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Abstract

Background: Protein–protein interaction (PPI) information extraction from biomedical literature helps unveil the
molecular mechanisms of biological processes. Especially, the PPIs associated with human malignant neoplasms can
unveil the biology behind these neoplasms. However, such PPI database is not currently available.

Results: In this work, a database of protein–protein interactions associated with 171 kinds of human malignant
neoplasms named HMNPPID is constructed. In addition, a visualization program, named VisualPPI, is provided to
facilitate the analysis of the PPI network for a specific neoplasm.

Conclusions: HMNPPID can hopefully become an important resource for the research on PPIs of human malignant
neoplasms since it provides readily available data for healthcare professionals. Thus, they do not need to dig into a large
amount of biomedical literatures any more, which may accelerate the researches on the PPIs of malignant neoplasms.
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Background
The research on protein–protein interactions (PPIs) is crit-
ical to understand how proteins function within the cell.
Therefore, hundreds of thousands of PPIs generated by high-
throughput methods such as yeast two-hybrid screening and
affinity purification coupled to mass spectrometry have been
collected together in specialized biological databases such as
Database of Interacting Proteins (DIP)1 [1], Biomolecular
Interaction Network Database (BIND)2 [2], IntAct3 [3], Hu-
man Protein Reference Database (HPRD)4 [4], and Biological
General Repository for Interaction Datasets (BioGRID)5 [5].

However, these high-throughput methods are associated
with high error rates (both false-positive and false-negative
rates). For example, some genome-wide screens might be
associated with false-positive rates exceeding 50% [6–9].
On the other hand, the rapidly growing biomedical litera-
ture provides a significantly large and readily available
source of PPI interaction data and numerous PPIs have
been manually curated by biomedical curators into the
PPI databases [10, 11].
Furthermore, PPI data is used globally for the predic-

tion of protein properties, systematic network analysis,
and evaluation of novel datasets of PPIs produced in a
high-throughput fashion [12]. To this goal, several inte-
grated PPI databases have been constructed. For ex-
ample, HIPPIE6 (Human Integrated Protein–Protein
Interaction rEference) is a human PPI dataset with a
normalized scoring scheme that integrates multiple ex-
perimental PPI datasets including DIP, IntAct, BIND,
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HPRD, BioGRID, Molecular INTeraction database
(MINT)7 [13], and MIPS8 [14]. The HIPPIE web tool al-
lows researchers to conduct network analyses focused
on likely true PPI sets by generating subnetworks
around proteins of interest at a specified confidence
level. IID9 (Integrated Interaction Database) is an online
database of known and predicted eukaryotic protein–
protein interactions in 30 tissues of model organisms
and humans, which covers six species (S. cerevisiae
(yeast), C. elegans (worm), D. melanogaster (fly), R. nor-
vegicus (rat), M. musculus (mouse), and H. sapiens (hu-
man)) and up to 30 tissues per species [15]. The
STRING10 database consolidates known and predicted
protein–protein association data for a large number of
organisms [16]. Apart from collecting and reassessing
available experimental data on protein–protein inter-
actions, and importing known pathways and protein
complexes from curated databases, interaction predic-
tions are derived from the following sources: (i) sys-
tematic co-expression analysis, (ii) detection of shared
selective signals across genomes, (iii) automated text
mining of the scientific literature, and (iv) computa-
tional transfer of interaction knowledge between or-
ganisms based on gene orthology.
In addition, there are also some protein-pathway asso-

ciation databases. For example, PathDIP11 integrates
data from 20 source pathway databases, “core pathways,”
with physical protein–protein interactions to predict bio-
logically relevant protein-pathway associations, referred
to as “extended pathways” [17].
Since the dysfunction of some PPIs leads to many

diseases (e.g., cancer), the analysis of PPI networks
has become one of the powerful approaches to eluci-
date the molecular mechanisms underlying the com-
plex diseases on the system level [18, 19]. Some
efforts have been made to construct the cancer-re-
lated PPI databases. Among others, CancerNet12 is a
cancer-specific database that provides cancer-specific
molecular interaction networks across multiple cancer
types [20]. Currently, 33 human cancer types are in-
cluded. The interactions contain PPIs, miRNA-target
interactions, and miRNA-miRNA synergistic interac-
tions. Experimentally detected PPIs were assembled
from five major PPI databases (BioGRID, DIP, HPRD,
IntAct, and MINT) and miRNA-target interactions
were considered as the combination of the predicted
targets from six algorithms and two experimentally
validated data sets. Human Cancer Pathway Protein

