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Abstract: Scandium (Sc) and yttrium (Y) co-doped ZrO2 (ScYSZ) thin films were prepared on a
SiO2-Si substrate via pulsed laser deposition (PLD) method. In order to obtain good quality thin films
with the desired microstructure, various oxygen partial pressures (PO2 ) from 0.01 Pa to 10 Pa and
substrate temperatures (Ts) from 25 ◦C to 800 ◦C were investigated. X-ray diffraction (XRD) patterns
results showed that amorphous ScYSZ thin films were formed at room substrate temperature while
cubic polycrystalline thin films were obtained at higher substrate temperatures (Ts = 200 ◦C, 400 ◦C,
600 ◦C, 800 ◦C). Raman spectra revealed a distinct Raman shift at around 600 cm−1 supporting a cubic
phase. However, a transition from cubic to tetragonal phase can be observed with increasing oxygen
partial pressure. Photoemission spectroscopy (PES) spectra suggested supporting analysis that
more oxygen vacancies in the lattice can be observed for samples deposited at lower oxygen partial
pressures resulting in a cubic structure with higher dopant cation binding energies as compared
to the tetragonal structure observed at higher oxygen partial pressure. On the other hand, dense
morphologies can be obtained at lower PO2 (0.01 Pa and 0.1 Pa) while more porous morphologies
can be obtained at higher PO2 (1.0 Pa and 10 Pa).

Keywords: co-doped zirconia; zirconia-doped thin films; pulsed laser deposition; solid electrolyte; XPS

1. Introduction

Zirconia-based solid oxide electrolyte is one of the most widely used solid electrolytes
for solid oxide electrochemical cells (SOEC). It is typically doped with a trivalent cation such
as yttrium to create oxygen vacancies and to stabilize the cubic structure. Yttria-stabilized
zirconia (YSZ) is the typical zirconia-based solid electrolyte used for SOECs due to its high
oxide ion conductivity at elevated temperatures [1–4]. Scandia-stabilized zirconia (ScSZ),
on the other hand, is also used as a solid electrolyte due to its remarkable higher ionic
conductivity, almost 3x, as compared to YSZ; however, the high conductivity of the cubic
phase ScSZ is limited to a narrow temperature range and with the cubic phase structural
stability dependent on doping concentration and temperature [5–8]. In order to circumvent
these concerns and to improve the solid electrolyte properties and performance, fabrication
into thin films and co-doping are some of the promising solutions.

Co-doping of scandium and yttrium into zirconia (ScYSZ) has been reported in the
literature [8–13]. The incorporation of Y3+ and Sc3+ as co-dopants into ZrO2 structure
can either stabilize the cubic/tetragonal phase to achieve a better or desired property
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such as higher conductivity as compared to single doping [8–11] and can provide good
mechanical and thermal stability desirable for certain applications [14]. On the other hand,
the fabrication of solid electrolytes into thin films may further increase the conductivity
and is crucial for the development of a micron-sized SOEC system (µ-SOEC). ScYSZ thin
film showed higher ionic conductivity (1.2 × 10−1) at 700 ◦C (0.7 eV activation energy) as
compared to bulk solid electrolytes [8,13,15].

Vapor phase deposition methods are very useful in developing thin films such as
nanometer-scale electrode-electrolyte systems. Among these methods, pulsed laser depo-
sition (PLD) has been used for the fabrication of electrolyte thin films with lower ohmic
resistance and high-quality films with good morphological features. Such thin films can be
attained by simply tuning the stoichiometry of the PLD target material and different depo-
sition parameters [16,17]. Most papers have focused on the fabrication of YSZ [18–25] and
ScSZ [6] via PLD and very limited reports on PLD deposited co-doped ScYSZ thin films.

