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ABSTRACT
The neuroanatomy of hadrosaurid dinosaurs is well known from North America
and Asia. In Europe only a few cranial remains have been recovered that include
the braincase. Arenysaurus is the first European endocast for which the paleoneu-
roanatomy has been studied. The resulting data have enabled us to draw ontogenetic,
phylogenetic and functional inferences. Arenysaurus preserves the endocast and
the inner ear. This cranial material was CT scanned, and a 3D-model was gener-
ated. The endocast morphology supports a general pattern for hadrosaurids with
some characters that distinguish it to a subfamily level, such as a brain cavity that is
anteroposteriorly shorter or the angle of the major axis of the cerebral hemisphere
to the horizontal in lambeosaurines. Both these characters are present in the
endocast of Arenysaurus. Osteological features indicate an adult ontogenetic stage,
while some paleoneuroanatomical features are indicative of a subadult ontogenetic
stage. It is hypothesized that the presence of puzzling mixture of characters that
suggest different ontogenetic stages for this specimen may reflect some degree of
dwarfism in Arenysaurus. Regarding the inner ear, its structure shows differences
from the ornithopod clade with respect to the height of the semicircular canals. These
differences could lead to a decrease in the compensatory movements of eyes and
head, with important implications for the paleobiology and behavior of hadrosaurid
taxa such as Edmontosaurus, Parasaurolophus and Arenysaurus. The endocranial
morphology of European hadrosaurids sheds new light on the evolution of this group
and may reflect the conditions in the archipelago where these animals lived during
the Late Cretaceous.

Subjects Paleontology
Keywords European lambeosaurine, Paleoneurology, Hadrosaurid, Paleobiology, Inner ear,
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INTRODUCTION
Hadrosaurids are the most abundant ornithopod dinosaurs from the Late Cretaceous

of Laurasia, with a very complete record including ontogenetic series, mummies, eggs,
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ichnites, etc. (see Lull & Wright, 1942; Horner, Weishampel & Forster, 2004 for reviews).

This rich record also includes natural cranial endocasts or complete skulls allowing the

generation of silicone or latex rubber models of the endocast (Lambe, 1920; Gilmore,

1924; Ostrom, 1961; Serrano-Brañas et al., 2006; Lauters et al., 2013). The endocranial

morphology of hadrosaurids has been studied since the first quarter of the 20th century

(as in the case of Edmontosaurus regalis (Lambe, 1920) or Lambeosaurus Gilmore, 1924).

Nowadays, non-invasive techniques such as CT scans shed new light on the paleoneurology

of dinosaurs and other extinct taxa (Witmer et al., 2008; Evans, Ridgely & Witmer, 2009;

Godefroit, Bolotsky & Lauters, 2012; Lautenschlager & Hübner, 2013). CT scan techniques

are currently common in biology and paleontology as a way of obtaining digital models

of inner regions as in the case of endocranial morphology, where these cavities may

sometimes be filled by matrix. One of the great advantages of the CT scan is also that it

makes it possible to access features without destroying the specimen (by contrast with

very old methods) with minimum manipulation of the specimen and to create 3D models

allowing manipulation or measurement without damage to the specimen. A CT scan

allows a 3D visualization with a high or very high resolution, depending on the type of CT

scan used and the goal of the study.

To date, endocranial morphology is mainly known from North American specimens

(Lull & Wright, 1942; Ostrom, 1961; Hopson, 1979; Evans, Ridgely & Witmer, 2009; Farke

et al., 2013) and to a lesser extent from Asian remains (Young, 1958; Saveliev, Alifanov &

Bolotsky, 2012; Godefroit, Bolotsky & Lauters, 2012; Lauters et al., 2013), including isolated

individuals and ontogenetic series. In Europe, however, the cranial record of hadrosaurids

is very scarce, and no paleoneurological analyses have yet been performed. The European

hadrosaurids with cranial material are Tethyshadros, Telmatosaurus and Arenysaurus

(Nopcsa, 1900; Dalla Vecchia, 2009; Pereda-Suberbiola et al., 2009b). In the case of Tel-

matosaurus, a latex rubber model of poor quality was described historically (Nopcsa, 1900).

