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After leukemia, tumors of the brain and spine are the second most common form of
cancer in children. Despite advances in treatment, brain tumors remain a leading cause of
death in pediatric cancer patients and survivors often suffer from life-long consequences
of side effects of therapy. The 5-year survival rates, however, vary widely by tumor type,
ranging from over 90% in more benign tumors to as low as 20% in the most aggressive
forms such as glioblastoma. Even within historically defined tumor types such as
medulloblastoma, molecular analysis identified biologically heterogeneous subgroups
each with different genetic alterations, age of onset and prognosis. Besides molecularly
driven patient stratification to tailor disease risk to therapy intensity, such a diversity
demonstrates the need for more precise and disease-relevant pediatric brain cancer
models for research and drug development. Here we give an overview of currently
available in vitro and in vivo pediatric brain tumor models and discuss the opportunities
that new technologies such as 3D cultures and organoids that can bridge limitations
posed by the simplicity of monolayer cultures and the complexity of in vivo models, bring
to accommodate better precision in drug development for pediatric brain tumors.
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INTRODUCTION

Brain tumors are the most common solid tumors and the leading cause of cancer-related death in
children. The incidence and mortality rate of primary brain and other central nervous system tumors
have not changed significantly in recent years, with an average incidence rate of 5.65 per 100,000
population and an average mortality rate of 0.72 per 100,000 population for the 0 to 14 years age
group from 2011 to 2015 in the United States (1). In the past, the diagnosis and classification of brain
tumors had largely relied on histological characteristics derived from hematoxylin and eosin-staining,
and immunohistochemical detection of lineage-associated proteins. However, more and more
evidence shows that histologically similar brain tumors sometimes have distinct molecular features;
they respond differently to the treatment and have various prognosis as well. In addition, some
histologically ambiguous tumors may largely rely on their molecular characterization for their
diagnosis and treatment plan. In 2016, the World Health Organization (WHO) updated classification
of central nervous system tumors by incorporating molecular features into traditional histological
characteristics for more accurate diagnosis, prognosis predictions, and treatments (2–6). With the
overall success rate of new anticancer drugs remaining low (7, 8), we will need to switch from “one
size fits all” treatments to more specific individualized strategies, to increase treatment efficacy, to
reduce complications due to treatment, and to improve the translation rate of anti-cancer drugs. Brain
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tumor models that can mimic tumor initiation and progression,
and predict a tumor’s response to treatments in vivo are
fundamental to achieve this goal. In this review, we provide an
overview of the most common pediatric brain tumors and
currently available well-annotated in vitro and in vivo tumor
models. We also discuss the advantages and limitations of each
model, which need to be considered when choosing an
appropriate tumor model that best suits the experimental purpose.

Common Pediatric Brain Tumors and
Molecular Subgrouping
Gliomas
Glioma is the most common pediatric primary brain tumor,
representing approximately 47% of brain tumor cases in the age
group of 0-19 years. Glioma can originate from all glia cell types
and 75% of these glial tumors are astrocytoma (1). Glioma are
highly heterogeneous tumors, ranging from low-grade glioma
(LGG) to high-grade glioma (HGG) depending on the tumor
malignant status.

LGG is the most common glioma, which is typically
nonmalignant and slow growing. Histologically, LGGs include
pilocytic astrocytoma (PA), pilomyxoid astrocytoma (PMA),
oligoastrocytoma, subependymal giant cell astrocytoma (SEGA),
pleomorphic xanthoastrocytomas (PXA), oligodendroglioma,
ganglioglioma, dysembryoplastic neuroepithelial tumors, etc.,
among which pilocytic astrocytoma is the most common form.
The aberrant Ras-mitogen activated protein kinase (MAPK)
signaling pathway is mainly reported in LGG. The mutations
usually occur at BRAF in this pathway, including the KIAA1549-
BRAF fusion and BRAF V600E mutant, which lead to constitutive
activation of the MAPK pathway. Furthermore, kRAS, FGFR1,
MYB/MYBL1, NTRK2, NF1, TSC1/2 and other genetic alteration
have also been identified in pediatric LGG. Unlike adult LGG,
IDHmutations are almost absent in children (3–6, 9–11). In some
cases, the molecular alteration is associated with a specific tumor
type. For example, KIAA1549- BRAF fusion is mostly found in
pilocytic astrocytoma (PA), while BRAF V600E is frequently
detected in pleomorphic xanthoastrocytoma (PMA) and
gangliogliomas (12).

HGG is relatively uncommon in pediatric glioma, accounting
for around 20% of cases. However, HGGs are diffusely
infiltrating malignant tumors and they are usually aggressive
with an overall very poor prognosis; some patients succumb to
the tumor within one year after diagnosis. Based on distinct
histological and radiological features, HGG is subclassified into
anaplastic astrocytoma, diffuse intrinsic pontine glioma (DIPG)
and glioblastoma multiforme (GBM). Mutations in histone genes
were first discovered in pediatric HGGs, and now serve as a
hallmark of this glioma type. Histone mutations often vary
according to HGG locations. In tumors arising from the
midline and pons, K27M mutations in H3F3A (encoding
histone H3.3) or HIST1H3B/C (encoding histone H3.1) are
very common, which lead to a global decrease of H3 K27
trimethylation by inhibiting polycomb repressive complex 2
(PRC2) activity through sequestration of its catalytic subunit
EZH2; while G34R (or rarely G34V) mutations in H3F3A
(encoding histone H3.3) are mostly reported in hemispheric
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HGGs. In addition, the RTK/RAS/PI3K pathway (e.g., PDGFRA,
PIK3CA, PIK3R1, or PTEN) and the p53/Rb pathway (e.g.,
TP53, CDKN2A, CDK4/6, CCND1-3) are also dysregulated in
pediatric HGG (3, 4, 9–11, 13–15). Recent studies discovered
some overlap in molecular profiling between LGG and HGG.
BRAF V600E and FGFR1 mutations are found both in LGG and
HGG (9, 10), which suggests that LGG and HGG might share a
similar biological mechanism of tumor pathogenesis.

Ependymal Tumors
Ependymomas represent 5.5% of all pediatric primary brain
tumor cases in the age group of 0 to 14 (1). Ependymomas are
thought to originate from radial glia cells of the ependymal lining
of the ventricles and the central canal. Histologically,
ependymomas are classified into 4 groups: subependymoma,
myxopapillary ependymoma, classic ependymoma, and
anaplastic ependymoma, of which classic and anaplastic
ependymoma are the most common subtypes in children.
Classic ependymoma is further subclassified into 3 subtypes:
papillary, clear cell, and tanycytic ependymoma based on their
histological features (4, 5).

The molecular characteristics of ependymoma is usually
associated with its location. Over 90% of pediatric
ependymomas arise in the infratentorial and supratentorial
regions. The infratentorial posterior fossa (PF) ependymomas
are generally subclassified into Group A (PF-EPN-A) and Group
B (PF-EPN-B) based on their DNA methylation profiling. PF-
EPN-A tumors are hypermethylated, and mostly found in infants
and young children, who have a poorer outcome compared to
those with PF-EPN-B tumors, which are typically seen in
adolescents and adults. Supratentorial (ST) ependymomas in
children have two major subgroups: RELA fusion-positive (ST-
EPN-RELA) ependymoma and YAP1 fusion-positive (ST-EPN-
YAP1) ependymoma. ST-EPN-RELA usually harbors the fusion
protein of C11orf95 and RELA, which constitutively activates the
NF-kB pathway by enriching a RELA-encoded transcription
factor p65. In ST-EPN-YAP1 ependymoma, transcriptional
coactivator YAP1 fuses with other genes such as MAMLD1
and FAM118B and can upregulate Notch signaling. Compared
to ST-EPN-YAP1, ST-EPN-RELA is more frequently observed in
children and has worse prognosis. The major treatment plan for
ependymoma is surgical resection plus adjuvant radiological
therapies. Benefits of chemotherapy have not been reported,
yet (3–6, 16–18).

