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Adrenal cortical carcinoma (ACC) is a severe malignant tumor with low early diagnosis rates and high mortality. In this study, we
used a variety of bioinformatic analyses to find potential prognostic markers and therapeutic targets for ACC. Gene Expression
Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data sets were used to perform differential expressed analysis.
WebGestalt was used to perform enrichment analysis, while String was used for protein-protein analysis. Our study first
detected 28 up-regulation and 462 down-regulation differential expressed genes through the GEO and TCGA databases. Then,
GO functional analysis, four pathway analyses (KEGG, REACTOME, PANTHER, and BIOCYC), and protein-protein
interaction network were performed to identify these genes by WebGestalt tool and KOBAS website, as well as String database,
respectively, and finalize 17 hub genes. After a series of analyses from GEPIA, including gene mutations, differential
expression, and prognosis, we excluded one candidate unrelated to the prognosis of ACC and put the remaining genes into
pathway analysis again. We screened out CCNB1 and NDC80 genes by three algorithms of Degree, MCC, and MNC. We
subsequently performed genomic analysis using the TCGA and cBioPortal databases to better understand these two hub genes.

Our data also showed that the CCNBI and NDC80 genes might become ACC biomarkers for future clinical use.

1. Introduction

Adrenal cortical carcinoma (ACC) originates from the adre-
nal cortex and is a rare clinical malignant endocrine tumor
[1], with a population incidence of 0.001%o to 0.002%o [2].
Still, it is also the most common primary malignant tumor
of the adrenal gland [3] and is the second most common
malignant tumor of the endocrine organ after thyroid cancer
[4]. ACC can occur at any age, with two peaks in childhood
and between 50 and 70, and is more common in women
[5-7]. The clinical manifestations of ACC are diverse and
prone to invasion and metastasis. Due to the low early diag-
nosis rate and high mortality, the survival period is generally

less than three years [8], and the 5-year survival rate is only
10% to 20% [9], which greatly threatens the life and health of
patients. There is currently no effective early diagnosis and
late treatment for ACC, and complete surgical resection is
the only possible cure for ACC [10-13]. Therefore, finding
novel biomarkers for efficient screening in the early stages
of ACC may be valuable for long-term survival.

It is also worth noting that adrenocortical adenocarcino-
mas have distinct gene expression profiles from adrenocorti-
cal adenomas. The most widely recognized gene at present is
the gene IGF2. The expression of IGF2 in adrenocortical
adenocarcinoma is higher than that in adrenocortical ade-
noma. However, the differential diagnosis of adrenocortical


https://orcid.org/0000-0002-9479-2859
https://orcid.org/0000-0001-9672-3593
https://orcid.org/0000-0002-0100-9117
https://orcid.org/0000-0002-2300-8465
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2465598

GSE10927

-LogFDR
(@)

Computational and Mathematical Methods in Medicine

GSE19750

20 25

—LogFDR
(b)

The differentially expressed gene on chromosome

5 6 7 8 9

(L RHERRTTE

AN TR

—— Over-expressed genes
—— Under-expressed genes

Up-regulated DEGs
GSE10927 GSE19750

10 11 12 13 14 15 16 17

()

18 19 20 21 22 X

Y

i

[

Down-regulated DEGs
GSE10927 GSE19750

TCGA

TCGA

(d)

F1GURE 1: The process of identifying DEGs in ACC. (a-b) Volcano maps based on GSE10927 and GSE19750 data sets. (c) Schematic
representation of differentially expressed genes on chromosomes. (d) Venn diagram based on DEGs in GSE10927, GSE19750, and

TCGA data.

adenocarcinoma and adrenocortical adenoma cannot be
accurately performed by only using IGF2 as an indicator
[14-16]. In recent years, research on differential genetic
screening of adrenal tumors has been on the ascendant. It
has been reported that the combination of IGF2 and Ki-67
has high specificity and sensitivity in identifying benign
and malignant adrenal cortical tumors [12, 14, 17]. Another

study reported that the most differentially significant genes
were TOP2A, IGF2, CCNB2, CDC2, CDC25C, and
CDKNIC [18]. The correlation between the differential gene
expression fold and the survival time of patients with adre-
nocortical adenocarcinoma has also been confirmed [19],
so it is possible to judge the prognosis of patients according
to the gene expression level. In addition, steroidogenic factor
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Figure 2: Continued.
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FIGURE 2: GO analysis was performed for DEGs in ACC. (a-c) Histograms show the results of GO analysis. (d-e) Hierarchical plots show

the results of the GO analysis.

