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ABSTRACT

The objective of this study is to describe application of the Observational Medical Outcomes Partnership

(OMOP) common data model (CDM) to support medical device real-world evaluation in a National Evaluation

System for health Technology Coordinating Center (NESTcc) Test-Case involving 2 healthcare systems, Mercy

Health and Mayo Clinic. CDM implementation was coordinated across 2 healthcare systems with multiple hos-

pitals to aggregate both medical device data from supply chain databases and patient outcomes and covariates

from electronic health record data. Several data quality assurance (QA) analyses were implemented on the

OMOP CDM to validate the data extraction, transformation, and load (ETL) process. OMOP CDM-based data of

relevant patient encounters were successfully established to support studies for FDA regulatory submissions.

QA analyses verified that the data transformation was robust between data sources and OMOP CDM. Our

efforts provided useful insights in real-world data integration using OMOP CDM for medical device evaluation

coordinated across multiple healthcare systems.
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Lay Summary

Data standardization is essential for integrating and linking medical device identification information to diverse data sources

across different institutions for research use. A common data model (CDM) could facilitate medical device data standardiza-

tion and integration. In this study, we described the application of the Observational Medical Outcomes Partnership (OMOP)

CDM to support ThermoCool medical device real-world evaluation involving 2 healthcare systems, Mercy Health and Mayo

Clinic. Specifically, we collected the device data from the supply chain database by unique device identifiers and related

patients’ clinical data from the electronic health record (EHR) database. Then, OMOP CDM-based database was designed

and implemented to standardize and integrate device data and EHR data together in both Mercy Health and Mayo Clinic.

Quality assurance verified that the data transformation was robust between data sources and OMOP CDM. Our efforts pro-

vided useful insights into real-world data integration using OMOP CDM for medical device evaluation coordinated across

multiple healthcare systems. And our process could be generalized for use by other institutions.

INTRODUCTION

Data standardization is essential for integrating and linking of medi-

cal device identification information to diverse data sources, thereby

enabling interoperability solutions that produce networks from

which the data composite can support safety and effectiveness evalu-

ations.1 With the implementation of unique device identifiers (UDIs)

in electronic health information sources as a key strategy from the

US Food and Drug Administration (FDA),2,3 a UDI Research and

Surveillance Database (UDIR)4 containing the linked clinical and

device information were proposed in the research community to

enable longitudinal assessment of device safety, performance and

quality. Some studies have discussed how to use UDI to facilitate

real-world medical device surveillance research.5,6 However, for

these studies, a big challenge remains regarding how to standardize

and integrate medical device and electronic health record (EHR)-

related data together, especially for studies that include multiple

institutions. Meanwhile, a variety of common data models (CDMs)

have been developed to provide a standardized approach to store

and organize clinical research data.7–11 The assumption is that

CDM-based solutions can facilitate meaningful collaborations by

standardizing data collection and analysis processes across institu-

tions, including distributed analytics. However, CDM-based solu-

tions have not been widely used for medical device evaluation

studies,12,13 and the applicability of CDMs to medical device evalua-

tion studies,14 particularly whether they capture sufficient granular-

ity of device identifiers and aggregate codes for procedures, remains

an unanswered question.

In this context, we had an opportunity to implement and assess a

CDM-based approach to integrate real-world data (RWD) to assess

cardiac ablation catheter outcomes in a multicenter study. This was

performed as part of a National Evaluation System for health Tech-

nology Coordinating Center (NESTcc) Test Case. The specific cathe-

ters of interest are the ThermoCool Smarttouch catheters, initially

approved by the FDA in February 2014, and the ThermoCool

Smarttouch Surround Flow catheters, initially approved by the FDA

in August 2016. Both are products of Biosense Webster, Inc. (part of

the Johnson & Johnson family companies) (Irvine, CA). After deter-

mining feasibility of leveraging RWD,14,15 the investigators,

NESTcc and the medical device sponsor agreed to proceed with a

follow-up study of the same medical devices, developing the data

standards and analytic approach to turn EHR RWD into real-world

evidence (RWE) in label expansion studies for submission to the

FDA Center for Devices and Radiological Health (Electrophysiol-

ogy). The focus of this report is to share how we, Mercy Health and

Mayo Clinic, standardized the ThermoCool device data and related

EHR data using the Observational Medical Outcomes Partnership

(OMOP) CDM to store the data at each institution. Using the UDI

as an index key, we integrated the medical device data with the

EHR data to demonstrate how the OMOP CDM can be used for

medical device studies across institutions to support regulatory

decision-making, evaluating the data quality of the distributed sys-

tem in the process.