Interaction Network (HCPIN)13 is a collection of pro-
teins from cancer-associated signaling pathways to-
gether with their protein–protein interactions [21],
which was constructed by combining proteins from
seven KEGG (Kyoto Encyclopedia of Genes and Ge-
nomes)14 [22] classical cancer-associated signaling
pathways together with protein–protein interaction
data from the HPRD. Reference [23] constructed ini-
tial networks of protein–protein interactions involved
in the apoptosis of cancerous and normal cells by use
of two human yeast two-hybrid data sets [24, 25] and
four online interactome databases such as BIND,
HPRD, IntAct, and Himap [26]. Their method allows
identification of cancer-perturbed protein–protein in-
teractions involved in apoptosis and identification of
potential molecular targets for the development of
anti-cancer drugs.
Currently, the PPIs in these cancer-related PPI data-

bases are manually extracted and curated by human ex-
perts from literatures. However, since the number of
biomedical literatures regarding PPIs is growing at an
explosive speed, automatically extracting PPIs from the
literature is adopted to improve the efficiency of PPI in-
formation extraction.
To this end, in this work, a Human Malignant Neo-

plasm Protein–Protein Interaction Database (HMNPPID)
was constructed, whose data was extracted by an auto-
matic PPI extraction tool, named PPIExtractor [27], from
a large number of PubMed15 abstracts involving human
malignant neoplasms. The main contributions of our work
are listed as follows. First, HMNPPID provides the readily
available PPIs of specific malignant neoplasm for health-
care professionals, which can boost the efficiency of the
PPIs research of human malignant neoplasms. Then,
HMNPPID can hopefully become an important resource
for this research. In addition, we provided a visualization
program VisualPPI to help the experts analyze the PPI
networks of specific malignant neoplasms and thus dis-
cover the molecular mechanisms behind them.

Implementation
The protein–protein interaction extraction system for
biomedical literature
The number of biomedical literatures involving PPIs is
increasing at an explosive speed and, for PPI database
curators, it is extremely difficult to curate them effi-
ciently. Therefore, we have developed PPIExtractor in
our previous work to automatically extract the PPIs from
biomedical literature [27]. Given a MEDLINE abstract,
PPIExtractor first applies feature coupling generalization

7MINT: https://mint.bio.uniroma2.it/
8MIPS: http://mips.gsf.de/proj/ppi/
9IID: http://ophid.utoronto.ca/iid
10STRING: http://string-db.org/
11PathDIP: http://ophid.utoronto.ca/pathdip
12CancerNet: http://bis.zju.edu.cn/CancerNet/

13HCPIN: http://nmr.cabm.rutgers.edu/hcpin
14KEGG: https://www.genome.jp/kegg/
15PubMed: https://www.ncbi.nlm.nih.gov/
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(FCG) [28] to tag protein names in text, next uses the
extended semantic similarity-based method to normalize
them, then combines feature-based, convolution tree
and graph kernels to extract PPIs. To our knowledge,
PPIExtractor is the first PPI extraction system publicly
available which integrates named-entity recognition
(NER), normalization, PPI extraction, and visualization.
In addition, the technique used in each stage of
PPIExtractor can achieve state-of-the-art performance.
Therefore, PPIExtractor was utilized to extract the PPIs
of human malignant neoplasm from biomedical texts in
this work.