Medulloblastoma
Medulloblastoma is the most common pediatric embryonal tumor
originating from precursor cells in the cerebellum or dorsal
brainstem. Like other embryonal tumors, medulloblastoma is
highly proliferative and predisposed to metastasis. Histologically,
medulloblastoma is classified into four different types: classic,
desmoplastic/nodular, extensive nodularity and large cell/
anaplastic. Medulloblastoma is one of the most heterogeneous
brain tumors and currently has the best characterized molecular
features. There are four distinct subgroups: wingless/integrated
(WNT), sonic hedgehog (SHH), Group 3, and Group 4, which
have different genetic alterations, phenotypes and prognostics.
April 2021 | Volume 11 | Article 620831
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The WNT subgroup accounts for around 10% of
medulloblastoma; it mostly occurs in older children. The most
common mutation in this subgroup is in the CTNNB1 gene,
which encodes b-catenin, a major player in cell cycle control and
embryogenesis. The overexpression of nuclear b-catenin is often
used as a diagnostic indicator in this subgroup. Monosomy
chromosome 6 is another hallmark of the WNT subgroup,
occurring in ~80-85% of patients, usually in conjunction with
CTNNB1 mutations. DDX3X, SMARCA4, and TP53 mutations
also have been reported in WNT-activated medulloblastomas
(3–6, 19).

The SHH subgroup represents approximately 30% of
medulloblastoma. SHH-activated medulloblastoma is highly
heterogeneous and many key molecules in the SHH signaling
pathway such as SUFU, smoothened (SMO), PTCH1, GLI1 and
GLI2 have been dysregulated in this subgroup. Besides those,
other genetic aberrations, like MYCN amplification or TP53
mutation, are also involved in SHH-activated medulloblastoma
formation (19, 20). The outcome varies in SHH-activated
medulloblastoma and although metastasis is not common, if a
patient has a metastatic tumor, the outcome is usually worse.
Moreover, patients with TP53 mutations or MYCN amplification
usually have a poorer prognosis. The ongoing therapies using
small molecule inhibitors target almost all affected molecules in
the SHH pathway (3–6, 13, 19).

Group 3 composes around 25% of medulloblastoma. It is the
most aggressive form and metastasis is very common in this
subgroup. Unlike WNT- and SHH-activated medulloblastoma,
the Group 3 tumors are less defined; some studies showed MYC
amplification leading to tumor formation in this subgroup. Other
possible pathways, such as TNFb, have been found in around 20%
of Group 3medulloblastoma. The prognosis is overall poor for this
subgroup, especially for patients with MYC amplification (4–6).

Group 4 is the most prevalent subgroup, comprising
approximately 35% of medulloblastoma. Like Group 3, it has
not been biologically characterized. The loss of chromosome 8,
11 and 17p or gain of chromosome 7 and 17q have been
identified in this subgroup. In addition, amplification of CDK6,
MYCN and SNCAP1 as well as aberrant ERBB4-SRC signaling
and nuclear factor kappa B (NF-kB) have also been observed in
Group 4 medulloblastoma (3–6, 19, 21, 22).

In Vivo Brain Tumor Models
Most animals rarely develop spontaneous brain tumors (23) and
they can be used to generate experimental models for brain
tumor studies (24). A good animal model should have high
inc idence ra te , can recap i tu la t e or ig ina l tumor ’ s
histopathological and molecular features, and can manifest the
human response to drug treatment. Numerous animal brain
tumor models have been developed so far. These models can be
used to investigate biological mechanisms of brain tumors and
their microenvironment and for preclinical testing of novel,
promising therapeutic regimens. To date, most animal models
are generated with rodents, and in this review we will focus on rat
and mouse models of brain tumors and discuss zebrafish brain
tumor models. There are three major methods to generate
animal models in brain tumor research: carcinogen induced
Frontiers in Oncology | www.frontiersin.org 3
animal models, xenograft animal models and genetically
engineered animal models (23–26).

Carcinogen-Induced Brain Tumor Models
Rats are widely used when generating a carcinogen-induced brain
tumor model, since the tumor induction in rat strains is much
more effective than in mice (23). The most common carcinogens
used to generate animal brain tumors are chemical carcinogens
and viruses. N-nitrosourea and its derivatives have been reported
to induce most common gliomas in rats, including astrocytoma,
oligodendroglioma, and ependymal tumors. The embryos are
much more susceptible to the chemical carcinogens, and
transplacental injection is often used to administer the chemical
compounds to pregnant animals (24). Inject ion of
ethylnitrosourea to pregnant rats at gestational day 20 induced
brain tumors in all of 25 pups born (27). Chemical carcinogens
can also be applied to rodents through oral, intravenous or local
exposure after they are born, but repeated administration might be
necessary to increase induction efficacy, especially when working
with older animals (23–26). The cell lines established from these
chemical induced glioma models include C6, 9L, T9, F98, RG2,
BT4C and CNS-1 and have been widely used in brain tumor
studies (28–31). In addition to chemical carcinogens, oncogenic
viruses may also be used to induce brain tumors. Both RNA
viruses, such as Rous sarcoma virus-1 (RSV-1) and DNA viruses,
such as adenovirus can induce brain tumors. Intracerebral
injection of RSV caused malignant brain tumors in newborn
pups (32). Different injection sites caused distinct tumor types
(33). It has also been reported that injection of human adenovirus
12 virus (AD12) into mouse brain induced medulloblastoma or
glioblastoma (34). These chemical carcinogens and oncogenic
viruses are prevalent in the human environment; thus, this
model can imitate natural tumorigenesis especially when
animals are exposed in early development. The induced tumors
can be continuously passed in animals and retain relatively stable
biological characteristics. However, carcinogen induced tumor
models lack consistency in tumor types, locations and biological
characteristics. Moreover, the induced brain tumors are
histologically and biologically different from human tumors.

Xenograft Models of Human Brain Tumors
Xenograft models are usually made by transplanting established
cancer cell lines or brain tumor tissues derived from patients
(patient-derived xenograft, PDX) or animal models into host
animals. The established cancer cell lines grow very fast in vitro
with well-defined biological characteristics, which makes them
applicable to generate xenograft models. The cell lines generated
from carcinogen-induced rodent tumors or from transgenic mice
can be cultured and transplanted into syngeneic hosts with
competent immune system (35). However, the cancer cell lines
are a homogenous population lacking tumor heterogeneity and
the induced tumors are rarely infiltrative. Moreover, cancer cell
lines will gradually lose the original tumor phenotypes and
genetic features during in vitro culture. Patient tissues can also
be dissociated and cultured in neurobasal serum-free medium.
This selects highly tumorigenic subpopulations with stem cell-
like characteristics that can be grown as neurospheres before
April 2021 | Volume 11 | Article 620831

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li and Langhans Preclinical Pediatric Brain Tumor Models
implantation into host mice (23, 24, 35, 36). In addition, the
tumor tissues derived from patients can be directly transplanted
into recipient animals without in vitro culture. Engraftments
grown in these animals include tumor tissues as well as their
surrounding stroma in early passage. They retain histological
and molecular characteristic of original tumors, interaction
between tumor and host, and a tumor’s responses to drug
treatment. With this they are a more representative and
reliable in vivo brain tumor model than those generated from
cultured cells (23, 25).