The crystal structure, phase stability, and morphology are important factors that
affect the properties such as the conductivity of solid electrolytes and other properties
desirable for specific applications. Cubic YSZ has high ionic conductivity; however, its
polymorph, tetragonal phase, although has lower conductivity, shows interesting high
mechanical strength and hardness particularly also useful for solid oxide electrochemical
cells applications [14,26–28]. For ScSZ, the reported ionic conductivity trend, high to low, is
cubic > tetragonal > rhombohedral > monoclinic (with tetragonal phase), respectively [29].
In addition, ScSZ denser films were prepared also at low oxygen partial pressure using
low-pressure plasma spray to achieve higher oxygen ion transport performance [30]. In
the fabrication of thin films using PLD, the resulting crystal structure and morphology of
the deposited thin films, which directly affect the electrical properties of the thin films, are
dependent on the parameters employed during deposition [24,25]. For YSZ, deposited
thin films show the evolution of microstructure from porous to dense thin films. High
deposition temperature and lower oxygen partial pressure resulted in dense microstructure
and less dense at increasing oxygen partial pressure. Dense microstructure thin film has
high oxygen ion conductivity while porous thin films have low oxygen ion conductivity but
have high protonic conductivity [25,31,32]. For scandium and yttrium co-doped zirconia or
ScYSZ thin films, very limited information or none so far has been reported on the effects of
PLD deposition parameters on the properties of ScYSZ solid electrolyte thin films. Hence,
it is important to explore and investigate ScYSZ thin films fabricated via PLD.

In this study, in order to tailor and to provide an understanding of the quality of Sc
and Y co-doped ZrO2 thin films produced via PLD, the effects of different PLD deposition
parameters such as oxygen partial pressure and substrate temperature on the crystal
structure and morphology of Sc-Y co-doped ZrO2 deposited thin films were investigated.
The properties of prepared thin films were analyzed using X-ray diffraction (XRD), Raman
spectroscopy, scanning electron microscopy (SEM), and Photoemission spectroscopy (PES).

2. Materials and Methods

The PLD ScYSZ target material, scandium and yttrium co-doped zirconia having a
chemical composition of Zr0.4Y0.8Sc0.8O1.92, was prepared via solid state reaction method
using ZrO2 (5–25 nm, 97.2%, EM Futur, Castellon, Spain), Sc2O3 (99.9% Sigma-Aldrich,
Inc., St. Louis, MO, USA), and Y2O3 (<50 nm, Sigma-Aldrich, Inc., St. Louis, MO, USA)
powders. The as-calcined powder was pelletized using uniaxial pressing and finally
sintered at 1400 ◦C in ambient condition and was used as target material for PLD. ScYSZ
thin films were ablated, with a 30 mm distance, on Si with native SiO2 oxide substrate
using Nd3+: YAG laser (LOTIS TII (LS-2137U), λ = 266 nm), Tokyo Instruments, Inc., Tokyo,
Japan using laser energy of 38 J and a repetition rate of 10 Hz. The pulse duration was
10 ns, the area of the beam was 9.8 × 10−3 cm2 and a plano-convex lens was used with a
focal length of 400 mm. The as-deposited ScYSZ thin films were prepared and investigated
using various PLD substrate temperatures (Ts = 25 ◦C, 200 ◦C, 400 ◦C, 600 ◦C, 800 ◦C) and
oxygen partial pressures (PO2 = 0.01 Pa, 0.1 Pa, 1.0 Pa, and 10 Pa).
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The crystal structure of the as-deposited ScYSZ thin films was determined using
Rigaku SmartLab X-ray Diffractometer (Rigaku Corporation, Tokyo, Japan). XRD analysis
was performed using a 2-theta measurement (through NIMS-Namiki Foundry Facility,
Tsukuba, Japan), equivalent to the grazing technique used for thin-film characterization.
Scanning was obtained with CuKα (λ = 1.54 nm), resolution of 0.01, and 2θ scan range
from 20◦ to 80◦ with 5◦/min scan rate. To further investigate the crystal structure and
polymorphs of ScYSZ thin films, JASCO NRS-5100 Laser Raman spectrometer (Jasco
International Co., Ltd., Tokyo, Japan) was used. Raman shift of the as-deposited thin
films was obtained with the wavenumber ranges from 100 cm−1 to 1200 cm−1 at room
temperature. Field Emission-Scanning Electron Microscopy (FE-SEM) S-4800 (Hitachi
High-Tech., Corp., Tokyo, Japan) was used to observe the morphological features of as-
deposited ScYSZ thin films. Before the sample measurements, Pt films were sputtered
on the surface of ScYSZ film for 20 s. Both the surface structure and the cross-sectional
images were captured. Photoemission Spectroscopy (PES) was performed with Beamline
3.2Ua Photoelectron spectroscopy at the Synchrotron Light Research Institute, Nakhon
Ratchasima, Thailand. The electron energy was analyzed by CLAM2 (Thermo VG Scientific,
England, UK). The photon energy was 600 eV and the total energy resolution was about
2 eV. The base pressure was 2 × 10−8 Pa.