METHODS

Establishment of work group and preparation for the

OMOP CDM implementation
The rationale for having a distributed analysis was that the required

study sample size for adequate statistical power could not be

obtained at one healthcare system alone. In addition, inclusion of

more than one healthcare system was required to expand the gener-

alizability of the study findings. Sharing patient EHR data, even if

deidentified, between healthcare systems was complicated; this

necessitated separate analyses of treatment effects in each healthcare

system with as much analytical and variable consistency as possible.

Use of a CDM to create a common data structure across the health-

care systems enabled this without sharing patient level data. More-

over, we chose OMOP CDM as a standard CDM to deploy the data

repository across the 2 healthcare systems, Mercy and Mayo Clinic,

because it is an open source CDM, and some OMOP CDM infra-

structure had already been existed at Mayo Clinic.

To facilitate the OMOP CDM implementation and validation

across the 2 healthcare systems, we established an OMOP Work

Group of project investigators to coordinate defining and capturing

the data elements and integrating them during the data transforma-

tion from Mercy and Mayo Clinic’s EHR repositories to their

OMOP CDM instances. As the initial step, the workgroup had sev-

eral discussions to harmonize the fundamental definitions of data

elements for the OMOP CDM implementation. The preliminary

preparation process included the following tasks. First, we decided

to use OMOP v5.3.1 for this project, since this version aligned with

study needs and some resources already established within the Mayo

Clinic environment. In addition, the latest OMOP v6.0 had not been

synchronized with the open-source tools (eg, Atlas16) developed in

the Observational Health Data Sciences and Informatics (OHDSI)

community. Second, we chose a subset of Clinical and Health Sys-

tem tables present in OMOP v5.3.1 according to the data needs for

the analysis. Third, to ensure the alignment across conditions, devi-

ces, drugs, observations, procedures, providers and visits at both
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Mercy and Mayo Clinic, we determined the common set of standard

vocabularies included in the OMOP CDM (SNOMED CT,

RxNorm, LOINC, NUCC, CPT, and ICD-10 PCS) that we would

use to standardize these clinical concepts. Finally, we collected data

from all patients with cardiac ablation procedure codes (CPT codes),

including those patients who had received ablation with one of the

ThermoCool ST or STSF catheters as our primary patient popula-

tion. The ThermoCool catheters were identified by the Global Trade

Item Numbers (GTINs, the device identifier part of the UDI) from

the supply chain system.

Device data sourcing and data integration with EHR
One of the goals of this project was to determine whether UDI could

facilitate RWD-based observational studies to generate RWE. To

this end, both Mercy and Mayo Clinic used a catalog of GTINs,

which were captured via point-of-care scanning and recorded in the

supply chain management system, to collect all cardiac ablation

catheter and ablation sheath device data. Then, we integrated the

device data with clinical data from EHR (the source data) as a single

dataset for the OMOP CDM implementation. The supply chain sys-

tem focuses on capturing device usage-related data, while the EHR

is used for retrieving patients’ clinical data. The patients’ clinic iden-

tifiers helped us to link the medical device data to the patient data.

At Mercy, the Epic EHR (Verona, WI) and Omnicell OptiFlex

(Mountain View, CA) supply management systems were utilized to

isolate device records of interest, and the Mercy-developed Real-

World Evidence Insights Data Platform (RWE IDP) was utilized as a

transformation model to collect the EHR data extracted from Epic.

