCh-mediated smooth muscle spasm is well recognized to be inhibited
by PDE inhibitors [51]. In order to explore the possibility of additional antispasmodic
mechanisms in A. nilotica extract, it was tested for Ca++ ion inhibitory effect.

Substances that reverse high K+ (>30 mM)-mediated spasm are considered as CCBs [52],
hence to support and confirm further the CCB-like action of A. nilotica, in previously Ca++-
free tissues, the ileum tissues were preincubated with A. nilotica at increasing concentrations.
Ca++-CRCs were made in the absence of A. nilotica and pre-incubated tissues with A. nilotica,
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which repelled Ca++-CRCs to the right with suppression of the maximum peak, similar to
papaverine, a dual inhibitor of PDE and Ca++ channels. The plant Ca++-CRC comparison
with verapamil, a standard CCB [39], further confirmed the additional CCB-like mechanism
of A. nilotica. Previously published findings of the antispasmodic effect of A. nilotica pods
in rabbit jejunum support this CCB-like effect [42]. Polysaccharides, polyphenols, amino
acids, steroids, fatty acid esters, and triterpenoids were found in the GC–MS analysis
of the A. nilotica methanolic extract. Pyrogallol was discovered to be one of the major
phytoconstituents of A. nilotica; it is a polyphenol that is present in (64.04%) the extract
and has antibacterial activity [53], whereas 4-O methylmannose is present in the second
highest concentration (17.72%); this is a polysaccharide that has been reported to have
anti-alopecic, anti-cirrhotic, anti-neuropathic, cholesterolytic, lipotropic, and sweetening
properties [54]. In COPD patients, N, N-dimethylglycine may be useful as a diagnostic of
protein degradation.

5. Conclusions

These findings characterized the chemical composition of the methanolic extract of
A. nilotica and indicates pyrogallol as the major polyphenol present in addition to the
polysaccharide, polyphenol, amino acid, steroids, fatty acid esters, and triterpenoids. The
in vivo antidiarrheal and ex vivo antispasmodic assays conducted in rodents indicate
that A. nilotica possesses dose-mediated protection in mice from castor-oil induced diar-
rhea similar to loperamide while its preincubation in isolated rat ileum potentiated the
isoprenaline-mediated inhibitory curves whereas the Ca++ CRCs were shifted towards
right with suppression of the maximum response, thus confirming its antispasmodic effect
possibly mediated by a combination of PDE-inhibition and Ca++ channels antagonist-like
mechanisms, though additional mechanism(s) cannot be ignored.
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