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Testing short distance anisotropy 
in space
Robert B. Mann1,2, Idrus Husin3,4, Hrishikesh Patel5*, Mir Faizal6,7,8, Anto Sulaksono3 & 
Agus Suroso9 

The isotropy of space is not a logical requirement but rather is an empirical question; indeed there is 
suggestive evidence that universe might be anisotropic. A plausible source of these anisotropies could 
be quantum gravity corrections. If these corrections happen to be between the electroweak scale 
and the Planck scale, then these anisotropies can have measurable consequences at short distances 
and their effects can be measured using ultra sensitive condensed matter systems. We investigate 
how such anisotropic quantum gravity corrections modify low energy physics through an anisotropic 
deformation of the Heisenberg algebra. We discuss how such anisotropies might be observed using a 
scanning tunnelling microscope.

The fundamental degrees of freedom of quantum gravity are expected to be very different from general rela-
tivity. However any theory of quantum gravity, upon integrating out some degrees of freedom to obtain a low 
energy effective action, must yield general relativity. Among other things, this implies that local Lorentz sym-
metry might break due to quantum gravitational effects1,2, and emerge only as a low energy effective symmetry 
that is not expected to hold at sufficiently high energies. Although Lorentz symmetry is usually broken from 
SO(3, 1) → SO(3)3,4, it has been suggested that the Lorentz symmetry can also break from SO(3, 1) → SO(2, 1) 
due to a novel gravitational Higgs mechanism5,6. This would break the isotropy of spacetime, with potentially 
important measurable consequences. Furthermore, quantum gravity could make spacetime discrete near the 
Planck scale7,8, a notion employed in loop quantum gravity9–12. At large scales a continuous isotropic spacetime 
with local Lorentz symmetry is anticipated to emerge from this discrete spacetime. However at short distances 
we expect this leading order structure to be modified due to an underlying discreteness that is expected to break 
the isotropy of spacetime. A similar phenomenon has been observed in condensed matter physics, where isot-
ropy (and local Lorentz symmetry) emerges in graphene when only the nearest-neighbour atom contributions 
are considered, whose physics can be expressed via a (2+ 1) dimensional Dirac equation13,14. Upon taking into 
account contributions from next-nearest neighbours a deformation of the Dirac equation is observed15,16. This 
deformation is consistent with the deformation produced from a generalized uncertainty principle (GUP)17–19. 
However, unlike the usual GUP, the GUP-like deformation produced in graphene breaks the emergent isotropy 
in the Dirac equation. This occurs due to the underlying discrete structure in graphene. Such breaking of isotropy 
has also been observed in other condensed matter systems20–26.

Following from this analogy, if spacetime also has a discrete structure (as has been predicted by several 
theories of quantum gravity), it is possible that the first order quantum corrections to the emergent continuous 
spacetime would also break the isotropy of space. Such corrections can be incorporated using an anisotropic GUP, 
where the deformation from quantum gravity depends on the direction chosen, hence breaking the isotropy of 
spacetime. Indeed, it is conceivable that observed anisotropies in the Cosmic Microwave Background (CMB)27,28 
could be explained by quantum gravitational effects29,30 and could be produced during inflation31–34. Such effects 
would modify field theories from their continuum limit formulations, and their leading order corrections could 
be expressed by an anisotropic GUP-like deformation. The possibility that an anisotropic GUP might explain 
observed CMB anisotropies is one of the major motivations to study the anisotropic GUP.
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Spacetime anisotropy can also arise in string theory. For example, some string-theoretic approaches to 
cosmology regard the universe as a brane in a higher dimensional bulk35,36, and anisotropic branes can be 
constructed that are dual to a deformation of super-Yang–Mills theory by a position-dependent θ term37–40. 
It has also been demonstrated that CMB anisotropies can occur in brane world models41,42. The T-duality of 
compact extra dimensions can be used to relate winding modes and Kaluza–Klein modes to such a zero point 
length43–45. This has been explicitly demonstrated for string theory compactified on a torus of radius R; the mass 
spectrum is invariant under T-duality, R → α/R and k → w (where k is the Kaluza–Klein mode and w is the 
winding number). Thus, the information gained from probing length scales below R is exactly identical to that 
gained above R; R acts as a zero point length in theory. The GUP can be understood as resulting from a minimal 
length manifest as this zero point length in spacetime17–19. It is possible for R to be several orders of magnitude 
larger than the Planck scale (in models with large extra dimensions)46,47, rendering the resultant zero point length 
to be between the Planck and electroweak scales43–45.