Beginning in 2016, ablation catheter devices and other supplies

needed for the procedures were scanned into inventory upon receipt

by Mercy. At the point of use, they were scanned again to establish

a relationship to the patients’ clinical charts in Epic. Prior to 2016,

the devices were recorded using custom billing procedures within

the patient encounter data in the EHR, and these were mapped to

GTINs. Clinical data elements and device-related elements were

brought together in the RWE IDP using a combination of patient

and encounter identifiers, including the device GTINs. All informa-

tion (ie, encounters, diagnoses, procedures, devices, supplies, etc) for

cohort patients was brought together in the RWE IDP, with filters

for the devices of interest applied during population of the OMOP

table structures. Refer to the top half of Figure 1 for an illustration

of this data flow.

Mayo Clinic device data were sourced from the system’s Supply

Information Management System (SIMS) that contains medical

device data before 2018, and a Supplyþ (Cardinal Health) in Epic

systems that contain data since 2018. Both the SIMS and Supplyþ
databases record the use of the medical devices in patient care

through scanning barcodes at Mayo Clinic, so these databases con-

tain the UDI or corresponding catalog number information for a

medical device. Moreover, the EHR data at Mayo Clinic was from

the Unified Data Platform (UDP). UDP is an EHR data warehouse

that integrates diverse data across multiple databases at Mayo Clinic

and presents these data in a standard format. The EHR data from

UDP were combined with the device data of SIMS and Supplyþ
using the Mayo Clinic patient number. The Mayo data integration

model structure is shown in the bottom half of Figure 1.

OMOP CDM-based repository implementation
In this step, we created data manipulation scripts to extract, trans-

form and load (ETL) device data from the supply chain system and

clinical data from EHR into an OMOP CDM-based data repository

at each site. Both healthcare systems used SQL to develop the scripts

to perform the ETL task.

To ensure the mappings during the ETL process of the original

EHR source values to the OMOP standard concept IDs were consis-

tent across the 2 healthcare systems, we developed shared mappings

of EHR data elements table by table. For the concept mapping of vis-

it_concept_id, observation_concept_id, place_of_service_concept_id,

and specialty_concept_id, we designed a manual mapping process to

match the original concept to the OMOP standard concepts. Further-

more, for some other concepts (condition_concept_id, measurement,

drug_concept_id, procedure_concept_id, measurement_concept_id),

we developed an automatic mapping process through the OMOP con-

cept_relationship table. We also randomly selected 100 standard con-

cept IDs for each field and manually reviewed them, to make sure that

the original codes (ICD, LOINC, CPT, etc) were correctly mapped to

the standard OMOP concept IDs. For the device_concept_id, we used

the GUDID device lookup API to map the device to the SNOMED

CT codes and then to the OMOP standard concept IDs.17 Then, the

ETL process was performed according to the data structure mappings

and concept mappings. During the data ETL, the patient clinical data

from EHR were transformed into 10 OMOP clinical/health system

data tables, and the medical device data were converted into the

DEVICE_EXPOSURE table.

To facilitate propensity score modeling and effectiveness and

safety outcome analysis, we conducted a 2-step process to identify

code lists for phenotypes, covariates, and outcome endpoints. First,

we collected these code lists from literature or Sentinel Initiative

reports. Next, we sent the code list to the clinical experts on our

team for manual review. After manual evaluation, all confirmed

code lists were loaded into 2 concept set tables in our OMOP data-

base. The “concept_set” table records the concept set IDs and links

those IDs to clinician-defined data variables such as congestive heart

failure, intracardiac echocardiography (ICE), or chronic renal dis-

ease. Moreover, the specific concept code lists for each concept set

were defined within the “concept_set_item” table. This table stores

both the original concept codes (such as ICD, CPT) and its corre-

sponding standard OMOP concept ID that maps from the OMOP

concept relationship table.