1 (SE-1), another gene that plays an essential role in promot-
ing the occurrence and development of adrenal tumors, is of
great significance to the growth and migration of adrenal
tumor cells. In vivo experiments have proved that overex-
pression of SF-1 promotes the proliferation and migration
of adrenocortical adenocarcinoma cells [20]. In addition,
multiple studies have also confirmed that SF-1 has a high
value in the diagnosis of adrenocortical carcinoma and the
prognosis evaluation of patients [21-23], and it has been
reported that SF-1 overexpression is associated with a low
survival rate in patients with adrenocortical carcinoma. In
addition, Snail is closely related to the metastasis and prog-
nosis of adrenocortical carcinoma. The relevant research
results show that more than 95% of the clinical stage III
and IV adrenocortical carcinoma tumors have positive Snail
expression [24]; ER-negative expression adrenal cortical car-
cinoma patients have a lower 5-year survival rate than those
with ER-positive expression and have a greater chance of
distant metastasis [25, 26]. In addition, the simultaneous
high expression of BUB1B and PINK1 in tumor tissue may
indicate a good prognosis in patients [27]. Therefore, the
study of these differential gene expression profiles through

bioinformatics analysis plays a crucial role in understanding
the pathogenesis of adrenocortical adenocarcinoma and the
molecular signaling pathways involved [28].

We first downloaded raw data from GEO and TCGA
databases in this study to obtain differentially expressed
genes (DEGs) in ACC. Then, we performed gene ontology,
pathway enrichment analysis, and protein-protein interac-
tion (PPI) network. GEPIA was adopted to observe these
genes’ mutations, differential expression, and prognostic
characteristics. Besides, TCGA and cBioPortal were used to
determine the distribution in pan cancers, pathway enrich-
ment, the features in pathological parameters, and the rela-
tionship with other genes. We attempted to seek specific
hub genes that may serve as influential biomarkers for ACC.

2. Materials and Methods

2.1. GEO Database. GEO is a gene expression database cre-
ated and maintained by the National Center for Biotechnol-
ogy Information NCBI. The database was built in 2000 and
contains high-throughput gene expression data from
research institutions worldwide. In this study, GEO database
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FIGURE 3: Pathway enrichment analysis was performed for DEGs in ACC. (a) Interaction plot showing the results of pathway enrichment
analysis. (b—e) Bubble plots show KEGG, BIOCYC, REACTOME, and PANTHER pathway enrichment analysis results.

(http://www.ncbinlm.nih.gov/geo/) [29] was used for gene
expression data sets between ACC tissues and normal tis-
sues. Then, we further evaluated the complete information
about the relevant data sets. Finally, in line with the Affyme-
trix Human Genome (GPL570) platform, two data sets
(GSE19750 and GSE10927) were chosen for subsequent
analysis. The GSE19507 data set contained 44 ACC and 4
normal samples [30, 31], and the GSE10927 data set
included 33 ACC and 10 normal samples [32].

2.2. Differential Expression Analysis. R language was used to
analyze GEO data and drew volcano maps and heat maps,
and these two data sets were employed to get differential
expressed genes (DEGs). |Log2FC|>1, P-value <0.05 was
considered the cutoff criterion. Besides, we put on these data
to cross with TCGA data [33]. Then, an online tool, Bioin-
formatics & Evolutionary Genomics, was used to draw the
Venn diagram for up-regulated and down-regulated DEGs
(http://bioinformatics.psb.ugent.be/webtools/Venn/) [34].

2.3. Gene Ontology and Pathway Enrichment Analysis. The
up-regulated and down-regulated DEGs were integrated into
the WEB-based Gene Set Analysis Toolkit (webgestalt)
(http://www.webgestalt.org/) [35] for Gene Ontology (GO)
functional annotation enrichment analysis. Furthermore,
we performed KEGG pathway analysis for DEGs through
the ClueGO plugin in Cytoscape software [36]. The KEGG
[37], REACTOME [38], PANTHER [39], and BIOCYC

[40] pathways were downloaded from the KOBAS website
[41]. A P-value of <0.05 was considered statistically
significant.