In short, the existence of a minimal length is a common feature in all approaches to quantum gravity48,49. 
Consequently, it is possible that GUP corrections due to a minimal length greater than the Planck length will 
occur as a universal feature in all approaches of quantum gravity18,19. Moreover, the minimal length in string 
theory as a zero point length due to T-duality, could be related to a minimal length in discrete models of spa-
cetime like loop quantum gravity50,51. Such a zero point length in string theory and discrete minimal length in 
loop quantum gravity (using polymer quantization) predict the same short distance corrections to simple low 
energy quantum mechanical systems52.

Minimal length therefore could be much greater than the Planck length in any theory of quantum gravity, 
leading to enhanced GUP corrections. These enhanced GUP corrections can be measured using ultra sensitive 
condensed matter systems53–56, thereby forming a probe of anisotropic gravitational effects. In general GUP cor-
rections break Lorentz symmetry; since they are motivated by quantum gravity, this is not unexpected. Indeed 
Lorentz symmetry can be broken in various quantum gravitational models, based on loop quantum gravity57, 
discrete spacetime58, string field theory59, non-commutative geometry60, and even perturbative quantum gravity61. 
However, it is possible to constrain such Lorentz symmetry breaking using current experimental data62–65. It may 
be noted that as isotropic GUP effects are usually measured using non-relativistic ultra sensitive condensed mat-
ter systems53–56, the effects of Lorentz symmetry breaking can be neglected for such systems. The aim in this paper 
is to analyze the implications of an anisotropic GUP and sketch out some possible pathways to experimentally 
test the presence of spacetime anisotropy at short distances. As this can again be done using non-relativistic ultra 
sensitive condensed matter systems, we can also neglect the effects of Lorentz symmetry for the anisotropic GUP.

The standard Heisenberg algebra [xi , pj] = i�δij is deformed to incorporate minimal length in quantum 
gravity17–19, and can be written as

where (xi , pj) are the conjugate position/momentum variables if  β = 0 . The coordinate representation of the 
momentum operator is pi = −i�∂i but under the deformation becomes p̃i = −i�∂i(1− �

2β∂ j∂j) . Thus, we can 
write a map between the deformed p̃i , x̃j and the original ones as x̃j = xj and p̃i = pi(1+ βpjpj).

However in this deformation we have assumed that the deformation is the same for all directions, and there 
is no fundamental reason for that assumption.

To model anisotropic effects we therefore propose a modification of the commutation relations

to leading order in the components of the full deformation matrix βjk . For simplicity we shall henceforth assume 
that off-diagonal terms vanish: βij = 0 if i  = j . Consequently we have a different deformation parameter for 
each direction, and by defining βxx = βx , βyy = βy , βzz = βz , we can now write the position and momentum 
commutation relations as

which results in different minimal lengths in each direction

where βi = β0i lP/� . The resulting parameter set (β0x ,β0y ,β0z) describes the anisotropic GUP. The anisotropic 
deformation of the momentum operator is
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to first order in the correction term. Although this correction term was motivated from quantum gravity con-
siderations, it universally corrects all low energy quantum mechanical systems. The Hamiltonian (6) for the 
anisotropic GUP can be written as

where we have defined the anisotropic Laplace operator

and H0 = − �
2

2m∇2 + V  . Now to understand the effects of such a deformation on the behavior of quantum 
systems, we need to first analyze its effects on the continuity equation. The probability density and current are

and using the Schrödinger equation H� = i�∂t� we obtain

where the additional term in the modified non-local probability current is

We observe the rather stiking result that the anisotropic GUP violates conservation of probability current, 
and hence particle number. Although an anistropic GUP is expected from an underlying anistropic discreteness 
of spacetime due to quantum gravity, this situation is quite unlike that of local models on anistropic lattices. 
It is due to the intrinsic non-locality of the anisotropic GUP, and has been observed in other situations where 
models with non-local terms, such non-local motion of the particles violate the local non-conservation of prob-
ability current66–70. For the anisotropic GUP we are considering, this violation will not occur if βx = βy = βz 
(i.e. isotropy is restored), if the wavefunction is either pure real or pure imaginary, or if its Laplacian vanishes. 
However in generic situations it does occur.

We can investigate the global conservation of probability by defining

and writing

Here Q is only conserved if the total flux across the surface due to the local and non-local parts of the probability 
current is cancelled by the volume term. If the falloff of the current terms is sufficiently rapid, then the flux term 
will vanish and particles will be generated from the volume term.

We expect that this is a generic quantum gravity effect, if quantum gravity does indeed induce an anisotropic 
GUP. A fully self-consistent quantum theory of gravity will presumably include additional terms that will yield 
particle creation/annihilation effects due to such anisotropic effects. Lacking any such theory at present, the 
anisotropic GUP indicates that quantum gravity effects lead to very small (anisotropic) violations of quantum 
mechanical probability. However, this situation is not without precedent. Other examples of non-local models 
with local non-conservation of probability current are the fractional Schrödinger equation71,72, certain wave 
packets in a harmonic potential73, the fractional Feynman-Kac equation for non-Brownian functionals74, Levy 
flights in non-homogeneous media75, vicious Levy flights76, subrecoil laser cooling77, hydrodynamic superdiffu-
sion in graphene78, coupled non-linear Schrödinger equations79, and certain resonant modes80.