Data quality assurance analyses on the OMOP CDM
To validate the data transformation quality of the ETL scripts, we

first performed quality assurance (QA) analyses to compare records

between the original database and the OMOP database. Specifically,

we conducted a review of (1) record counts per variable; (2) record

counts over time; and (3) null values across all tables. We then ana-

lyzed calculated outputs on OMOP data with originally recorded

script outputs to (1) validate patient flow across platforms; (2) vali-

date counts by phenotype code across platforms; (3) validate

recorded encounters across care site locations; (4) validate visit

record counts across platforms to ensure proper flow of patient

encounters across platforms; and (5) validate device record counts

across platforms. Regarding the phenotype count comparison, we

used the original primary phenotype codes we had populated into

the OMOP database to extract patients for ensuring consistent

patient count totals with pre-extract counts on the original data-

base.
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RESULTS

OMOP implementation results
In total, 20 757 patients at Mayo and 8449 patients at Mercy

between January 1, 2014 and April 30, 2021 were identified as a

general population using cardiac ablation-related procedure codes

and loaded into the OMOP CDM (shown in Figure 2). In addition,

we counted and aggregated the device records by their GTIN

device identifiers (shown in Table 1). The device record counts are

distinct from the patient counts, since the catheters may be used for

cardiac ablation procedures other than persistent AF and VT abla-

tion (eg, paroxysmal AF or atrial flutter). Five of 16 GTINs associ-

ated with 5125 ThermoCool device usage records (for 4636

patients) were identified at Mayo Clinic, and most of the records

were collected by 2 GTINs. Mercy collected 10 724 records (for

3411 patients) with 4 GTINs in their supply chain system; records

were almost evenly distributed across the 4 GTINs. In addition to

those ThermoCool ST or STSF catheter patients, we also included

16 121 patients at Mayo and 5038 patients at Mercy who had at

least one cardiac ablation procedure code or were treated using a

NaviStar ThermoCool (an older ThermoCool catheter) during our

observational time window. These patients were identified as a

potential control group.

Figure 2 shows the record counts for each OMOP CDM table

implemented at Mayo Clinic and Mercy. The patient data collected

from EHRs were transferred into 10 OMOP tables. The PERSON table

is one of the main tables in our OMOP CDM-based database, and it

recorded the patient demographic information. The patient clinical data

were converted into the LOCATION, VISIT_OCCURRENCE,

PROCEDURE_OCCURRENCE, CONDITION_OCCURRENCE,

DEATH, DRUG_EXPOSURE, and OBSERVATION tables. The

health system-related information was stored in the CARE_SITE and

PROVIDER tables. The medical device usage records from the supply

chain system were transformed into the DEVICE_EXPOSURE table.

The medical device record counts are slightly higher than shown in

Figure 1. Data Integration model at Mercy and Mayo Clinic.
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Table 1 because some “NaviStar ThermoCool” device cases were

included in this table as a potential control group.

We created a total of 111 concept sets to represent 20 796 stand-

ard codes used in identifying covariates and potential safety and

effectiveness outcomes across the 2 healthcare systems. Figure 3

provides the overview statistics of concept sets and specific concept

codes in different analysis usage categories.

OMOP QA analysis results
We compiled 26 total queries to demonstrate the faithfulness of data

transformation between the OMOP CDM and source data plat-

forms at both Mayo Clinic and Mercy. Table 2 shows the QA analy-

sis results of patient counts, indicating that all QA queries achieved

perfect concordance results in patient, provider, visit, device identi-

fier, and concept code counts between the source EHR dataset and

the OMOP-transformed dataset. We considered the data success-

fully transferred if the counts are consistent between the source data-

base and the target OMOP CDM. Moreover, we manually reviewed

100 concept mapping results for each of the automatic mapping

fields. Supported by the comprehensive vocabulary and concept

relationship designed by the OHDSI community, we found 100%

mapping accuracy for the concept mapping of condition_concep-

t_id, drug_concept_id, procedure_concept_id, and measurement_-

concept_id fields.

Figure 2. OMOP CDM statistics for tables used. CDM: common data model; OMOP: Observational Medical Outcomes Partnership.