Arenysaurus forms part of the rich hadrosaurid fauna from the Iberian Peninsula,

although cranial remains are scarce (Cruzado-Caballero, Pereda Suberbiola & Ruiz-

Omeñaca, 2010; Cruzado-Caballero, Ruiz-Omeñaca & Canudo, 2010; Cruzado-Caballero

et al., 2013; Prieto-Márquez et al., 2013). It was described by Pereda-Suberbiola et al.

(2009b) as the first European lambeosaurine hadrosaurid preserving most of the cranial

elements, including an almost complete and uncrushed braincase (Fig. 1). The Arenysaurus

remains, together with other hadrosaurid and lambeosaurine material, helped to exchange

the vision of a primitive European fauna for one that is more diverse, permitting

osteological comparison with derived hadrosaurid faunas from North America and Asia,

and studies of the phylogenetic relations between them (Company, Galobart & Gaete,

1998; Casanovas et al., 1999; Pereda-Suberbiola et al., 2009a; Cruzado-Caballero, Pereda

Suberbiola & Ruiz-Omeñaca, 2010; Cruzado-Caballero, Ruiz-Omeñaca & Canudo, 2010;

Cruzado-Caballero, 2012). Recently, Cruzado-Caballero et al. (2013) and Prieto-Márquez

et al. (2013) have raised the possibility of a North American influence on the European

lambeosaurine fauna.
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Figure 1 A 3D reconstruction of the braincase of Arenysaurus ardevoli. (A) Braincase opaque, (B)
Semitransparent braincase with the brain cavity endocast opaque.

The main goals of the present paper are (1) to describe the first 3D endocast of a

European hadrosaurid, (2) compare the neuroanatomy of the European hadrosaurids

with the other Laurasian ones, and (3) provide new insights into the paleobiology of

the lambeosaurines, for which there has up to now been a scarcity of information in

comparison with hadrosaurines (Evans, Ridgely & Witmer, 2009; Lauters et al., 2013).

MATERIAL AND METHODS
Studied material: MPZ2008/1 (Fig. 1), skull remains of the holotype of the taxon

Arenysaurus (Pereda-Suberbiola et al., 2009b). The remains are from the Blasi 3 locality

in the town of Arén (Huesca province, NE Spain). Postcranial remains of Arenysaurus have

also been recovered (see Cruzado-Caballero et al., 2013).

Computed tomography: The cranial material of Arenysaurus was CT scanned at the

“Laboratorio de Evolución Humana” (LEH) of the Universidad de Burgos (Spain) using

an industrial CT scanner, the Yxlon Compact (Yxlon Compact; YXLON International;

Hamburg, Germany). The braincase is broken into two pieces (one including the frontal,

parietal, left postorbital and left squamosal while the other includes the right postorbital

and right squamosal), and these were scanned separately. In both cases, the material was

scanned at 200 kV and 2.8 mA and an output of 1024 × 1024 pixels per slice, with an

inter-slice space of 0.3 mm. In the part of the skull with the frontal, parietal, left postorbital

and left squamosal, there were 543 slices, providing an in-plane pixel size of 0.24 mm, while

in the other part including the right postorbital and right squamosal there were 582 slices,

providing an in-plane pixel size of 0.2 mm. Due to the density of the bone and internal

matrix, the CT images present several artifacts such as beam hardening, cupping artifacts

and ring artifacts. These artifacts made automatic thresholding impossible, because the

grey pixel value changes. For example, the beam hardening artifact makes the edge of the

object brighter than the center, and ring artifacts produce bighting and dark concentric

circles. Furthermore, the grey levels of regions of interest are very similar to those of matrix

regions. Therefore, the endocast segmentation was done manually. The segmentation was

done in the 3D Virtual Lab of the Institut Català de Paleontologia using Avizo 7.1 (VSG,
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Germany), generating a 3D mesh of each CT scan. After the segmentation, the two 3D

surfaces were united using the same software and looking for contact points in the 3D

braincase surfaces. When these were perfectly fitted on the inside, the 3D endocast fitted

too. Then digital measurements, including the volume, were obtained using Rhinoceros 4.0

and ImageJ.