2.4. Protein-Protein Interaction (PPI) Network and
Identification of Hub Genes. String database is a database
that can be used to search for interactions between known
and predicted proteins. In addition to generating beautiful
protein-protein-interaction (PPI) maps of these proteins,
an analysis of imported proteins is also provided. In this
study, PPI network between DEGs was built by String data-
base (http://stringdb.org/) [42]. First, entered the DEGs into
the database and set the confidence score>0.7. Then,
removed unlinked DEGs and arranged the remaining DEGs
protein interaction data and photos. The data acquired by
String website was substituted into the Cytoscape software
and the hub genes were captured through the cytoHubba
plugin. Afterward, the top 20 genes were collected by three
algorithms of Degree, MCC, and MNC [43]. The Venn dia-
gram of these hub genes was gathered using the online tool
Bioinformatics & Evolutionary Genomics.

2.5. Gene Expression Analysis and Survival Analysis. GEPIA
(http://gepia.cancerpku.cn/detail.php) [44] is a newly devel-
oped interactive web server for analyzing RNA sequencing
expression data of 9736 tumors and 8587 normal samples
in TCGA and GTEX projects. Based on GEPIA database,
we checked the differences in hub gene expression between
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FIGURE 4: Protein-protein interaction analysis and screening of hub genes of DEGs. (a) The protein-protein interaction network of these
DEGs molecules. (b) Top 20 hub genes screened by Degree algorithm. (c) Top 20 hub genes screened by MCC algorithm. (d) Top 20
hub genes screened by MNC algorithm. (e¢) A Venn diagram is drawn based on the hub genes obtained by Degree, MCC, and MNC

algorithms.

ACC and normal tissues. The predictive value of these genes
in ACC was analyzed using the GEPIA database, and the
cutoff value was set to 50%. The website automatically calcu-
lated the hazard ratio (HR) of 95% confidence interval and
log-rank P-value and displayed it directly on the web page.
P-value <0.05 was considered statistically significant.

2.6. TCGA and cBioPortal Data. The cancer genome map
included sequencing and pathology data for 30 different
cancers. The ACC (TCGA, Provisional) data set was
selected, comprising data from 92 pathology reports. These
DEGs were further conducted via cbioportal (http://www
.cbioportal.org/index.do) [45]. The genomic analysis is
covered with mutations and co-expression analysis. The
co-expression and networking were calculated based on

cbioportal’s online instructions. P-value <0.05 was consid-
ered statistically significant.

2.7. Statistical Analysis. Statistical analyses of all data were
performed using statistical software from all online data-
bases. Statistical significance of differences between and
among groups was assessed using the ¢-test. Statistical signif-
icance was set at *P < 0.05; **P < 0.01; and **=* P < 0.001.

3. Results

3.1. DEGs in ACC. In recent decades, differentially expressed
genes have been the focus of research in the field of cancer
research. DEGs in ACC were identified by examining two
GEO data sets and TCGA data (Figures 1(a) and 1(b)). 490
DEGs consisting of 28 up-regulated genes and 462 down-
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FIGURE 5: Overall variation and mRNA expression of 17 hub genes in urological tumors. (a) Overall variation of 17 hub genes in ACC.
(b) Expression of 17 central genes in urologic tumors. (c-d) mRNA differential expression of 17 hub genes in ACC.

regulated genes were finally obtained in our work
(Figure 1(d), Table 1). In addition, to show the distribution
of these DEGs on human chromosomes more specifically,
we draw the corresponding heatmaps. The results showed
that over-expressed genes were mainly distributed on chro-
mosomes 5, 7, and 12 (Figure 1(c)).

3.2. Functional Enrichment of DEGs. GO functional enrich-
ment analysis was performed on these DEGs, demonstrating
that biological regulation, membrane, and protein binding of
most genes were enriched in terms of BP, CC, and MF, respec-
tively (Figures 2(a)-2(e)). Four pathway databases with
KEGG, BIOCYE, REACTOME, and PANTHER revealed that
ACC-related DEGs mainly concentrated on complement and
coagulation cascades, metabolic pathways, malaria, ovarian
steroidogenesis, and so on (Figures 3(a)-3(e)).