In most cases to generate PDX, host animals are
immunodeficient mice. The early xenografts were transplanted
into nude mice, which are the first generation of immunodeficient
mice. Nude mice not only lack body fur but also have no thymus.
Thus, these mice have a defective adaptive immune response as
they do not have T lymphocytes. Nevertheless, they still have
functional B and NK cells, and an intact innate immune response
causes a low engraftment rate in these mice. Later, the severe
combined immunodeficient (SCID) mice that lack both functional
T and B lymphocytes were generated. The engraftment efficacy has
improved on SCID mice, but these mice still have remnant NK
cells, hindering the engraftment rate. To eliminate the effect of NK
cells, SCID mice were crossbred with Beige mice to establish
SCID/Beige mice that have severely impaired NK cells and
macrophages, and no mature T and B lymphocytes. SCID/Beige
mice display a better engraftment rate, leading to more feasible
PDXmodels. Since then, more immunodeficient mice strains have
been established to improve engraftment and increase the success
rate of PDX, such as non-obese diabetic (NOD)/SCIDmice and its
derivative mice (NOG, NSG and NOJ), and BALB/c background
immunocompromised mice (BRG and BRJ) (37, 38). Different
immunocompromised mouse strains have various sensitivity to
chemotherapy or radiation, which needs to be considered when
choosing an appropriate animal model. For example, BALB/c mice
are very sensitive to radiation and SCID mice are sensitive to g-
irradiation and thus are not useful for radiotherapy related studies
(39). Immunodeficient mice can also be modified by receiving
human bone marrow to reconstitute a human immune response.
These humanized mice provide an opportunity to even more
closely recapitulate human brain tumors, to study the effect of the
immune system on brain tumor pathogenesis, and to evaluate
immunotherapies (24, 38, 39).

Xenografts can be administrated in two different ways:
heterotopic xenograft and orthotopic xenograft. Heterotopic
xenografts, which most typically are achieved through
subcutaneous injection, are a popular method in cancer
research. They are simple and convenient to observe and
monitor tumors and to evaluate drug efficacies by measuring
the tumor volume. However, the microenvironment of tumors
induced in this way is different from the original tumor and it
cannot faithfully recapitulate the original tumor initiation and
progression. In addition, there is no blood brain barrier around
these subcutaneous tumors, so this model cannot accurately
reflect the anti-cancer drug efficacies. Orthotopic xenografts
usually apply tumor cells/or tissues to the location where the
original tumor is found in patients. Orthotopic xenografts can
Frontiers in Oncology | www.frontiersin.org 4
better mimic the original tumor pathogenesis, retain histological
and molecular characteristics of original tumors as well as tumor
host interactions (23, 25, 38, 39). However, even orthotopic
xenografts may not completely maintain the histological
characteristics of human tumors. Some intracranial
glioblastoma xenograft models lack necrotic features and fail to
show endothelial proliferation (40). To date, most available
pediatric brain tumor PDX models represent glioblastoma,
diffuse midline glioma, ependymoma, and medulloblastoma.
The establishment of PDX models for less aggressive brain
tumors, such as pilocytic astrocytoma, has been less successful
due to a very low tumor engraftment rate (39).

The development of pediatric brain tumor PDX models
emerged over thirty years ago (24, 38). In recent years, with the
raised interest in some pediatric brain tumor types and increased
availability of tumor tissues, more and more PDX models have
been generated. In 2018, a brain tumor biology study sponsored by
the Children’s Oncology Group led to generation of 30 orthotopic
pediatric brain tumor PDX models, including medulloblastoma,
high grade glioma and ependymoma. These PDX models are
valuable tools to investigate subtype specific pediatric brain
tumors, since they preserve the original tumors’ histological and
molecular features and remain relatively stable when being
passaged in mice (41). The scientists from St. Jude Children’s
Research Hospital also successfully generated 37 novel orthotopic
PDX models derived from pediatric brain tumor patients
including 22 medulloblastomas and 5 ependymomas, which also
maintain original tumors’ histological features and are genetically
faithful to corresponding patient tumors (42). The Mayo Clinic
Brain Tumor Patient-Derived Xenograft (PDX)National Resource
has also established a repository of glioblastoma PDXmodels with
highly characterized molecular subtype and phenotype. Another
study collected DIPG samples from patient autopsies and biopsies
at 8 different international institutions and generated 22 in vivo
xenograft models, covering the main molecular subtypes including
H3.3 K27M and H3.1 K27M mutations (43, 44).

With the advance in gene editing technology, neural stem cells
(NSC) can be genetically engineered to acquire tumorigenic capability
and used to generate xenograft models (35). Transplantation of NSCs
that overexpressedmyc alone, or with oncogene gfi1 or gfi1b into the
cerebella of immunocompromised mice induced Group 3
medulloblastoma (45–48). Funato et al. successfully transformed
neural progenitor cells derived human embryonic stem cells with
a constitutively active form of the PDGFRA, a small hairpin RNA
(shRNA) against p53 and H3.3K27M to model pediatric DIPG
with H3.3K27M mutation (49). In addition, NSCs co-expressing
PDGFRB and H3.3K27M were injected into the pons of SCID
mice and induced tumors similar to human H3K27MDIPGs (50).
The first mouse model of ependymoma was generated by
implanting embryonic cerebral Ink4a/Arf−/− NSCs
overexpressing Ephb2 into the cerebrum of immunocompromised
mice (51). More recently, induced pluripotent stem (iPS) cells are also
being used to generate brain tumor xenograft models. iPS-derived
neural stem cells generated from Gorlin syndrome patients, who are
carrying a germline mutation in PTCH1 and are predisposed to
medulloblastoma, were transplanted into mouse cerebellum. These
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cells formed tumors that mimic SHH-driven medulloblastoma
(52, 53).

Xenograft models are a valuable tool in cancer research and
drug screening. The National Cancer Institute recently decided
to use PDX models to replace a panel of 60 human cancer cell
lines (NCI-60) as a model for drug screening (54). However,
there are some limitations of xenograft models. First, the
generation of some xenograft models is challenging, but the
success rate is increased with more aggressive and highly
malignant tumors. Second, xenografts usually require many
cells at a time, which is not naturally occurring in patients.
Third, the transplantation procedure can disrupt the blood brain
barrier, which is a key factor when evaluating drug efficacy.
Fourth, the host animal for xenografts are usually
immunodeficient mice, which cannot be used to discover the
contribution of immune system in tumor initiation and
development. Fifth, the engrafted human tumor stroma
structure will be lost over time, replaced by the host mice’s
own microenvironment. Sixth, genetic and phenotypic drifts
gradually occur as the xenograft tumors are propagated
through mice. Last, maintenance of PDX models is costly and
labor intensive (22–25, 35, 38, 39, 55).

Mouse Models With Genetic Engineering of
Brain Tumors
In recent years, with rapid advances in gene editing techniques,
genetically engineered mouse models (GEMMs) have gained
popularity in brain tumor research. Unlike PDXs, GEMMs can
recapitulate tumor initiation and development in animals with
native immune system and intact blood brain barrier and
undisrupted microenvironment. This makes GEMMs more
attractive as models for tumor mechanism and drug discovery
studies (23, 24, 26, 56). Moreover, other genetically engineered
animal models, such as mice expressing enhanced green
fluorescent protein (EGFP) or humanized mice carrying
human functional biological system are valuable tools in brain
tumor research, especially in studies about tumor host
interactions and human-specific pathogenesis and therapies
(57, 58).