Repository of the ct-data sets: Figshare http://dx.doi.org/10.6084/m9.figshare.1287781,

http://dx.doi.org/10.6084/m9.figshare.1287779.

Cranial endocast
The braincase of Arenysaurus is almost complete, and the individual bones are heavily

co-ossified (Fig. 2, see Video S1). It has a slight lateral taphonomic deformation that

does not affect the validity of the three-dimensional digital model (see osteological

description in Pereda-Suberbiola et al., 2009b). By means of the CT scan, an almost

complete three-dimensional endocast has been reconstructed. The structures on the left

side of the endocast are well preserved and have been digitally rendered, while those on the

right side are poorly preserved and in some cases unable to be reconstructed. As a whole, it

is possible to observe the incomplete olfactory bulbs, the cerebral hemisphere, cerebellum,

beginning of the medulla oblongata, pituitary (hypophyseal) fossa, inner ear and the canal

for almost every nerve from II to XII (Fig. 2).

The Arenysaurus endocast, as is typical in hadrosaurids, is elongate anteroposteriorly

with an anteroposterior length of 116.5 mm from the base of the olfactory tract to

the caudal branch of the hypoglossal nerve. The maximum width across the cerebral

hemisphere is 48.4 mm, and the estimated volume of the endocast (including the olfactory

bulbs) is 126.2 cm3. The total volume of the cerebral hemisphere is 65.4 cm3, comprising

53.3% of the total endocranial volume (excluding the olfactory bulbs). This volume value is

close to the results obtained by Saveliev, Alifanov & Bolotsky (2012) for the adult specimen

of the lambeosaurine Amurosaurus AENM1/123 (see Table 1).

On the other hand, the Arenysaurus endocast is considerably constricted lateromedially

at the cerebellum level, with a maximum width of 31.3 mm in this region, and slightly

constricted at the medulla oblongata (26.3 mm). Unfortunately, the vallecula system,

described in the anterior part of the endocast of other hadrosaurids, cannot be observed in

Arenysaurus due to the hard matrix that covers this area.

The angle of the major axis of the cerebral hemisphere to the horizontal is close to 45◦ in

the endocast. According to Evans, Ridgely & Witmer (2009), this high angle corresponds to

a lambeosaurine shape as opposed to that of hadrosaurines and other ornithopods, where

the cerebral hemisphere is positioned more horizontally (Hopson, 1979).

The angle of flexure between the cerebellum and the cerebral hemispehere is very

small, close to 10◦, revealing that in this respect the endocast is similar to previously

described adult Laurasian lambeosaurines (e.g., Hypacrosaurus altispinus ROM 702,

Amurosaurus riabinini IRSNB R 279, AENM nos. 1/232 and 1/240; Evans, Ridgely

& Witmer, 2009; Saveliev, Alifanov & Bolotsky, 2012; Lauters et al., 2013). According

to Giffin (1989), pontine flexures are virtually absent and the possession of a nearly
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Figure 2 Cranial endocast. (A) right lateral, (B) left lateral, (C) dorsal, (D) ventral, and (E) anterior
views. Abbreviations: car, cerebral carotid artery canal; cer, cerebral hemisphere; cll, cerebellum; dp, dural
peak; ie, inner ear; mo, medulla oblongata; ob, olfactory bulbs; pit; pituitary fossa; ts, transverse sinus;
vls, ventral longitudinal sinus. II–XII, nerves; II, optic nerve; III, oculomotor nerve; V, trigeminal nerve;
V1, ophthalmic branch of nerve V; g V, trigeminal ganglion of nerve V; VI, abducens nerve; VII, facial
nerve; VIII, vestibulocochlear nerve; IX, glossopharyngeal nerve; X, vagus nerve; XI, accessory nerve; XII,
hypoglossal nerve.