3. Results and Discussions
3.1. X-ray Diffraction Analysis

Figure 1 shows the diffraction peaks of polycrystalline as-deposited ScYSZ thin films
using different deposition parameters: Ts and PO2 . Figure 1a shows that at increasing
deposition temperature, crystallized ScYSZ thin films were obtained. The as-deposited
ScYSZ thin films at about 25 ◦C or room temperature (RT) is amorphous and crystallization
started at 200 ◦C, then well-crystallized peaks can be observed from 600 ◦C to 800 ◦C. The
diffraction peaks at 2θ ≈ 30◦ (111), 35◦ (200), 50◦ (220), 60◦ (311), 63◦ (222), and 75◦ (400)
can be indexed and attributed to cubic ZrO2-phase (ICSD No. 00-078-1808). This result is
similar to the diffraction peaks measured for the target pellet and is observed to agree with
the previous studies in [17,24,25] on YSZ thin films on SiO2-Si substrate. On the other hand,
the effect of oxygen partial pressure on the crystal structure of ScYSZ thin films is shown
in Figure 1b. As shown in the XRD stacked patterns, similar peaks can be observed for
the different oxygen partial pressures; however, more crystalline or high-intensity peaks
are observable for the oxygen-deficient environment or lower oxygen partial pressure,
PO2 = 0.01 Pa and 0.1 Pa, as compared to higher oxygen partial pressures peak intensities.

3.2. Raman Spectroscopy

Figure 2a depicts the Raman spectra of the as-deposited ScYSZ thin films. When de-
posited at increasing deposition temperature, ScYSZ thin films show mostly cubic (c) phase
with distinct Raman shift at approx. 600 cm−1. On the other hand, while the XRD re-
sults revealed only cubic phases for all deposited samples, due to sensitivity of Raman
spectroscopy to local structure and disordering as compared to XRD, there is an observed
transition from cubic phase to tetragonal (t) phase for ScYSZ thin films deposited with
increasing oxygen partial pressure as shown in Figure 2b.

As revealed in Figure 2b, in an oxygen-deficient environment or low oxygen partial
pressures, PO2 = 0.01 Pa and PO2 = 0.1 Pa, only a single Raman band at around 600 cm−1

was observed suggesting a cubic ZrO2 fluorite structure [28,33]. However, at increasing
oxygen partial pressure, from PO2 = 1.0 Pa to PO2 = 10 Pa, Raman bands at approx. 298 cm−1,
350 cm−1, 630 cm−1 are observable which can be attributed to coupling of Zr-O′ stretching,
O(O′)-Zr-O(O′) bending, and Zr-O stretching vibrational modes, respectively [10,28,34].
The observed Raman band at around 524 cm−1 is attributed to vibrational mode coming
from the SiO2 substrate which is more distinct at high oxygen partial pressures.
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Figure 3. Cross-sectional SEM images of ScYSZ prepared at (a) Ts = 25 °C (a,b) Ts = 800 °C, with 𝑃ைమ 
= 0.1 Pa, 3 h deposition time on SiO2-Si substrate. 

Figure 2. Raman spectra of (a) as-deposited ScYSZ thin films on PtTi-SiO2-Si substrate with vary-
ing substrate deposition temperatures, Ts = 25 ◦C, 200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C, with
constant PO2 = 0.1 Pa; and (b) with various oxygen partial pressures, PO2 = 0.01 Pa, 0.1 Pa, 1.0 Pa and
10 Pa, at Ts = 600 ◦C. (* SiO2 substrate).