The extraction of PPIs of malignant neoplasms
According to the International Classification of Diseases
(ICD) uniform method established by World Health
Organization (WHO) and according to the disease eti-
ology, pathology, clinical presentation, anatomical
location, and other characteristics, ICD-10 version 2016
(https://browse10/browse10/2016/en) classifies the dis-
eases, making them an orderly combination and repre-
senting them with the coding method. According to the
classification in ICD-10, we chose 171 kinds of malig-
nant neoplasms (they are listed on the web site http://2
02.118.75.18:8082/HMNPPID.asp and divided into 13
categories as shown in Table 1), then downloaded their
related PubMed, and finally extracted the PPIs from
these abstracts using PPIExtractor.
To obtain the relevant abstracts of all these malignant

neoplasms, constructing the accurate query string for
PubMed search is the first step. For example, the query
string for the disease Malignant neoplasm of lung is
“((Malignant AND neoplasm) OR cancer) AND lung
AND protein.” The second step is to retrieve the rele-
vant abstracts from PubMed using the query string. In
addition. the filters “Humans” and “English” are acti-
vated to obtain only English abstracts associated with
human species, and the query time is set as December 1,
2015. In the last step, the downloaded abstracts are
input into the PPIExtractor to extract the PPIs. Each PPI

is assigned a confidence score by PPIExtractor to reflect
its reliability. Usually with a confidence score equal to or
greater than zero, one PPI can be regarded as reliable.
However, in HMNPPID, the PPIs with the confidence
scores higher than − 0.6 are retained since, due to the
complexity of natural language expression, PPIs with the
confidence scores less than 0 may be true ones. The rea-
son why the threshold is − 0.6 is that, in our previous
study of protein complex detection in PPI networks [29],
the introduction of the PPIs higher than − 0.6 into the
original PPI networks achieved the best results in the ex-
periments. In addition, the interactions between two
identical proteins were filtered out.

File format
In HMNPPID, two PPI file types (i.e., text and Excel for-
mats) are provided for each malignant neoplasm. As
shown in Table 2, Each PPI record contains seven
columns, including the sentence from which the PPI was
extracted with which users can also judge the confidence
degree of the PPI according to the sentence by themselves
besides the confidence score assigned by PPIExtractor.

Results
Overview of HMNPPID
According to the classification in ICD-10 (version 2016),
we extracted the PPIs of 171 kinds of human malignant
neoplasms and obtained a total of 266,107 PPIs (with
threshold − 0.6). By contrast, the number of PPIs with a
confidence score greater than or equal to zero is 72,866.
The number of specific neoplasm related abstracts
downloaded from PubMed and the number of the PPIs
extracted from those abstracts can be found on the web
site.
Figures 1 and 2 show the numbers and proportions of

the PPIs of different malignant neoplasms, respectively.

Table 1 Classification of human malignant neoplasms in ICD-10
version: 2016
Column
no.

Column name Remarks

1 PubMed ID The PubMed abstract ID from which the PPI is
extracted

2 Protein Name1 The name of the first protein

3 Protein ID1* The Entrez Gene id of the first protein

4 Protein Name2 The name of the second protein

5 Protein ID2* The Entrez Gene id of the second protein

6 Confidence
score

The score of the PPI assigned by PPIExtractor which
reflects the confidence degree of the PPI

7 Related
sentence

The sentence including the PPI

Table 2 The columns included in the PPI record

Column
no.

Column
name

Remarks

1 PubMed ID The PubMed abstract ID from which the PPI is
extracted

2 Protein
Name1

The name of the first protein

3 Protein ID1* The Entrez Gene id of the first protein

4 Protein
Name2

The name of the second protein

5 Protein ID2* The Entrez Gene id of the second protein

6 Confidence
score

The score of the PPI assigned by PPIExtractor
which reflects the confidence degree of the PPI

7 Related
sentence

The sentence including the PPI

*The protein names that are not normalized by PPIExtractor to any Entrez
Gene id are assigned with the ID 0000
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As can be seen from the figures, there is a significant
difference among these malignant neoplasms. For ex-
ample, malignant neoplasms of digestive organs
(C15-C26), breast (C50), and stated or presumed to be
primary, of lymphoid, hematopoietic and related tissue
(C81-C96) have much more PPIs than malignant neo-
plasm of bone and articular cartilage (C40–C41).
In addition, the occurrence frequencies of unique PPIs

in 13 categories of malignant neoplasms are presented in
Fig. 3. The majority of PPIs are only associated with a
particular category (i.e., the occurrence frequency of the
PPI is one). 44,220 PPIs are associated with any two cat-
egories; 15,565 PPIs associated with any three categories;
7,374 PPIs associated with any four categories of malig-
nant neoplasms. It is noteworthy that, as shown in
Table 3, 27 PPIs are relevant to all 13 categories. Such
PPIs tend to be more valuable for healthcare profes-
sionals since they may have a biological relation with
more malignant neoplasms than others. For example,
p53 has been described as “the guardian of the genome”
because of its role in conserving stability by preventing
genome mutation [30]. The combination of p53 and