straight endocranial cavity is derived for “iguanodontids” and hadrosaurids. Further, in

lateral view the cerebral hemisphere is not very strongly arched, as is the case in adult

lambeosaurines and unlike young individuals (e.g., Parasaurolophus sp. RAM 14000).

These different angles are possibly a consequence of more strongly arched frontals in

young individuals (Farke et al., 2013). In Arenysaurus the angle of the dural peak is close to

114◦ (Lautenschlager & Hübner, 2013; Farke et al., 2013).
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Table 1 Measurements of length and volume for complete brain cavity and various brain regions. Measurements were obtained from Lambe (1920), Ostrom (1961),
Evans, Ridgely & Witmer (2009), Saveliev, Alifanov & Bolotsky (2012), Farke et al. (2013) and Lauters et al. (2013), and for Arenysaurus they were calculated from the
digital endocasts using digital segmentation in the Avizo 7.1 program.

Taxa Ontogenetic
state

Specimen
number

Total length
endocast
without
olfactory
bulbs (mm)

Maximum width
of the cerebral
hemisphere
(mm)

Volume total
of endocast
without
olfactory
bulbs (cm3)

Cerebral hemi-
spheres without
olfactory bulbs
(cm3)

% cerebral hemi-
spheres volumen
with respect total
volume

Olfactory bulbs
volumen (cm3)

Lambeosaurus sp. Juvenile ROM 758 113.2 43 88.32 35.1 39.74 2.9

Corythosaurus sp. Juvenile ROM 759 110.1* 46.5 91.7 41.6 45.36 6.2*

Parasaurolophus sp. Juvenile RAM 14000 – 36* – – – –

Corythosaurus sp. Subadult CMN 34825 142 44.7 134.2 51.1 38.08 11.2*

Hypacrosaurus
altispinus

Adult ROM 702 204 63.2 275.9 117.5 42.59 14*

Amurosaurus Adult AENM 1/123 230 72 370 210** 56.76** –

Amurosaurus Adult AENM 1/123 230 72 400 240** 60** –

Amurosaurus Adult IRSNB R 279 154 65 290 87 30 –

Arenysaurus Subadult-Adult MPZ2008/1 116.48 48.38 122.8 65.42 53.27 3.44*

Notes.
* Incomplete or stimate.

** Include the volume of the olfactory bubs.
– No data.

C
ru

zad
o

-C
ab

allero
et

al.(2015),P
eerJ,D

O
I10.7717/p

eerj.802
6/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.802


The olfactory bulbs are located anteroventral to the cerebral hemisphere; only the bases

of the bulbs are preserved. It has not been possible to reconstruct them completely, because

the skull is broken in the anterior part of the frontals. The left bulb is the more complete

one, while the right bulb only preserves its ventral part. In anterior view, the left olfactory

bulb has an inverted L-shaped morphology. In this view, it is also possible to observe that

the left olfactory bulb is almost half the height of the cerebral hemisphere, as also occurs in

the adult of Amurosaurus (IRSNB R 279, AENM nos. 1/232 and 1/240; Saveliev, Alifanov

& Bolotsky, 2012; Lauters et al., 2013) and the subadult of Corythosaurus sp. (CMN 34825;

Evans, Ridgely & Witmer, 2009). The olfactory bulbs are turned downward with an angle

on the dorsal side of 127.6◦ (measured between the anterodorsal surface of the cerebral

hemisphere and the dorsal surface of the olfactory bulb). The total volume of the partially

preserved olfactory bulbs is 3.4 cm3.