3.3. Microstructural Properties

Figure 3 shows the cross-sectional SEM images of the deposited thin films for Ts = 25 ◦C
(Figure 3a) and Ts = 800 ◦C (Figure 3b) with oxygen partial pressure of PO2 = 0.1 Pa and deposi-
tion rate of about 70 nm/h. Although both substrate temperatures showed a dense morphology,
a more crystalized columnar structure can be observed at high substrate temperature.
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Figure 3. Cross-sectional SEM images of ScYSZ prepared at (a) Ts = 25 ◦C (a,b) Ts = 800 ◦C, with
PO2 = 0.1 Pa, 3 h deposition time on SiO2-Si substrate.

The surface morphologies of the deposited thin films at different substrate temper-
atures and oxygen partial pressures are shown in Figure 4a,b, respectively. As can be
observed in Figure 4a, the images revealed dense and crack-free surfaces, with the presence
of droplets or circular agglomerates that increases at increasing deposition temperature.
These agglomerated droplets are ScYSZ particles which are characteristic deposits for
oxide films prepared using Nd:YAG laser system in PLD [20,33,35]. On the other hand,
Figure 4b showed the SEM surface images of the as-deposited thin film on SiO2-Si substrate
at various oxygen partial pressure. At increasing oxygen partial pressure, more porous and
rough surface microstructures are observable. This effect on the surface morphology using
higher oxygen partial pressure during deposition is consistent with reported works on the
microstructure of ZrO2 thin films [19,24,25,36].

3.4. Photoemission Spectroscopy (PES)

The co-doping of Sc and Y in ZrO2 and its effect on the resulting thin film structure
was verified by the presence of the element’s core levels and with binding energies using
PES analysis [37–39] and the results are shown in Figure 5. Figure 5a shows the wide scan
spectra for ScYSZ thin films deposited with PO2 = 0.01 Pa and PO2 = 1.0 Pa with binding
energies and peaks identified for O 1s, Sc 2p, Zr 3p and Zr 3d, Y 3p and Y 3d, and OKLL core
levels. The binding energy of the spectra was referenced from C 1s at 284.6 eV. PES peaks
position for Zr 3d is at 181 eV to 183 eV which corresponds to the Zr4+ valence state.
On the other hand, for Y 3d, the peak position is at around 158 eV for Y3+ valence
state [40,41] and the peaks for Sc 2p are at around 402 eV to 403 eV for the Sc3+ valence
states [38,42]. For the O 1s core levels, the peaks are expected at binding energies around
530 eV to 532 eV for lattice oxygen and hydroxyl [39], respectively, and O KLL is expected
at 92 eV. The narrow scans for different core levels are shown in Figure 5b–e.

Figure 5b shows the PES stacked spectra of the O 1s core level for ScYSZ thin films
deposited at PO2 = 0.01 Pa and PO2 = 1.0 Pa. The PES spectrum was observed to be slightly
asymmetric for both PO2 , 0.01 Pa and 1.0 Pa. A sample deconvolution of the peaks, for
the 0.01 Pa spectrum, is also shown. As revealed, O 1s can be deconvoluted or fitted into
three peaks centered at 530.0, 531.5, and 532.5 eV, for both PO2 . These binding energies are
typical values for O1s lattice oxygen (oxygen bonded with Zr and/or Sc/Y), hydroxyl, and
weakly adsorbed oxygen/H2O [42–45]. The PES stacked spectra of Zr 3d, Y 3d, and Sc
2p for the two oxygen partial pressures are shown in Figure 5c–e, respectively. Spin-orbit
splitting can be observed from these spectra. Figure 5c shows the PES spectra of Zr 3d
consisting of Zr 3d5/2 and Zr 3d3/2, corresponding to the Zr4+ valence state, with binding
energies located at 182.4 eV and 184.8 eV for PO2 = 1.0 Pa, respectively. On the other hand,
Figure 5d shows the PES spectrum of Y 3d that is slightly asymmetric which consists of
Y 3d5/2 and Y 3d3/2 with binding energies located 157.2 eV and 159.2 eV for PO2 = 1.0 Pa
corresponding to the Y3+ valence state. The PES spectrum of Sc 2p consisting of Sc 2p3/2
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and Sc 2p1/2 is shown in Figure 5e, with binding energies located at 402.4 eV and 406.9 eV
(PO2 = 1.0 Pa), corresponding to Sc3+ valence state.
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Figure 4. SEM surface morphology images of ScYSZ thin film on SiO2-Si substrate prepared (a) at
various substrate temperatures with constant PO2 = 0.1 Pa; and (b) at various oxygen partial pressures
(PO2 ) at 600 ◦C.