MIB-1 demonstrates prognostic significance in male
germ cell tumors [31] and human bladder tumors [32]
(row 2 in Table 3). Activated p53 binds DNA and acti-
vates expression of several genes including WAF1/CIP1
encoding for p21 and hundreds of other downstream
genes [33] (row 3 in Table 3). Overexpression of p53 and
Ki-67 could be used to discriminate low-risk luminal A
subtype in breast cancer [34] (row 4 in Table 3). p53, ca-
thepsin D, and B cell lymphoma 2 (Bcl-2) are joint prog-
nostic indicators of breast cancer metastatic spreading
[35] (row 5 in Table 3). In addition, ribosomal S6 kinase
1 (S6K1) is a downstream component of the mammalian
target of rapamycin (mTOR) signaling pathway and plays
a regulatory role in translation initiation, protein synthe-
sis, and muscle hypertrophy [36] (row 6 in Table 3).

Evaluation of HMNPPID data
For a PPI database, the quality of its data is of great im-
portance. However, there is no cancer-relevant PPI gold
set currently. To assess the quality of the data in
HMNPPID, we firstly explored the performance of
PPIExtractor using the PPIs in HPRD, since the PPIs in

Fig. 1 Numbers of the PPIs of 13 categories of human malignant neoplasms

Fig. 2 Proportion of the PPIs of 13 categories of human malignant neoplasms. The 13 categories are differentiated by different colors
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HPRD were also collected from the literatures and their
reliability is justified (they are curated by expert biolo-
gists) and the comparison with it is meaningful. HPRD
includes 39,240 PPIs obtained from a set of published
articles. We used PPIExtractor to extract 54,808 unique
PPIs with the threshold 0 from the abstracts of the same
article set (since the full texts of many articles are not
available publicly, we only used the abstracts) and 12,870
of HPRD PPIs (accounting for 32.8% of total HPRD
PPIs) were matched.
We further analyzed some of the results to find the re-

call error types. The PPIs in HPRD were curated by ex-
pert biologists from both abstracts and full text. Since
PPIExtractor was applied only on the abstracts, the PPIs
present in the full text were missed out. This accounts
for about 68% of total recall errors. In addition, some
PPIs in HPRD were extracted by PPIExtractor but with a
threshold less than zero (accounts for about 21% of total
recall errors). The reason is that due to the complexity
of the protein interaction expression, PPIExtractor may
fail to extract some true PPIs. In fact, if the threshold is
relaxed to − 0.6, almost half (48.08%) of HPRD PPIs
could be extracted.
Finally, the names of the proteins of HPRD PPIs are

the formal ones assigned by expert biologists which usu-
ally are not the same with those used in texts. For ex-
ample, for a HPRD PPI (INSR 00975 NP_000199.2
FABP4 02698 NP_001433.1 in vitro; in vivo 1648089), it
can be extracted from the sentence “Kinetic analysis in-
dicated that stimulation of ALBP phosphorylation by in-
sulin was attributable to a 5-fold increase in the
Vmax…” in the abstract with PubMed ID 164808. ALBP
is an alias of FABP4 (fatty acid-binding protein 4) and
insulin refers to insulin receptor, an alias of INSR. How-
ever, the failure of matching insulin with INSR by the
matching program leads to the recall error of this HPRD

Fig. 3 Number of the PPIs with different occurrence frequency. The x-axis denotes the occurrence frequency and the y-axis denotes the number
of unique PPIs