Several authors have commented on the presence of vascular elements in endocasts

(Osmólska, 2004; Evans, 2005; Evans, Ridgely & Witmer, 2009; Lauters et al., 2013). In the

case of Arenysaurus, the transverse sinus can be seen on the lateral side of the cerebellum,

and on the ventral side of the cerebellum and in part of the medulla oblongata the ventral

longitudinal sinus can be discerned (Fig. 2).The Arenysaurus pituitary (or hypophyseal)

fossa is located posteroventrally to the optic nerve. It is deformed on its left side. It has a

length of 19.1 mm, a height of 32.8 mm, a width of 14.5 mm, and a volume of 3.6 cm3. The

original volume of the pituitary fossa was probably bigger, but taphonomical deformation

has caused a volume artifact. The size of the pituitary body appears relatively large, as

in other hadrosaurids (Lauters et al., 2013). Posteroventrally, it is possible to observe the

joining of two big cerebral carotid arteries (Fig. 2).

Cranial nerves
The canals for almost all the cranial nerves, excluding nerve I and IV, can be seen to be pre-

served on the left side. Through these canals other structures also accompanied the nerves

(e.g., meninges, venous structures, arteries, etc.). The cranial nerves present the same

configuration as in other hadrosaurids (see Hopson, 1979; Evans, Ridgely & Witmer, 2009).

Nerve II, or the optic nerve (CN II), is the most anterior nerve preserved. It is very

small, tubular, and parallels the ventral side of the cerebral hemisphere (with a lateromedial

width of 4.8 mm, and a dorsoventral height of 5.5 mm). It is located under the cerebral

hemisphere and is joined to the pituitary anteriorly. This nerve is very small in comparison

with hadrosaurids; for example, Hypacrosaurus (Evans, Ridgely & Witmer, 2009) and

Amurosaurus (Lauters et al., 2013; Saveliev, Alifanov & Bolotsky, 2012). The optic chiasm

can only be seen in left view and is represented by a low, rounded protrusion dorsal to

the pituitary fossa. Nerve III, or the oculomotor nerve (CN III), is posterior to nerve II.

It is located in the middle of the juncture between the pituitary and the midbrain. It is

small and has a very short, tubular morphology (with a lateromedial width of 4.8 mm, a

dorsoventral height of 6.5 mm and an anteroposterior length of 5.9 mm).

The next nerve preserved towards the posterior portion is nerve V, or the trigeminal

nerve (CN V). From this nerve the ophthalmic branch (CN V1) and the base of the
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trigeminal ganglion are preserved. However, the maxillary and mandibular branches

(CN V2-3) are not observed. The ophthalmic branch is 7 mm in height dorsoventrally and

2.4 mm in length anteroposteriorly.

The ventral side of the endocast preserves nerve VI, or the abducens nerves (CN VI).

These are joined to the pituitary, and exits from it posteriorly to connect ventrally with the

cerebellum. The nerves are flattened lateromedially and are wider than high.

Nerve VII, or the facial nerve (CN VII), is positioned anterior to the cochlea and

near nerve VIII. This nerve is tube-like, very small and thin, with a slight widening

dorsomedially on its distal side. It is ventral to nerve VIII and runs lateroposteriorly with

respect to the anteroposterior axis of the endocast.

Nerve VIII, or the vestibulocochlear nerve (CN VIII), is dorsal to nerve VII. This nerve is

only partially preserved, showing a very small portion of the base dorsoventrally flattened.

Nerve IX, or the glossopharyngeal nerve (CN IX), is posterior to the cochlea and runs

laterally, touching the cochlea in its anteriormost part. This nerve is very slim in its

basal part and is tubular in shape. At its lateral extreme the nerve is extremely expanded

dorsomedially (3.1 mm) and lateromedially (3 mm).

Nerves X and XI, the vagus and accessory nerves respectively (CN X and XI), are joined

and these possibly also join with a branch of nerve XII to form a single nerve. These joined

nerves are very broad anteroposteriorly (6.8 mm) and are clearly lateroposteriorly directed.