GEMMs for cancer research can be generated by introduction
of oncogenes or disruption of tumor suppressor genes in
embryonic stem (ES) cells or zygotes (25) and include both
transgenic mice and knockout mice. In addition to oncogenes
and tumor suppressor genes, key molecules in tumor signaling
pathways can also be utilized to develop GEMMs (Table 1). The
conventional knockout models alter target gene expression in all
tissues throughout the whole mouse. These constitutive changes
often lead to more severe phenotypes with contribution by the
brain tumor itself as well as other conditions. This makes data
analysis and interpretation more difficult and less accurate. In
some cases, this global knockout can even be lethal in animals.
To overcome this issue, conditional or inducible conditional
knockout has been developed, in which the target gene can be
edited in a tissue specific and/or time-dependent way. The most
common tool to make conditional knockout mice is the Cre-loxP
system. Cre is a recombinase and its expression can be driven
Frontiers in Oncology | www.frontiersin.org 5
under the control of a tissue-specific promoter. When Cre is
induced, it can recognize the loxP sites and catalyze the
recombination, so the target gene flanked with two loxP sites
in the same orientation will be excised. To achieve precise
temporal specificity in the Cre-loxP system, Cre can be fused
with a hormone responsive element, and induced by the
exogenous inducers tamoxifen or tetracycline (35, 106).

The generation of germline GEMMs usually needs an
extensive breeding scheme, which is time-consuming and
expensive. Thus, virus mediated gene transfer is introduced to
deliver Cre recombinase to somatic cells to establish non-
germline GEMMs, which retains the ability of spatial and
temporal gene regulation, at the same time also reduces the cost
and time by bypassing complicated breeding (25). Replication-
competent avian sarcoma-leukosis virus long terminal repeat with
splice acceptor/tumor virus A (RCAS/TVA) is a commonly used
system. RCAS is a retrovirus that enters specific cells via binding
to its specific cell surface receptor TVA. TVA is only expressed in
avian cells, but mammalian cells can gain the expression through
genetic engineering (107). RACS/TVA based GEMMs have some
advantages over Cre-loxP based models. The virus transduction
rate is quite low, so only a small fraction of cells can acquire the
expression of target genes. This makes the model close to natural
tumorigenesis, since studies have shown that only small amounts
of cancer stem cells are key players in tumor initiation (35).
Moreover, genetically-engineered mammalian cells can get
multiple RACS infection simultaneously or sequentially, which
makes this model suitable to study the effect of multiple genes on
tumorigenesis (107).

Recently, short palindromic clustered regularly interspaced
repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology
has become a powerful tool to generate GEMMs. The CRISPR/
Cas9 system is a groundbreaking gene editing technique; it
consists of two necessary components: single strand guide
RNA, which can recognize the target genomic DNA sequence,
and endonuclease cas9, which can break the double-stranded
DNA at the target sequence site. Then random or targeted gene
editing can be achieved by DNA repair through error-prone
non-homologous end joining (NHEJ) and high-fidelity
homology directed repair (HDR) pathways. CRISPR/Cas9 can
efficiently introduce gene modification on virtually any genetic
background, both in germline and somatic cells. It turns
conventionally tedious and expensive genetic engineering into
a simple, fast and affordable procedure and dramatically
broadens the application of GEMMs in tumor research (35, 108).

In 2019, MADR (mosaic analysis by dual recombinase-
mediated cassette exchange) was introduced as a simpler,
higher-throughput method to generate stable, defined copy
number somatic transgenic animals. MADR was designed to
overcome limitations of some of the previously described
methods to generate mouse models (98). This includes the
limited payloads and possible immune reactions when using
viruses, the unpredictable genomic integration patterns,
epigenetic transgenic silencing, transgene copy number
variability, and overexpression artifacts such as cytotoxicity
and transcriptional squelching when using viruses or
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TABLE 1 | The common GEMMs of pediatric brain tumors.

Tumor type Molecular subtypes Mouse model name References

Medulloblastoma WNT Blbp-Cre+/−: Ctnnb1+/lox(ex3); Tp53flx/flx (59)
Blbp-Cre+/−; Ctnnb1+/lox(ex3); Tp53+/flx; Pik3caloxE545K/loxE545K (60)

SHH Ptch1+/- (61)
Ptch1+/−; Math1-Cre (62)
Ptch1+/−; hGFAP-Cre (62)
Ptch1+/−; Math1-CreER (63)
Ptc1+/−; p53−/− (64)
Ptc1+/-; Ink4c-/- (65)
Ptc1+/−; Kip1−/− (66)
Ptch1+/−; Hic1+/− (67)
Ptch1+/-; Ptch2-/- (68)
NeuroD2-SmoA1 (W539L) (69)
Smo/smo (homozygous smoA1) (70)
NeuroD2-SmoA2 (S537N) (71)
CAGGS-CreER; R26-SmoM2 (72)
p53-/-; Sufu+/- (73)
Trp53−/−; PTEN−/− (74)
Trp53−/−; Parp−/− (75)
Nestin-tv-a mice infected with RCAS-Shh + N-Myc (76)
Nestin-tv-a mice infected with RCAS-Shh + N-Myc (T50A) (76)
Nestin-tv-a mice infected with RCAS-Shh + Bcl2 (77)

Group3 Gtl1-tTA : TRE-MYCN/luciferase (GTML) (78)
GTML; Trp53-/- (79)
Mll4-/-; Nestin-Cre (80)
Nestin-tv-a; Trp53-/- mice infected with RCAS-Myc (81)
Nestin-tv-a mice infected with RCAS-Myc + Bcl2 (81)
Co-electroporation of Myc and trp53DN into embryonic cerebellar progenitor cells (82)

Group4 Co-electroporation of SRC-CA and DNp53 into E13.5 developing cerebella (83)
Gliomas Nf1+/-; p53+/- (84)

p53−/−;NF1flox/flox;hGFAP-cre+ (85)
cisp53+/−;NF1+/flox;hGFAP-cre+ (85)
cisp53+/−;NF1+/flox; Ptenf/+;hGFAP-cre+ (86)
TgGFAPT121 (87)
GFAP-V12Ha-ras (88)
GFAP-V12Ha-ras;GFAP-EGFRvIII (89)
GFAP-V12Ha-ras;Ptenf/f; hGFAP-Cre (90)
S100b-v-erbB (91)
S100b-v-erbB; Ink4a/Arf-/- (91)
S100b-v-erbB; p53 +/- (91)
Nestin-tv-a mice infected with RCAS K-ras and Akt (92)
Nestin-tv-a; PtenloxP/loxP mice infected with RCAS KRAS and RCAS cre (93)
Nestin-tv-a mice infected with RCAS–PDGF-B (94)
GFAP-tv-a mice infected with RCAS–PDGF-B (94)
Nestin-tv- a mice infected with RCAS-PDGFB (95)
Nestin-tv-a; Ink4a-arf−/− mice infected with RCAS-PDGFB (95)
Nestin-tv-a; p53fl/fl mice infected with RCAS-PDGF-B and RCAS-Cre (96)
GFAP tv-a; p53fl/fl mice infected with RCAS-PDGFB + RCAS Cre (97)
Nestin tv-a; p53fl/fl mice infected with RCAS-PDGFB+RCAS-Cre (97)
Pdgfra (D842V); Trp53 (R270H); H3f3a (G34R) (MDRA mice) (98)
Pdgfra (D842V); Trp53 (R270H); H3f3a (K27M) (MDRA mice) (98)
Erbb2-V664E; PiggyBac transposon (99)
Hras-G12V; PiggyBac transposon (99)
Kras-G12V; PiggyBac transposon (99)
Pdgfra-D842V; PiggyBac transposon (99)
PBCAG-Ngn2/PBCAG-HRasV12/Akt; in utero Piggy Bac transposon in different cell lineages * (100)
PBCAG-NeuroD1/PBCAG-HRasV12/Akt; in utero Piggy Bac transposon in different cell lineages * (100)
PTEN; NF1; P53 PiggyBac transposon-CRISPR/Cas9* (101)