Table 1. The record counts of ThermoCool devices in the 2 healthcare systems

Primary DI (GTIN) Catalog # Device Mayo OMOP records Mercy OMOP records

10846835008982 D133601 ThermoCool ST 0 0

10846835009002 D133602 ThermoCool ST 37 0

10846835009019 D133603 ThermoCool ST 0 0

10846835009163 D132701 ThermoCool ST 0 0

10846835009170 D132702 ThermoCool ST 0 0

10846835009187 D132703 ThermoCool ST 0 0

10846835009194 D132704 ThermoCool ST 7 2009

10846835009200 D132705 ThermoCool ST 3907 2600

10846835010145 D134801 ThermoCool ST SF 0 0

10846835010152 D134802 ThermoCool ST SF 0 0

10846835010169 D134803 ThermoCool ST SF 0 0

10846835010176 D134804 ThermoCool ST SF 16 2743

10846835010183 D134805 ThermoCool ST SF 1208 3372

10846835009774 D134701 ThermoCool ST SF 0 0

10846835009781 D134702 ThermoCool ST SF 0 0

10846835009798 D134703 ThermoCool ST SF 0 0

Total 5175 10 724

DI: device identifier; GTIN: Global Trade Item Number; Catalog #: Catalog Number of the device; OMOP: Observational Medical Outcomes Partnership; ST:

ThermoCool SmartTouch; ST SF: ThermoCool SmartTouch SF.
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DISCUSSION

In this study, we built OMOP CDM-based data repositories and

evaluated the data quality in 2 healthcare systems to facilitate a real-

world medical device label expansion study. To our knowledge, this

study is the first retrospective comparative cohort study using data

extracted from EHRs and hospital supply chain systems as the sole

sources of clinical evidence for a premarket approval (PMA) device

indication extension—a milestone of significant interest to manufac-

turers, FDA, and NESTcc.18 In the ThermoCool Phase I feasibility

study, the project team investigated the CDM implementation status

of 3 healthcare systems and discussed the potential use of the CDM-

based approach for standardized device data capture and ana-

lytics.14 We found that the informatics approach could be used to

capture study populations, device exposure, covariates, and safety

and effectiveness outcomes in RWD for use in medical device studies

supporting label extensions of cardiac ablation catheters. However,

data quality issues may exist due to the variations of data sources in

different institutions. To improve the consistency of data across

institutions and support distributed data analytics, we used a CDM-

based research repository to standardize data collection and analytic

processes across institutions. So, in the label extension study phase

of the project, 2 of 3 main participating sites of the NESTcc Ther-

moCool test case project that has sufficient samples for study use,

Mercy Health and Mayo Clinic, implemented OMOP CDM to their

data sources to improve the data consistency.

Our work made several contributions. First, by establishing the

OMOP workgroup, we developed an effective process to coordinate

the OMOP implementation and evaluation across 2 healthcare sys-

tems with different supply chain and EHR systems. Specifically, we

aligned the data model version, database structure, data element def-

inition, concept mapping, and ETL process between the 2 healthcare

systems. Our experience illustrates how to deploy the same OMOP

CDM successfully at different institutions, thereby providing a refer-

ence for the research community. Second, by integrating both device

data in the supply chain database and EHR data into the OMOP

CDM, we demonstrated that the UDI could be utilized for medical

device evaluation research to inform regulatory decision-making.

Third, the QA analysis results demonstrated identical results

between our source database and OMOP CDM-based database for

patient, provider, visit, device identifier, and concept code counts,

proving that the OMOP CDM-based database would satisfy the

data quality requirement for the subsequent analysis tasks. Further-

more, a separate paper from our group reports the results of effec-

tiveness and safety outcome analysis for the atrial fibrillation

patients who were treated using the ThermoCool devices by using

the data from our OMOP databases.19 Since the 2 healthcare sys-

tems deployed the same data model, we could design a unified data

collection query and analysis script to perform distributed analytics.

We encountered some challenges during this study. Due to varia-

tion in institutional application infrastructure, it was sometimes dif-

ficult to collect the same data elements from the source databases.

For example, when transforming the data into the drug exposure

table of the OMOP CDM, Mercy collected all the outpatient pre-

scribed and inpatient administered medications, while Mayo Clinic

only captured inpatient administered drug data. In addition, map-

ping of some source EHR concepts to standard OMOP concepts

was more challenging than expected. For example, to work around

a lack of uniform discrete values for visit-defining variables, the

label consisting of length of stay and emergency visit was utilized as

a common tool for Mercy and Mayo to define stays as either inpa-

tient (no emergency label and length of stay �24 h), outpatient (no

emergency label and length of stay <24 h), or emergency (emer-

gency label). Finally, many encounter types could not be mapped to

the OMOP standard concepts (eg, “Anticoagulation Visit” is too

specific to find a mapping with a visit concept in the OMOP vocabu-

lary); however, these were not integral to the study.