Nerve XII, or the hypoglossal nerve (CN XII), is possibly formed by two branches. The

more anterior branch could be joined with nerves X and XI. The second branch, which

is more posterior presents an anteroposteriorly narrow base (2.2 mm) and a dorsoventral

height (3.9 mm) that is expanded distally (with an anteroposterior width of 4.7 mm and a

dorsoventral height of 5.58 mm). This nerve is only laterally directed.

Inner ear
The digital reconstruction of the inner ear is complete on the left side, whereas the right

side just conserves part of the cochlea and the anterior and posterior semicircular canals.

The general form of the inner ear is similar to that described in other hadrosaurids (Brown,

1914; Langston, 1960; Ostrom, 1961; Evans, Ridgely & Witmer, 2009; Farke et al., 2013),

and, as discussed in Evans, Ridgely & Witmer (2009), it resembles the condition in extant

crocodilians. The three semicircular canals are oriented in approximately the three planes

of space, where the anterior semicircular canal is slightly higher dorsoventrally and longer

(Fig. 3). This configuration is the most common one in vertebrates (Knoll et al., 2013). The

arch of the anterior and lateral semicircular canals is circular in shape while the posterior

semicircular canal is ellipsoidal. The anterior semicircular canal is slightly taller than

the posterior semicircular canal (when the lateral canal is oriented horizontally). This

difference between the dorsoventral heights of the canals is reflected in the ratio between

them, which is 0.98 in Arenysaurus. With regard to their ampullae, the lateral ampulla

is larger than the posterior ampulla and the anterior ampulla, as in Parasaurolophus sp.

RAM 14000 (Farke et al., 2013) and unlike in Hypacrosaurus altispinus ROM 702 and

Lambeosaurus sp. ROM 758 (Evans, Ridgely & Witmer, 2009), where the anterior ampulla
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Figure 3 Left inner ear. (A) lateral, (B) anterior, (C) posterior, and (D) dorsal views. Abbreviations: asc,
anterior semicircular canal; asca, ampulla of anterior semicircular canal; c, cochlear duct (= lagena); crc,
crus communis; fv, fenestra vestibuli (= oval window); lsc, lateral semicircular canal; lsca, ampulla of
lateral semicircular canal; psc, posterior semicircular canal; psca, ampulla of posterior semicircular canal;
ve, vestibule of inner ear.

is the largest, followed by the lateral ampulla. Moreover, in lateral view, the cochlea is

boomerang-like, convex laterally and concave medially. In anterior view, it presents an

S-shape with a sharp distal border and it has a length of 10.7 mm from the foramen

vestibulea (Table 3).

DISCUSSION
The endocranial morphology among hadrosaurid dinosaurs is similar and characteristic

of the family. Hadrosaurid endocranial possess a greatly inflated, smoothly rounded

cerebrum, do not have a pontine flexure and the orientation of the cranial cavity within

the skull is obliquely anterodorsal (Hopson, 1979). At a subfamily level (hadrosaurine-

lambeosaurine) there are characters that can help to distinguish them, such as a brain

cavity that is anteroposteriorly shorter or the angle of the major axis of the cerebral

hemisphere to the horizontal in lambeosaurines (Evans, Ridgely & Witmer, 2009).

Both characters are present in the endocast of Arenysaurus and are consistent with the

lambeosaurine affinity of this taxon.

A previous paper (Pereda-Suberbiola et al., 2009b) considered that this Arenysaurus

specimen belongs to a presumably adult individual on the basis of several osteological

characteristics. The paleoneuroanatomical evidence supports this ontogenetic assignment,

with the following features referred to adult hadrosaurid animals present in this specimen:

an angle of flexure between the cerebellum and cerebral hemisphere that is very small as

in lambeosaurine adults, as described by Evans, Ridgely & Witmer (2009), and the cranial

sutures that are difficult to discern in the CT scan, as is usual in adult specimens.