Ependymoma ST-EPN-RELA Nestin-tv- a mice infected with RCAS-RELAFUS1 (102)
ST-EPN-RELA GFAP-tv- a mice infected with RCAS-RELAFUS1 (102)
ST-EPN-RELA BLBP-tv- a mice infected with RCAS-RELAFUS1 (102)
ST-EPN-YAP1 YAP1-MAMLD1 (103)
ST-EPN-YAP1 LATS1f/f LATs2f/f: NEXCre/+ (104, 105)
ST-EPN-YAP1 nlsYAP5SA/+: NEXCre/+ (104, 105)
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transposons, or the variability and unintended off-target
genomic alterations of CRISPR/Cas9 systems (98).

To date, the majority of pediatric brain tumor GEMMs are
SHH-activated medulloblastoma (Table 1), which are generated
by modifying SHH signaling genes, such as PTCH, SMO, or
SUFU (22, 24). The first mouse model of medulloblastoma was
established by disrupting ptch1 (61). Thereafter, the combination
of a ptch mutation with inactivation of tumor suppressors,
including TP53 or cyclin D-dependent kinase inhibitor
p18Ink4c, was used to generate different SHH driven
medulloblastoma models with shorter latency and higher
penetrance (22, 55, 109). SHH medulloblastoma models were
also developed by overexpressing Shh, alone or in combination
with mycn or bcl2 with the RACS-TVA system (76, 77). Most
WNT activated medulloblastoma models were generated by
targeting the gene ctnnb1 in progenitor cells of the dorsal
brainstem. However, ctnnb1 aberration alone was not sufficient
to form medulloblastoma and the combination with TP53
mutation was needed to drive tumor initiation (59). Co-
occurrence of pik3ca mutation significantly accelerated the
formation of WNT medulloblastoma and dramatically
increased tumor penetrance in mice (60). Most GEMMs of
Group 3 medulloblastoma were developed by targeting myc.
Newborn mice with myc overexpression in the cerebellum
through the RCAS/TVA system induced Group 3
medulloblastoma, but tumor formation required tp53 loss or
bcl-2 overexpression (81). Conditional enforced co-expression
of myc and a dominant-negative form of Trp53 (Trp53DN) in
embryonic cerebellar progenitor cells by in utero electroporation
also induced Group 3 medulloblastoma in mice (82). The first
mouse model of Group 4 medulloblastoma was recently
developed by overexpression of an activated SRC combined
with p53 inactivation in the developing cerebellum (83). It is
worthy of note that in some animal models induced tumors
simultaneously possess multiple molecular characteristics. For
example, the GTML (Glt1-tTA/TRE-MYCN-Luc) model in
which MYCN aberration is driven by the glutamate transporter
1 (Glt1) promoter expressed in hindbrain progenitors develops
tumors that closely resemble Group 3, but also shows the features
of WNT, SHH, and Group 4 medulloblastoma (24).

Various medulloblastoma mouse models have been used to
dissect mechanisms, including those influenced by the tumor
microenvironment, that regulate the progression from
precancerous lesions to medulloblastoma tumors (110). In
general, tumors not only consist of the heterogenous tumor
cell population but also of the extracellular matrix (ECM)
surrounding the cells, resident and infiltrating cells such as
tumor-associated fibroblasts, endothelial cells, pericytes,
adipocytes, and immune cells including lymphocytes and
macrophages as well as soluble factors, including cytokines,
chemokines, growth factors, matrix remodeling enzymes and
inflammatory enzymes (111, 112). The tumor microenvironment
is known to contribute to tumor progression, metastasis
formation and therapeutic response (113–122). In brain
tumors, macrophages are the most abundant type of immune
cells and are particularly high in Shh-driven medulloblastoma.
Frontiers in Oncology | www.frontiersin.org 7
In humans, decreased macrophage numbers are correlated with
significant poorer outcome and indeed, a recent study in
NeuroD2:SmoA1 mice and derivative mouse lines was able to
demonstrate that tumor-associated macrophages have properties
tha t k i l l tumor ce l l s (123) . The NeuroD2 :SmoA1
medulloblastoma model was also used to show that blocking
TGF-b signaling promoted memory T cell development thereby
conferring antitumor immunity (124) and in Atoh1-Cre;Ptch1fl/fl

mice, tumor astrocyte-derived Shh induced the proliferation of
medulloblastoma tumor cells (125). Cancer stem cells reside in
specialized, anatomically distinct niches within the tumor
microenvironment (126) and medulloblastoma stem cells
(Nestin+, Prominin+) are closely associated with capillaries in
the perivascular niche. Using mice infected with RCAS-Shh
RCAS-SHH in combination with RCAS-N-myc-T50A or
RCAS-AKT-Myr D11–60 of Ntv-a wild-type p53 and Ntv-a
p53-null background, Hambardzumyan et al. showed that
similar to human medulloblastomas, nestin-expressing
perivascular stem cells survive radiation, activate PI3K/Akt
signaling, undergo PTEN/p53-dependent cell cycle arrest and
shortly thereafter re-enter the cell cycle (127). Medulloblastoma
mouse models have also been used to elucidate pathways
involved in tumor angiogenesis, in medulloblastoma
metastasis, and in cell senescence and reprogramming (110).