The effects of increasing PO2 in the ScYSZ thin film deposition are observable by the
slight shifting in the binding energies of the dopants (Y 3d/Sc 2p) core levels. The Y 3d
peak shifts from 157.6 eV to 157.2 eV while Sc 2p3/2 peak shifts from 403.0 eV to 402.4 eV
as oxygen pressure increases from PO2 = 0.01 Pa to PO2 = 1.0 Pa. This means that ScYSZ
thin films deposited at PO2 = 0.01 Pa suggested a higher concentration of oxygen vacancy
as compared with ScYSZ thin films deposited at PO2 = 1.0 Pa [39]. It can be said that
the lower oxygen partial pressure induces oxygen defects or vacancies; however, as the
oxygen partial pressure increases from 0.1 Pa to 1.0 Pa, the lattice oxygen increases. These
suggest that the dopants were reduced when oxygen pressure was increased. On the other
hand, from the results in this study, the oxygen partial pressure does not crucially affect
the Zr 3d peaks. However, for the dopant cations, Y 3d and Sc 2p, the binding energy
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decreases as the oxygen partial pressure increases. It can be said that at higher oxygen
partial pressures, the oxygen vacancy may be filled preferentially in the vicinity of the
dopant thereby significantly affecting the binding energies of Sc/Y while Zr, in general,
may have no drastic changes in its environment. From the fitting data, the Zr is only
slightly affected with a very small binding energy changed, about 0.02 eV difference due to
the local structural change effect also with the nearest dopant. Further study is needed to
support the coordination numbers of these cations and the theoretically expected formation
of non-lattice oxygen with the doping that affects the binding energy. It can be said though,
in this study, that the suggested presence of oxygen vacancies may be one of the reasons for
the structural transition from cubic to tetragonal phase at lower to higher oxygen partial
pressures, as also supported in the local structural phase transition observed from the
Raman analyses.
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4. Conclusions

Thin films of scandium and yttrium co-doped zirconia (ScYSZ) were successfully pre-
pared on SiO2-Si substrate using PLD under varying oxygen partial pressures (PO2 = 0.01 Pa,
0.1 Pa, 1.0 Pa, and 10 Pa) and substrate temperatures (Ts = 25 ◦C, 200 ◦C, 400 ◦C, 600 ◦C,
800 ◦C. From the XRD analysis, an amorphous film was produced at room temperature;
however, a polycrystalline cubic-phase ScYSZ can be achieved at lower oxygen partial
pressures (PO2 = 0.01 Pa and 0.1 Pa) and increasing substrate temperatures (Ts = 200 ◦C,
400 ◦C, 600 ◦C, 800 ◦C). The cubic structure at low oxygen partial pressure was supported
by the observed Raman shifts in the Raman spectra. However, at high oxygen partial
pressures (PO2 = 1.0 Pa and 10 Pa), a tetragonal phase can be observed from the Raman
spectra. On the other hand, SEM images revealed dense and crack-free surface morpholo-
gies with particle droplet-like agglomerates achieved at lower oxygen partial pressures
(PO2 = 0.01 Pa and 0.1 Pa), and rough surface and porous morphology at increasing oxygen
partial pressures (PO2 = 1.0 Pa and 10 Pa). Furthermore, PES spectra revealed the shifting
of the dopant cations core level peaks with the increase in oxygen partial pressure from
higher to lower binding energy.
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