The full empirical implications of non-conservation of probability current for the anisotropic GUP remain 
an interesting subject for future investigation. Here we consider one such implication, namely that local ani-
sotropic non-conservation of probability current causes an anisotropic non-local motion of the particle. Since 
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such non-local anisotropic corrections can occur universally in low energy quantum mechanical systems, we will 
investigate this issue of non-conservation and its practical implications using a concrete example. We consider 
in particular the motion of a particle (tunneling) through a potential barrier in a scanning tunneling microscope 
(STM) experiment. We expect that the anisotropy would render the transmission coefficient to be direction 
dependent and such directional behavior could then be experimentally observed.

To calculate the anisotropic GUP corrections consider the potential barrier

where

with θ parametrizing the angle of the barrier relative to the preferred x-axis.
If the particle is moving in the x̃ direction the wave function is given by � = �

(

x′
)

 , and we obtain
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tions in each potential region above, we obtain the tunneling coefficient
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The interpretation of Eq. (17) is a bit subtle. Consider an experiment emitting particles toward a barrier, with 
a detector on the other side of the barrier. If the GUP were isotropic, there would be no change in the transmis-
sion coefficient (17) as the entire experiment is rotated through 2π . By contrast, the anisotropic GUP predicts 
that the transmission coefficient will change as the experiment is rotated about the z-axis, violating local Lorentz 
invariance.

A scanning tunneling microscope (STM) could be an ideal system for measuring (or constraining) this effect. 
If we consider anisotropic GUP corrections to the STM experiment, then we would expect that the tunneling 
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If anisotropy exists ( β0x  = β0y ) then, without loss of generality, we can assume, β0x < β0y , which in turn 
would imply β0x ≤ β01 ≤ β0y . Furthermore, we can also assume for simplicity that k1 = k2 , which is physically 
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where

parameterizes the effect of the anisotropic GUP.
At present the value of β0 is constrained to be about β0i < 102118. Given this bound, the constraints on 
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close to 1, making measurement of anisotropy more feasible. A computational algorithm can be used to find the 
optimal set of parameters in the high dimensional parameter space for observing the effect.

In this letter, we have proposed an anisotropic GUP, which breaks the isotropy of space at short distances. We 
have observed that this anisotropic GUP causes an effective non-local motion of quantum particles, and which 
in turn causes a local non-conservation of probability current. As this deformation was proposed to occur due 
to low energy consequences of quantum gravitational effects, it affects all quantum mechanical systems. We have 
proposed that it can be detected using ultra precise measurements of quantum mechanical systems. In fact, we 
have explicitly proposed that STM can be used as such a system to detect this anisotropic GUP.

We close by commenting on the implications of our results for Lorentz covariance. In the isotropic GUP 
there is an intrinsic minimal length without a minimal time, breaking spacetime covariance17–19. Such break-
ing has been constrained from present observations81,82. It may be noted that such effects are not important as 
GUP deformation is usually studied for high precision and low energy non-relativistic quantum mechanical 
systems53–56. However covariant formulations of the GUP exist that contain an intrinsic minimal time, and this 
does not break Lorentz symmetry83,84.

However unlike the isotropic GUP, it is not possible to incorporate additional structure in the anisotropic 
GUP to restore Lorentz symmetry. This means that Lorentz-symmetry breaking is a generic prediction of the 
anisotropic GUP, and must be either determined or constrained from experiment, similar to what is done in 
DSR85,86 and Horava–Lifshitz gravity87,88. Investigating such constraints for the anisotropic GUP would be inter-
esting as there is an abundance of relevant experiments, including gravitational waves89, ultrahigh-energy cosmic 
rays90, lunar laser ranging91, frequency differences between Zeeman masers92, and radio-frequency spectroscopy 
of atomic dysprosium93.

One interesting avenue of study is an analysis of the cosmological and astrophysical implications of the 
anisotropic GUP. For example, CMB anisotropies27,28 could be due either to anisotropies in the electromagnetic 
field or gravitational waves or both. It is possible to obtain corrections to Maxwell’s equations from the GUP, by 
requiring GUP deformed matter fields to be invariant under U(1) gauge symmetry94. This approach can also be 
extended to non-abelian gauge theories95, and even other fields like gravity (as it can be considered as a gauge 
theory of the Lorentz group)94. Furthermore, it has been demonstrated that this formalism can be used to obtain 
corrections to these fields under other deformations of the Heisenberg algebra96,97. A similar program could be 
carried out for the anisotropic GUP to see what its experimental implications are.
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