Most mouse models of glioma are generated by altering key
signaling pathways disrupted in human gliomas, including Ras,
EGFR, Akt, Rb, Pten, Nf1 and platelet-derived growth factor
(PDGF) (Table 1). GFAP-V12Ha-ras mice were generated by
overexpressing oncogenic V12Ha-ras in astrocytes, and 95% of
these mice died from low- and high-grade astrocytoma within 2-
6 months (88). Further expressing a mutant EGFRVIII or
inactivating PTEN in GFAP-V12Ha-ras mice demonstrated
earlier tumor onset, higher tumor grade and a dramatic
reduction in survival (89, 90). Introduction of activated Ras
(KRas) into neural progenitors with the RCAS/TVA system,
combined with activated Akt or PTEN loss induced high-grade
gliomas in mice that resembled human GBMs (92, 93). Further
deleting ink4a/arf increased tumor incidence and grades in these
mice (128). Silencing of Bcl6 in neuronal precursor cells
suppressed, but did not abolish, the formation of tumors in a
somatic KrasG12V-driven glioma mouse model (99, 129).
Transgenic S100b-v-erbB mice in which a transforming allele
of EGFR, v-erbB, is expressed under the control of murine S100b
promotor developed low-grade oligodendroglioma, and further
deleting ink4a/arf or p53 increased tumor grade and penetrance
(91). An Nf1+/-; p53+/- mouse model shows a range of
astrocytoma stages, from low-grade astrocytoma to
glioblastoma multiforme (84). Conditionally deleting NF1 in
glial progenitors and astrocytes of p53 null mice dramatically
increased the penetrance of induced astrocytoma and the
incidence of non-CNS neoplasms (85). Further loss of Pten in
glial progenitors and astrocytes of this mouse model significantly
accelerated tumor growth and animal mortality (86).
TgGFAPT121 mice generated by a truncated SV40 T antigen
(T121) to inactivate the Rb pathway in astrocytes develop high
grade astrocytoma and die perinatally (87). PDGF B-chain
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(PDGF-B) is another common target used to generate glioma
models. PDGF-B delivered to nestin-positive neural progenitors
or GFAP positive astrocytes induced low grade glioma in mice.
Loss of Ink4a–Arf dramatically shortened tumor latency and
enhanced malignancy of gliomas. p53 loss can also enhance
PDGF-B driven glioma in mouse models (94–96). A more recent
DIPG model was developed by overexpressing PDGF-B and
H3.3K27M together with p53 loss in nestin-positive neural
progenitors. The induced tumors in the brainstem of these
mice demonstrated DIPG-like features that recapitulate the
histopathological and molecular characteristic of human DIPG
(96, 130). The MADR method was used to generate pediatric
glioma mice modeling simultaneous H3f3a, Pdgfra, and Trp53
mutations with two missense mutation variants G34R or K27M
that recapitulated human tumor heterogeneity and
developmental hierarchy (98). Other recent pediatric brain
tumor models have also been successful in capturing tumor
heterogeneity and spatiotemporal characteristics of pediatric
gliomas. PiggyBac transposon systems not only can circumvent
the loss or inactivation of episomal plasmids delivered to glial
cells via in utero electroporation but also allow for expression of
multiple oncogenes in selected cell populations at different times
in brain development (131). Using in utero electroporation of
piggyBac transposons, Chen and colleagues generated rat tumor
models by directing HRasV12 and AKT to different cell
populations. Using the same transgene under the control of
different promoters resulted in tumors ranging from
glioblastoma multiforme to anaplastic oligoastrocytomas and
atypical teratoid/rhabdoid-like tumors that could be
distinguished at the cellular and the molecular level (100, 131).
Moreover, targeting different genes, PTEN or NF1, in the same
lineage resulted in distinct neuropathologies and when PTEN,
NF1 and P53 were targeted simultaneously caused the formation
of GBM (101).

The generation of ependymoma GEMMS began recently.
RELAFUS1 fusion gene expressed in nestin, GFAP, or BLBP
positive cells in the mouse brain induced tumors which
recapitulate the histology and transcriptome panel of human
ST-EPN-RELA ependymomas (102). The YAP1-MAMLD1
fusion gene delivered to mice by in utero electroporation drove
tumor formation and tumors share histological and molecular
characteristics of human ST-EPN-YAP1 (103). Recently, Eder
and colleagues reported that ectopic expression of active nuclear
YAP1 (nlsYAP5SA) or conditional deletion of YAP1’s negative
regulators LATS1 and LATS2 kinases in neural progenitor cells
in ventricular zone also induced tumors which display molecular
and ultrastructural characteristics of human ependymoma
(104, 105).

Zebrafish Brain Tumor Models
Zebrafish are an alternative model to study human cancer as they
can develop tumors that are histologically and genetically similar
to those in humans (132). Zebrafish models are also amenable to
high-throughput screening for drug discovery as well as
transplantation of primary patient tumors. This makes
zebrafish a cost- and time-effective alternative to other in vivo
tumor models such as rodents. In recent years, several pediatric
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brain tumor models have been developed in zebrafish and have
been used to identify molecular mechanisms driving tumor
formation. This includes the analysis of unique and shared
molecular pathways driving pediatric HGG within and outside
the brainstem (133) and to identify three molecular subgroups of
DIPG (134). Ependymoma, glioma and choroid plexus
carcinoma cells from mouse models of pediatric brain tumors
were conditioned to grow at 34°C and used for orthotopic
xenografts in zebrafish. These cells not only readily formed
tumors but also spinal metastasis. The tumors retained the
histological characteristics of the corresponding mouse tumor
and formed tumor vasculature by recruiting fish endothelial cells
(135). Lin et al. used zebrafish to experimentally validate
subgroup-specific enhancers in medulloblastoma (13),
Modzelewska et al. used tumors grown in zebrafish to
demonstrate that MEK inhibitors can reverse the growth of
embryonal brain tumors derived from oligoneural precursor
cells (14) and Idilli et al. used them to study telomere
maintenance mechanisms in pediatric brain tumors (136).
With protocols for developing zebrafish tumor models
evolving, long-term orthotopic transplantation of tumor cells is
now possible (137). This allows for the long-term in vivo studies
of tumor cell behaviors including tumor invasion and
dissemination as well as testing for more durable response of
tumors to novel anticancer therapeutics and the development of
cancer drug resistance. Overall, zebrafish may provide an
opportunity to develop pediatric brain tumor models in a
timely and affordable manner for preclinical drug discovery in
a model system with intact blood-brain barrier.

In Vitro Brain Tumor Models
Cancer Cell Lines
Cancer cell lines play an important role in brain tumor research.
The cells lines can be established directly from patients’ samples
or from animal models. These cells often retain original tumor
features, are easy to grow and propagate, and can be stored for a
long time. They are well-suited models to explore a tumors’
molecular features in vitro and predict the tumors’ response to
therapeutic regimens. Cancer cell lines are particularly useful in
high-throughput drug screening to identify and evaluate
potential targets for chemotherapies. Most established pediatric
brain tumor cell lines are medulloblastoma cell lines. Less than
half of these cell lines have been molecularly defined, among
which the majority represent the SHH or Group 3 subtypes; only
a few are for WNT or Group 4 tumors (Table 2). In addition,
around half SHH medulloblastoma cell lines have mutations in
TP53, and almost all Group 3 cell lines bear MYC amplification,
while only a small part of SHH and Group 3 medulloblastoma
patients typically have these mutations (24, 55, 145, 150). This
discrepancy might be because the medulloblastomas with TP53
mutation and MYC amplification are more aggressive with
poorer prognosis, and more aggressive cells are easier to grow
in vitro. Similarly, although gliomas are the most common brain
tumors in children, most gliomas are low grade gliomas with less
malignancy and more favorable prognosis. Moreover, some high
grade gliomas, such as DIPG, have a limited tissue availability
due to tumor locations and established glioma cell lines are fewer
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than medulloblastoma (150). In recent years, however, with the
refinement of surgical skills and advances in DIPG biology,
biopsy becomes more feasible in DIPG patients and new
patient derived DIPG cell lines are becoming available (Table 2).

Cell culture in vitro has intrinsic drawbacks. Most cell lines
are maintained as a monolayer culture in serum containing
media, and a genetic and phenotypic drift from original
tumors will gradually occur with passage (156). The cell lines
are homogenous populations that cannot fully recapitulate the
heterogeneity of tumors, and are not suitable to study tumor host
interactions during tumor development. In monolayer culture,
all cells receive the same level of nutrition and oxygen, which is
different from tumor growth in vivo. Moreover, tumor cell lines
are typically grown on borosilicate glass or clear plastics in vitro,
which are much more rigid compared to extracellular matrix on
which cells are naturally grown in vivo (157).