3.3. Identification of ACC-Associated Hub Gene. String data-
base was applied to analyze the protein interactions of DEGs
and make a PPI network (Figure 4(a)). The top 20 ACC-
related hub genes were screened through three algorithms
involving Degree, MCC, and MNC. After taking the inter-
section of these three data sets, 17 hub genes containing
C3AR1, CCNBI, CDC20, CENPU, FOXM1, KIF4A, KIF11,
KIF20A, MAD2L1, NCAPG, NDC80, NUF2, PBK, RAC-
GAP1, RRM2, TOP2A, and TPX2 were collected for further
study (Figures 4(b)-4(e)).

3.4. Hub Gene Expression and Prognosis in ACC. To better
make out the 17 hub genes, we analyzed the mutations of

17 hub genes. The results showed that CENPU, FOXMI,
and PBK had higher mutation rates accounting for 13%,
12%, and 11%, respectively (Figure 5(a)). Subsequently, we
detected the expression of these hub genes in six tumors,
including ACC, KICH, KIRC, KIRP, PAAD, and BLCA.
CCNBI1, MAD2L1, ACGAP1, and CENPU were signifi-
cantly higher expressed in all six tumors (Figure 5(b)).
Another discovery is that the expression analysis of these
genes in ACC manifested that except for C3ARI1, which
was down-regulated in ACC, the other 16 genes were up-
regulated in ACC (Figures 5(c) and 5(d)). In addition, we
also found no significant correlation between C3AR1 and
the prognosis of patients with ACC. Still, the rest of the
hub genes had a great connection with an unfavorable prog-
nosis (Figures 6(a)-6(q) and 7(a)-7(q)).

3.5. Functional Enrichment of Hub Genes. In cancer
research, gene function enrichment analysis has become a
routine method for high-throughput omics data analysis,
which is of great significance for revealing biomedical molec-
ular mechanisms. To better understand these hub genes’
function, pathway enrichment analysis was performed on
these 16 hub genes again, which suggested that hub genes
were mainly associated with classical tumor-associated path-
ways, such as the P53 signaling pathway, and cell cycle-
related signaling pathways (Figures 8(a)-8(d)).

3.6. Identification of Two ACC Core Genes CCNBI and
NDC80. By duplicating protein interaction analysis on these
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FIGURE 6: Overall survival analysis. (a—q) Survival graphs showing the overall survival of these 17 hub genes in ACC, in order of C3ARI,
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FIGURE 7: Disease-free survival analysis. (a-q) Survival graphs show the disease-free survival of these 17 hub genes in ACC, followed by
C3AR1, CCNB1, CDC20, CENPU, FOXM1, KIF4A, KIF11, KIF20A, MAD2L1, NCAPG, NDC80, NUF2, PBK, RACGAP1, RRM2,
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FIGURE 8: After removing the C3ARI gene with no prognostic significance in ACC, pathway enrichment analysis was performed in ACC for
the remaining 16 hub genes. (a) KEGG pathway. (b) BIOCYC pathway. (c) REACTOME pathway. (d) PANTHER pathway.

16 hub genes and narrowing the core gene range, we derived
two core genes, CCNB1 and NDC80 (Figure 9(a)). Then, we
evaluated the expression of these two genes in pan cancers,
and the consequences proved that these two genes were
highly expressed in various tumors (Figures 9(b) and
10(a)). Further analysis suggested that the expression of
CCNBI and NDCB80 would increase with disease progres-
sion. The high expression could also predict adverse out-
comes in ACC patients but has little to do with gender
(Figures 9(c) and 9(d) and 10(b) and 10(c)). To improve
our knowledge about the functions of the core genes CCNB1