Table 3 The PPIs related to all 13 kinds of malignant neoplasms

ProteinName1 ProteinID1 ProteinName2 ProteinID2

p53 7157 MIB1 57534

p53 7157 WAF1/CIP1 1026

p53 7157 Ki-67 4288

p53 7157 bcl-2 596

mTOR 2475 S6K1 6198

Bcl-2 596 Bcl-x 598

Bcl-2 596 Bax 581

telomerase 23293 TERT 7015

CD3+ 64231 CD8 925

CD3+ 64231 CD4+ 920

CD4 920 CD8 925

CD34 947 vimentin 7431

IL 1 alpha 3552 IL 6 3569

IL-1 beta 3553 TNF-alpha 7124

phosphatidylinositol 3-kinase 5295 PI3K 5290

vimentin 7431 cytokeratin 3859

MIB-1 57534 Ki-67 antigen 4288

CTNNB1 1499 WNT 7471

Pgp 5243 MRP1 4363

ERK1/2 5595 JNK1/2 4939

Fas/FasL 355 Fas 356

cytokeratin 3859 AE1/AE3 6521

transforming growth factor-beta 654 TGF-beta 7043

ER 2099 /PR 5541

interferon alpha 3451 IFN 3439

IgG 2217 IgM 959

vimentin 7431 actin 86
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PPI. Such errors account for about 11% of total recall
errors.
Furthermore, to assess the quality of the data in

HMNPPID, we compared it with PPIs in HCPIN. There
are 9,784 PPIs among HCPIN proteins. However, since
these PPIs are not available, we reconstructed them from
the PPIs of seven pathways (i.e., apoptosis, cell-cycle,
Janus kinase, mitogen-activated protein kinase, PI3K,
transforming growth factor, Toll-like receptor) provided
on HCPIN website (http://nesg.org:9090/HCPIN/Show-
Pathway.jsp) and only a total of 5,815 PPIs were
obtained. As a result, 1636 PPIs of HCPIN (accounting
for 28.13% of a total of 5815) were found in HMNPPID
(72,866 PPIs with confidence scores greater than or
equal to zero). Similar to the case of HPRD, the mis-
matching between the protein names in texts with the
ones in HCPIN results in many recall errors.
Considering that the PPIs in HMNPPID were ex-

tracted from abstracts rather than full texts, the coverage
rates (about 30%) of HMNPPID data with HPRD and
HCPIN are still acceptable.
What is more, the 39,240 PPIs in HPRD were curated

by expert biologists from 20,074 articles, which means
less than two PPIs were curated from one article on
average. In fact, only one PPI was curated from one
article in most cases. This shows that expert biologists
usually only curate the few novel PPIs while ignoring
many other PPIs in the article. In contrast, PPIExtractor
will extract all the PPIs in the abstracts into HMNPPID,
which is especially useful for the researchers who need
to explore the relations between the multiple PPIs from
one single article or a set of related articles (i.e., these
PPIs are usually associated with each other). This is also
the reason why PPIExtractor can extract more PPIs than
HPRD from the same article set (54,808 vs 39,240).
However, the quality of the PPI data in HMNPPID but
not in HPRD or HCPIN is difficult to evaluate due to
the lack of gold standard.

The database website
As has been mentioned in the previous section, the
PPIs of 171 types of malignant neoplasms were ex-
tracted with PPIExtractor, and then used to construct
the PPI database of human malignant neoplasms,
HMNPPID. HMNPPID can be accessed through
http://202.118.75.18:8082/HMNPPID.asp. As shown in
Fig. 4, on the web site the PPIs files are presented in
tabular form. For each malignant neoplasm, the number of
abstracts retrieved from PubMed with a corresponding
query string and the number of the PPIs extracted from
these abstracts is provided
In addition, the website also supports the query

function (the query interface is shown in Fig. 5). Users
can search the PPIs by the protein names (or Entrez

IDs), protein name (or Entrez ID) pairs, and PubMed
IDs.