However, some paleoneuroanatomical features herein reported are indicative of a

subadult ontogenetic stage for this specimen: the total volume of the endocast without

olfactory bulbs; the volume of the cerebral hemispheres without olfactory bulbs; the

maximum width of the cerebral hemisphere (see Table 1). This puzzling mixture of

characters from adult and subadult stages may reflect a possible first case of a certain

degree of dwarfism evidenced by a hadrosaurid endocast. The hypothesis of a reduction
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Table 2 Measurement of the angle of the dural peak for several hadrosaurines and lambeosaurines
calculated from drawings and digital endocasts using ImageJ. Measurements were obtained from the
Arenysaurus endocast, Lambe (1920), Ostrom (1961), Evans, Ridgely & Witmer (2009), Saveliev, Alifanov
& Bolotsky (2012), Farke et al. (2013) and Lauters et al. (2013).

Taxa Angle of dural peak

Edmontosaurus regalis
(N.M.C. No. 2289)

110.66

Edmontosaurus
(A.M.N.H. No. 5236)

133.79

Kritosaurus notabilis
(A.M.N.H. No. 5350)

132.28

Corythosaurus sp.
(CMN 34825)

130.4

Hypacrosaurus altispinus
(ROM 702)

139.08

Lambeosaurus sp.
(ROM 758)

106.71

Amurosaurus
(AENM 1/123)

123.77

Amurosaurus
(IRSNB R 279)

138.56

Arenysaurus
(MPZ2008/1)

117.08

Parasaurolophus sp.
(RAM 14000)

90

in size due to insularism in European hadrosaurids has been proposed by several authors

in the last decade and is supported by bone as well as track records (Vila et al., 2013 and

references).

Moreover, Farke et al. (2013) have hypothesized that hadrosaurids such as the small

ornithopod Dysalotosaurus lettowvorbecki present a dural peak (the angulation of the

dorsal margin of the cerebellum, not its prominence) that is mostly unchanged through

the ontogenetic stages. These authors suggest that the phylogenetic differences between

the lambeosaurini and parasaurolophini tribes could be assessed in the light of the

angle of the dural peak. In these terms, the lambeosaurins presented a wider angle

(around 120◦) while parasaurolophins presented a more acute angle (approximately

90◦). We have observed hadrosaurins and lambeosaurins to display an angle of no less

than 100◦. In the case of Arenysaurus, this angle is approximately 114◦ (see Table 2).

In sum, the angle of the dural peak may indeed be informative, suggesting that the

condition with a greater angle could be a basal character and anangle less than 100◦ may

be exclusive to the genus Parasaurolophus. Regarding the inner ear, although the general

form is similar to the other hadrosaurids, it is possible to observe small differences in

the semicircular canals with respect to the ornithopod clade (see Fig. 4). The anterior

semicircular canal is tallest at the base of the clade (Dysalotosaurus and Iguanodon; the

ratio of anterior/posterior semicircular canal height is 1.11 in Iguanodon), by contrast
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Table 3 The maximum length of the digital cochlea of Arenysaurus casts and of other lam-
beosaurines. The maximum length of the digital cochlea of Arenysaurus casts determined using the Avizo
7.1 program, and of other lambeosaurines from Evans, Ridgely & Witmer (2009).

Taxa Ontogenetic state Specimen no. Cochlea length (mm)

Lambeosaurus sp. Juvenile ROM 758 9.2

Corythosaurus sp. Juvenile ROM 759 11.9

Parasaurolophus sp. Juvenile RAM 1400 7.6*

Corythosaurus sp. Subadult CMN 34825 12.3

Hypacrosaurus altispinus Adult ROM 702 16.7

Arenysaurus Subadult-Adult? MPZ2008/1 10.72

Notes.
* Not complete.