In summary, our study provided useful insights in medical

device RWD integration using OMOP CDM for evaluation coor-

Figure 3. Concept set statistics by different analysis usage categories. *The codes in the “safety outcome” set are used to identify charts for review for potential

safety events. All safety outcomes were identified by physician chart review.
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dinated across multiple healthcare systems, and it demonstrates

the opportunity to conduct medical device-related research across

healthcare systems using distributed analytics. Adopting the

OMOP CDM enabled distributed analytics without pooling the

datasets from 2 healthcare systems into a centralized database,

which also reduced efforts on data de-identification, data use

agreements, and IRB approval for building a centralized database.

Previous experience using the OMOP CDM by one informatics

team members helped to reduce the learning curve on the OMOP

CDM and its implementation. Establishment of an OMOP work

group facilitated the effective coordination of informatics teams

across the 2 sites. Our data integration process could be general-

ized for use by other institutions that record both device data

from a supply chain system and clinical data from an EHR sys-

tem. The institution could build their own OMOP database

instance locally and join together in a standard analysis with other

institutions having their own OMOP instances as we (Mercy and

Mayo) did. A challenge for our approach is deciding how to map

the local data to the standard concepts recommended by OMOP

CDM and ensure they are aligned among the sites. Our solution

was to develop shared mappings to align our concepts. In addi-

tion, although we only used ThermoCool catheters as a use case,

we believe that the data ETL process could be reused for other

medical devices with UDI as the data collection criteria.
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Distinct VT patient count in diagnosis table 5198 5198 1616 1616

Distinct AF patient count in diagnosis table 15 774 15 774 6396 6396

Distinct patient count in drug exposure table 20 158 20 158 8414 8414

Distinct patient count in device exposure table 5973 5973 3857 3857

Distinct patient count in visit occurrence table 20 757 20 757 8433 8433

Distinct patient count in observation table 16 706 16 706 8420 8420

Distinct patient count in death table 161 161 870 870

Distinct provider count in provider table 46 971 46 971 33 318 33 318

Distinct visit count in device exposure table with study relevant device GTINs in Mayo/

Mercy confirmed use lista

NA NA 3761 3761

Distinct unique_device_id in device exposure table with study relevant device GTINs 13 13 7 7

Distinct patient count in device exposure table with study relevant device GTINs in

Mayo/Mercy confirmed use list

4636 4636 3411 3411

Distinct visit count in device exposure table with GTIN matching device from J&J Refer-

ence List (includes Navistar)a
NA NA 4070 4070

OMOP distinct concept_code count in concept_set_item tableb NA 19 656 NA 19 656

OMOP distinct concept_codekvocabulary id count in concept_set_item tableb NA 19 740 NA 19 740

OMOP distinct concept_id count in concept_set_item tableb NA 15 305 NA 15 305

OMOP distinct concept_set_item_id count in concept_set_item tableb NA 13 NA 13

OMOP distinct procedure vocabulary-based concept_code count from concept_set_item

tableb

NA 7642 NA 7642

Distinct patient count in procedures table joined to concept_set_item table 20 728 20 728 8439 8439

Distinct patient count in procedures table joined to concept_set_item table with proce-

dure-based vocabulary

20 728 20 728 8439 8439

Distinct patient count in diagnoses table joined to concept_set_item table 20 754 20 754 8430 8430

Distinct patient count in diagnoses table joined to concept_set_item table with diagnosis-

based vocabulary

20 754 20 754 8430 8430

AF: atrial fibrillation; VT: ventricular tachycardia; GTIN: Global Trade Item Number; J&J: Johnson & Johnson.
aThe device usage data from supply chain database could not be linked with the visit ID in EHR at Mayo Clinic. Thus, it shows NA here.
bThe outcome concept list is not recorded in the source EHR database, so it is represented as not available (NA) here.
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