PPI visualization program
To facilitate users to analyze the PPIs of specific malignant
neoplasm, the PPI visual analysis tool is needed. Though
there have been some existing visual approaches to PPI
analysis such as STRING-DB [37], we provide a
visualization tool of our own, called VisualPPI, because it is
more convenient to display the detailed information about
the PPI data in HMNPPID. It can be downloaded from the
HMNPPID website (its interface is shown in Fig. 6). While
opening a PPI file (text format) of a malignant neoplasm in
VisualPPI, a PPI network is displayed. The nodes in the net-
work represent the proteins and the edges represent that
this pair of proteins interacting with each other.
VisualPPI provides four graphical display modes

named “Circle layout,” “FR layout,” “Spring layout,” and
“ForceDirected layout” (as shown in Fig. 7). In addition,
the users can set the PPI filtering threshold as needed
and the default value is 0, which indicates that only the
PPIs whose confidence scores higher than 0 will be
displayed in the network. For example, in Fig. 6, the
display mode is “ForceDirected layout” and the threshold
is set to 0. Selecting any region in the network (when
the nodes change from red to yellow), users can get
detailed information about PPIs at the bottom of the
interface.
In our opinion, VisualPPI can facilitate the analysis of

the specific PPI network of a malignant neoplasm and
may help discover the molecular mechanisms behind the
malignant neoplasm.

Conclusions
The analysis on the PPIs of human malignant neoplasms
helps unveil the molecular mechanisms behind. How-
ever, it is difficult to manually extract all the PPIs from
large quantities of ever-growing biomedical literatures.
In this work, we constructed HMNPPID, a PPI

database for human malignant neoplasms, using
PPIExtractor from large amounts of biomedical texts.
HMNPPID can hopefully become an important and
readily available resource for the related research. We
also provide the healthcare professionals with VisualPPI
to help them efficiently analyze the PPI network of one
specific malignant neoplasm.
As discussed in the “Background” section, currently,

there have been some cancer-related PPI databases such
as CancerNet and HCPIN. For CancerNet, it provides
cancer-specific molecular interaction networks across
multiple cancer types and the PPIs associated with a
cancer are those of which the two pair mates were both
found to be expressed in that cancer (genes were
considered expressed if their transformed expression
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level was equal to or above 2 (in log2 (TPM+ 1) scale)
in at least 80% samples) [20]. By contrast, more types of
human malignant neoplasm specific PPI data are
provided in HMNPPID but are extracted from large
quantities of PubMed abstracts with PPIExtractor.
For HCPIN, its interaction data are cancer-associated

signaling pathways, but are not cancer-specific. In
addition, they are a subset of the HPRD which was
curated by expert biologists. Since the amount of
biomedical literatures regarding PPIs is growing at an
explosive speed, it is time-consuming and labor-intensive
to manually extract PPIs from the unstructured texts.
For HMNPPID, the PPIs associated with a cancer were

extracted from the cancer-related PubMed abstracts
with a tool PPIExtractor. On the one side, using PPIEx-
tractor is much efficient than manual curation. For
example, it only took about 8 days to extract 54,808
unique PPIs with the threshold 0 from 20,074 PubMed
abstracts corresponding to the HPRD article set on a PC
with an Intel i3-3220 CPU and 4G memory. On the
other side, PPIExtractor can have satisfactory precision
performance if a suitable threshold is set (usually the ex-
tracted PPI is reliable with the threshold 0). In fact, it
achieved a precision of 79.23% on a DIP subset [27].
To keep the data up to date, we plan to update

HMNPPID every half year (currently, the data in

Fig. 4 The web interface of HMNPPID database

Fig. 5 The query interface of HMNPPID database
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Fig. 6 The interface of VisualPPI

Fig. 7 Four graphical display modes
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HMNPPID has been updated to April 30, 2019). In
addition, our future research will focus on two areas in
order to improve the quality and utility of the PPI data-
base. First, we will improve the performance of PPIEx-
tractor with the introduction of the popular deep
learning method [38]. Second, we plan to extract the
PPIs associated with human malignant neoplasms from
full texts of the article instead of abstracts only which is
recently made feasible with PMC Open Access BioC
RESTful server (https://www.ncbi.nlm.nih.gov/research/
bionlp/APIs/BioC-PMC/). As discussed in section
Evaluation of HMNPPID data, this will improve the re-
call performance of PPI extraction. This paper is a
revised and expanded version of a paper [39] presented
at IEEE BIBM International Conference on Bioinformat-
ics & Biomedicine (BIBM) 2018.
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