Figure 4 Endosseous labyrinths of the inner ears. Endosseous labyrinths of the inner ears redrawn for:
Dysalotosaurus, Lautenschlager & Hübner, (2013; Fig. 2(h)); Iguanodon, Norman, Witmer & Weishampel
(2004; Fig. 19.9); Edmontosaurus, Ostrom; (1961; Fig. 59a); Lophorhothon, Langston (1960; Fig. 163a);
Parasaurolophus, Farke et al. (2013; Fig. 16d); Hypacrosaurus and Lambeosaurus, Evans, Ridgely & Witmer;
(2009; Fig. 8a,e) and Arenysaurus ardevoli, displayed on a cladogram redrawn from Horner, Weishampel &
Forster (2004), with additional data from McDonald (2012) and Cruzado-Caballero et al. (2013). Left inner
ear: Edmontosaurus, Arenysaurus, Hypacrosaurus and Lambeosaurus; right inner ear: Dysalotosaurus,
Iguanodon, Lophorhothon and Parasaurolophus.

with some hadrosaurines, where the posterior semicircular canal is slightly taller than the

others (Edmontosaurus; the ratio of anterior/posterior semicircular canal height is 0.92).

Later, in the Lambeosaurinae subfamily, Parasaurolophus and Arenysaurus present anterior

semicircular canals that are slightly taller (the ratio of anterior/posterior semicircular canal

height is 0.97 in Parasaurolophus and 0.98 in Arenysaurus), while in the lambeosaurini

tribe they are similar in proportions to those seen in Dysalotosaurus or Iguanodon (the

ratio of anterior/posterior semicircular canal height is 1.58 in Hypacrosaurus and 1.16 in

Lambeosaurus). In addition, Parasaurolophus and Arenysaurus share a lateral ampulla that

is larger than the posterior and the anterior ampullae.

The vestibular system is involved in the coordination of movement, gaze control and

balance, detecting head movement (sensing angular acceleration) in space and maintaining

visual and postural stability (Paulina Carabajal et al., 2013). The morphology and size
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of the semicircular canals are related to locomotor agility and neck mobility and a

decrease in the compensatory movements of eyes and head (see references in Knoll et

al., 2013 and Paulina Carabajal, Carballido & Currie, 2014). According to Witmer et al.

(2008), the reduction in the difference between the length of the anterior and posterior

semicircular canals, and perhaps also in the height of these canals, may reflect a decrease

in the compensatory movements of eyes and head in Edmontosaurus, Parasaurolophus and

Arenysaurus. If true, this could be related with behavioral patterns that require less agility

in the head movements (Sereno et al., 2007).

Likewise, we hypothesize that these differences in the vestibular system, i.e., the different

ratios between the height of the anterior and posterior semicircular canal and the size

of the ampullae, could be used as a phylogenetic signal to differentiate Edmontosaurus,

Parasaurolophus and Arenysaurus from the rest of the hadrosaurids. However, more

data are necessary to know the possible influences that these differences could have on

phylogenetic interpretations or on behavior.

CONCLUSION
We provide the first complete 3D reconstruction of the brain cavity and inner ear of

a European lambeosaurine, Arenysaurus. This cranial endocast presents the general

pattern known for hadrosaurids and add to the record of hadrosaurid brain cavities from

Laurasia. The osteological and paleoneuroanatomical data suggest that Arenysaurus was

an adult individual that probably presented a certain degree of dwarfism due to insularity.

Thus, Arenysaurus could be the first evidence of how dwarfism could affect hadrosaurid

paleoneuroanatomy. Moreover, it presents an optic nerve that is unusually small, indeed

very much smaller than that of other known hadrosaurid. Furthermore, the structure

of the inner ear shows differences from the ornithopod clade with respect to the height

of the semicircular canals. These differences can be explained principally in terms of a

probable decrease in the compensatory movements of eyes and head, which would affect

the paleobiology and behavior of these animals. We hypothesize that these differences in

the vestibular system could be used as a phylogenetic signal.
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