The advent of neurosphere cultures addressed some
limitations of traditional cell cultures. Neurospheres are
typically cultured in serum-free medium and can maintain
tumor heterogeneity and preserve the phenotype and genotype
of primary tumors (158). Some pediatric brain tumors, including
DIPG, have been successfully cultured in neurospheres and used
to generate xenografts that recapitulate the histological features
and infiltrative growth of original patient tumors (24, 130, 152,
159). Neurosphere formation also can independently predict
clinical outcome in malignant glioma (160). Therefore,
neurospheres are a more representative and reliable cell model
compared to traditional cell lines (36). However, neurosphere
culture has some limitations, too. For example, the lack of a
tumor microenvironment highly enriches glioma stem cell
(GSC)-like cells, which only represent a relatively small
subpopulation in native tumors (158, 161).

Three-Dimensional Culture
3D culture such as spheroids and scaffold-based cultures are
other techniques that have been developed to overcome the
limitations with traditional monolayer culture. In scaffold-
based 3D cultures, extracellular matrix can be synthesized to
simulate a tumor’s natural microenvironment and a gradient of
oxygen and nutrient level can be constituted to mimic a tumor’s
hypoxic core in vivo. Moreover, gene expression panels in 3D
culture more closely resemble human tumors in vivo (157, 162,
163). To date, there are two major types of 3D culture:
anchorage-dependent and anchorage-independent 3D models.

Anchorage-Independent 3D Models
Anchorage-independent 3D models are achieved mainly by self-
assembly of cells grown in special tissue culture plates, such as
hanging drop microplates and low attachment plates; they do not
need any scaffold to facilitate the culture. The hanging drop
culture is a well-known 3D culture technology. Typically, there is
a micro-hole at the top of wells, which allows the medium to pass
through and form a small droplet. Since there is no surface
available for the cells in the droplet to attach, these cells tend to
form spheroids. Spheroids can also be generated when they are
grown in ultra-low attachment plates. Ependymoma cell lines
cultured in ultra-low attachment plates better recapitulated the
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histological and transcriptional features of the primary tumors
when compared to a monolayer (164). In addition, magnetic
levitation is a newly developed method for spheroid formation.
In this method, cells coated with magnetic nanoparticles are
cultured in a magnetic field and the cells are floated toward the
air/liquid interface within a low adhesion plate to form spheroids
(162, 163, 165). Larger tumor spheroids formed by anchorage-
independent models may consist of a peripheral layer with
proliferating cells, an intermediate layer with quiescent cells
and an inner necrotic core, which may closer reproduce
human tumor architecture in vivo (165, 166). In recent years,
with the refinement of technologies on spheroid culture,
anchorage-independent 3D models have become common
methods for cancer drug discovery, even applicable for high-
throughput drug screening. Spheroids can be established with a
few different types of cells and are especially suitable for studies
about cell-cell interactions during brain tumor development
(167). However, there is typically no extracellular matrix
(ECM) in spheroids, and thus they are unsuitable for studying
cell-host interactions which is a key game player in
tumor pathologies.

Anchorage-Dependent 3D Models
The cells inside the body are usually surrounded by ECM, a
network of extracellular molecules, which not only provides the
structural scaffold for the surrounding cells, but also plays an
important role in cell proliferation, differentiation, migration,
survival and adhesion (168). The composition of ECM is highly
heterogeneous and tissue-specific. The brain ECM ingredients
include proteoglycans, hyaluronic acids, tenascins, collagen,
fibronectin, vitronectin and laminin (162, 169). In anchorage-
dependent 3D models, cells are encapsulated into scaffold
materials, which can mimic the composition and key physical
properties of ECM. Hydrogels are the most commonly used
scaffolds for anchorage-dependent 3D models. Hydrogels are
water-swollen networks of polymers and can mimic salient
components of ECM. The highly hydrated and porous nature
of hydrogel make them ideal to encapsulate cells and render
ECM-like functions, such as supporting cell survival, growth,
differentiation and modulating the response to chemotherapy,
immunotherapy and radiation therapy (161).

Hydrogels may come from natural sources or can be
synthetic. The widely used natural hydrogels for neural cell
culture are collagen I and Matrigel. Matrigel is extracted from
the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumor
rich in ECM components, such as laminin, collagen,
heparan sulfate proteoglycans, entactin/nidogen, and several
growth factors. Matrigel is minimally processed and it can
better mimic in vivo ECM (170). However, two major
components of Matrigel are laminin and collagen, which are in
low concentration in the brain ECM (158). Thus, collagen and
Matrigel are not ideal choices as in vivo-like 3D scaffolds for
brain tumor cells. In addition, collagen and Matrigel are derived
from natural sources, they are heterogenous and not well defined,
and exhibit considerable batch-to-batch variability. Moreover,
collagen and Matrigel are available in liquid form and require
handling at cold temperatures (below 10°C) to avoid premature
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gelation. The need for handling these hydrogels at low
temperatures makes them poorly suited for common liquid
handling equipment used for high-throughput screens in drug
discovery (158, 162). Some of these limitations might be
overcome by synthetic hydrogels. Synthetic hydrogels are
derived from polymeric materials, such as polyethylene glycol
(PEG), polylactic acid (PA) and polyglycolic acid (PGA). These
hydrogels can simulate the composition and function of ECM;
they often have engineered tunable properties to achieve desired
stiffness and porosity, to enhance cell proliferation and
differentiation by encapsulating bioactive molecules, such as
Frontiers in Oncology | www.frontiersin.org 10
growth factors or hormones. However, these polymers are
biological inert, so they must be modified by addition of cell
adhesion ligands or mixing with other natural ECM components
to acquire the properties of cell adhesion (158, 162, 163). To date,
PEG is a widely used synthetic hydrogel in neural cell 3D culture.
A PEG-based hydrogel has been successfully used to grow GBM
cell lines. In this system, the PEG-based hydrogel was modified
with CRGDS and a MMP-cleavable peptide to facilitate cell
proliferation, migration; hyaluronic acid (HA) was also added
to mimic brain extracellular matrix (171). A synthetic MAX8 b-
hairpin hydrogel was successfully used to culture pediatric
TABLE 2 | Established pediatric brain tumor cell lines with defined molecular characteristics.

Tumor Type Molecular subtype Cell line name Mutations Sources References

Medulloblastoma WNT MED5R b-catenin (138)
SHH DAOY CDKN2A

NF1
TP53

ATCC (139)

ONS76 JCRB (139)
UW228 TP53 (139, 140)
UW426 (139)

Group 3 D341 Med myc amplification ATCC (141, 142)
D384 MED myc amplification (143)
D425 MED myc amplification

p53
Millipore Sigma (144)

D458 Myc amplification (145)
D283 Med myc amplification ATCC (144, 146)
MED8A myc amplification (147)
HD-MB03 myc amplification DSMZ (148)
MB002 myc amplification (149)
Med-114FHTC myc amplification BTRL https://www.btrl.org/product/med-114fhtc/
Med-411FHTC myc amplification

Isochromosome 17
BTRL https://www.btrl.org/product/med-411fhtc/

Med-2112FHTC myc
Isochromosome17

BTRL https://www.btrl.org/product/med-2112fhtc/

Group 4 CHLA-01-MED Myc amplification ATCC (150)
CHLA-01R-MED Myc amplification ATCC (150)

High grade glioma MYCN PBT-04FHTC mycn, id2, nras BTRL (41)
PBT-05FHTC mycn, id2, egfr amplification BTRL (41)

pedRTK1 GBM-511FHTC cdkn2 BTRL (41)
pedRTK2 GBM-110FHTC cdkn2, braf BTRL (41)
Myc CHLA-200 myc COGcell.org (151)

DIPG H3.3 K27M SF7761 Histone Millipore
Sigma

(152, 153)

SF8628 Histone Millipore
Sigma

(153)

PED8 Histone (130)
PED17 Histone (130)
PED36 histone (130)
HSJD-DIPG-007 histone (50)
HSJD-DIPG012 histone (50)
HSJD-DIPG017 histone (50)
SU-DIPG-VI histone (154)
SU-DIPG-XIII histone (154)
VUMC-DIPG-A histone (154)
JHH-DIPG-1 histone (154)

H3.1 K27M VUMC-DIPG-B histone (154)
SU-DIPG-IV histone (154)
HSJD-DIPG018 histone (50)

GBM H3.3 G34R GBM002 histone (50)
H3K27M GBM003 histone (50)

Ependymoma PF-EPN-A EPD-210FHTC 1q gain BTRL (41)
EPN-811 1q gain (155)
EPN-928 1q gain (155)
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medul lob las toma ce l l l ines in a h igh- throughput
screening setting (172, 173). Hydrogel-based models are not
suitable for long-term culture since they degrade fast. Solid
porous scaffolds can be adapted to bypass this issue. Solid
porous scaffolds are prepared from natural or synthetic
polymers with mechanical stability and pore interconnectivity.
The cells can be directly added to these solid porous scaffolds and
maintain their 3D properties with continuous supply of
nutrients. A recently developed tunable 3D brain tissue model
integrated the porous scaffold with hydrogels. In this model, the
donut shaped silk fibroin protein scaffold was infused with ECM
hydrogels and brain tumor cells can grow into spheroids within
the stiff silk scaffold, or migrate toward the central hydrogel.
Thus, the outer-ring scaffold can be used to anchor neuronal
cells, and the central soft hydrogel allows axonal penetration and
connectivity (174, 175). A pediatric anaplastic ependymoma has
been successfully cultured by this model (176). In addition,
culturing glioblastoma tumor-initiating cells (TICs) in
microscale alginate hydrogel tubes (AlgTubes) has been
reported. This culture system allows for long-term and scalable
production of glioblastoma cells for drug discovery (177). Self-
assembling peptide (SAP) hydrogels are an evolving field for
neural cell culture. These synthetic peptides can self-assemble
under physiological conditions and support neural cell
attachment, differentiation and synapse formation. SAP
hydrogels are highly versatile, their material properties can be
modulated by substituting amino acids, extending or shortening
the peptide sequence, or by the addition of functional epitopes. A
widely used peptide hydrogel is RADA16. However, peptide-
based hydrogels may have poor mechanical properties, and some
exhibit impaired cell viability caused by low pH, making it
difficult to culture sensitive brain tumor cells (163).

Brain Organoids
Organoids are an emerging technology to study pediatric brain
tumors. Organoids are typically generated with embryonic stem
cells (ESC) or induced pluripotent stem cells (iPSC) and have the
potential to grow into a 3D architecture in a way similar to in
vivo tissue development by virtue of their capacity to self-renew
and differentiate. Early organoid models were typically
heterogeneous and lacked reproducibility since it was difficult
to control the differentiation pattern of stem cells. However, with
technical advances on directed differentiation, stems cells can
now be differentiated into virtually any specific lineages. This has
significantly moved forward the application of organoid models
including in biomarker and drug discovery (163). Significant
effort is being made in developing neural-based spheroids with
cerebral organoids being one of the early ones (178). Cerebral
organoids can be used as platforms for human brain tumor cells,
or tumors can be initiated in cerebral organoids by introducing
oncogenes and/or disrupting tumor repressor genes using gene
editing technologies. Human cerebellar organoids derived from
iPS cells electroporated with Otx2/c-MYC induced Group 3
medulloblastoma (179). Injecting cancer stem cells derived
from GBM patients into cerebral organoids or genetic
engineering of cerebral organoids by introducing HRasG12V

and disrupting p53 initiated tumorigenesis that closely
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recapitulated patient GBMs (180, 181). Organoids can also be
established from patient brain tumors. Hubert et al. generated
GBM organoids directly from patient samples that present
hypoxic gradients and regional tumor heterogeneity (182).
Organoids can theoretically resemble any in vivo brain niche
with preserved cell distribution, can retain genetic and
phenotypic stabilities, and are capable of long term culture;
this makes them a valuable model to discover tumor initiation
and progression, and a more accurate tool to predict the
responses to tumor treatments. However, organoid cultures
typically lack blood vessels and immune cells, which makes
them unsuitable for testing tumor treatments targeting
angiogenesis, or studying the contribution of immune system
on tumorigenesis and relevant therapies. In addition, although
organoids have proper cell composition and functions, they
typically lack correct anatomical organization (162, 183).
Another drawback of organoids and also found in spheroid
models is that they often have a necrotic core, which sets a
limit on the culture size and longevity. To overcome this
limitation, microfluidic devices can be incorporated into 3D
models. Microfluidic devices are designed for cell cultures
under perfusion and allow for steady supplies of oxygen and
nutrients while at the same time removing waste (163).
CONCLUSIONS

A precise in vivo pediatric brain tumor model is the one, which
can faithfully recapitulate tumor’s histopathological and
molecular features ; exhibit tumor ’s spat iotemporal
characterization; demonstrate a tumor’s microenvironment;
predict patients’ response to treatments; show high rate of
incidence and short latency; and is reproducible, timesaving
and cost-effective (184). Such accuracy in tumor models can
best be achieved when genetic insults match the cell of origin and
are introduced at developmental stages that are critical to tumor
development. For effective in vitro drug discovery of novel cancer
therapeutics, in vitro brain tumor models should not only
recapitulate tumor biology but culture methods should also be
suitable for high-throughput screening (HTS). New technologies
and with it the possibilities of more complex screening platforms
may be integrated to optimize the model systems for pediatric
brain tumors. For example, the recently developed brain cancer-
on-a-chip models incorporate multiple tissue types in 3D
cultures into microphysiological system (MPS) and provide
precise control of a cellular microenvironment and real-time
monitoring on cell behavior and response. Nevertheless, while
brain cancer-on-a-chip models can better mimic the
physiological function of brain, challenges remain. Brain
tumors demonstrate profound inter- and intra-tumoral
heterogeneity and cellular plasticity to adapt their phenotypes
to the surrounding. With more accurate in vitro and in vivo
tumor models, however, it is possible to improve the current low
approval rate of anticancer drugs, to offer more treatment
options for pediatric brain tumor patients.

Although pediatric brain tumor models have been expanded
immensely in the past decades, there is no single model that
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li and Langhans Preclinical Pediatric Brain Tumor Models
meets all criteria and thus, experimental design and purpose will
need to guide the choice of the brain tumor model (22, 24). The
rapid advancement of genomic characterization of pediatric
brain tumors and with it new genomic signatures of tumor
subgroups add to the complexity of developing precise pediatric
brain tumor models. Moreover, in recent years the genome
landscape of pediatric brain tumors, both somatic and
epigenetic, has been complemented by the analysis of tumor
transcriptomes. Despite the plethora of data generated through
such approaches, the finding that impaired differentiation of
specific neural progenitors is a common mechanism underlying
pediatric cancers (185) provides hope that a rational approach
towards developing in vitro and in vivo pediatric brain tumor
models can achieve a manageable library of research platforms
for the development of impactful therapeutic interventions for
pediatric brain cancers.
Frontiers in Oncology | www.frontiersin.org 12
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