and NDCB80, ten related proteins were retrieved by the
String database (Figures 9(e) and 10(d)). Later, we discov-
ered that CCNB1 and NDC80 participate in the same path-
way, incorporated with cell cycle, progesterone-mediated
oocyte maturation, HTLV-1 infection, and oocyte meiosis
(Figures 11(a) and 11(b)). CCNBI co-expressed with its
related proteins CDKI1, CDK2, CCNB2, PLK1, CDC20,
CDCAS, ESPL1, and FZR1 (Figures 11(c)-11(j)) in ACC
patients. Pathway analysis for NDC80 showed that
NDCB80 was associated with Cell Cycle (Figure 12(a)). It
was worth mentioning that CCNB1 and NDCB80 were
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FIGURE 9: In-depth exploration of the biological value of the core gene CCNBI. (a) Venn diagram showing the identification of the core
genes CCNB1 and NDC80. (b) mRNA expression of CCNBL1 in pan-cancer. (¢) mRNA expression of CCNBL1 in different stages of ACC.
The P-value between stage 1 and stage 4 is 2.2252E-04. (d) The effect of CCNBI mRNA expression level and patient gender on the
overall survival of ACC patients. (e¢) PPI map between CCNBI and the ten most closely related CCNB1 protein molecules.

consistently expressed in ACC (Figure 12(b)). Simulta-
neously, the expression of NDC80 also has collinearity
with several proteins, like AURKB, BUBI1, SPC25, and
CENPE (Figures 12(c)-12(f)).

4. Discussion

In the past 20 years, molecular biology studies on ACC have
made significant progress [46, 47], but this cancer’s primary
pathogenesis is still unclear. Moreover, recent epidemiologi-
cal studies have shown that the incidence of ACC has
increased yearly in the past 40 years, but the survival rate

of patients has not improved [3]. As a highly malignant
tumor, there is an urgent need to find effective diagnostic
and prognostic targets for identifying early-stage patients,
developing proper treatments, and improving ACC’s poor
prognosis. Therefore, using bioinformatics techniques to
unravel the genomic properties of ACC at the molecular
level is crucial for finding effective treatments and predict-
ing patient survival and relapse risk, and there have been
several successful cases of bioinformatics used in cancer
research [48-51].

Our research selected GSE10927 (10 normal and 33
ACC tissues) and GSE19750 (4 normal and 44 ACC tissues)
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FiGurek 11: Functional and co-expression analysis of CCNBI. (a-b) Pathway enrichment analysis of CCNB1. (c—j) Co-expression analysis of
CCNBI and related genes.

from the GEO database. After analyzing R language, these
results were cross-correlated with data from TCGA, and 28
up-regulated and 462 down-regulated DEGs were enrolled

for our study. Then, we carried out GO functional analysis
and pathway analysis (KEGG, REACTOME, PANTHER,
and BIOCYC) using WebGestalt and KOBAS websites to
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learn these candidates’ gene function and regulatory process. ~ were considered. In addition, the cBioPortal database helped
Moreover, PPI network analysis was used to search for the  investigate the mutations in these genes. The GEPIA website
hub genes through String database, and 17 dominant genes  was applied to assess the extent of differential expression,
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overall survival (OS), and disease-free survival (DFS). After
excluding genes unrelated to ACC’s prognosis, we repeated
pathway analysis on the remaining genes and acquired two
target genes by three different algorithms. Eventually, we
demonstrated that CCNB1 and NDC80 were associated with
ACC’s diagnosis and prognosis and could be considered
vital biomarkers for future clinical use.

CCNBI, also known as Cyclin Bl, is essential for con-
trolling cell cycle during the G2/M (mitosis) transition
[52]. Our results showed that the expression of CCNBI
was elevated in many cancers compared to normal cases,
such as esophageal cancer, gastric cancer, colorectal cancer,
liver cancer, and breast cancer [53-56]. CCNB1 was posi-
tively correlated with the stage of ACC. As the degree of dis-
ease increased, the expression of this gene also increased.
This denoted that CCNBI can distinguish the severity of this
cancer. Ten genes (ESPL1, CDK2, CDK1, ANAPC4, FZR1,
PLK1, CDC27, CDC20, CCNB2, and ANAPCI10) refer to 4
pathways (P53 signaling pathway, cell cycle, progesterone-
mediated oocyte maturation, and oocyte meiosis) connected
with CCNB1 were filtered out by our results. CCNB2 can
compensate for CCNB1 in oocyte meiosis [57] and works
consistently in ACC. CCNB1 and CDK1 were co-expressed
in ACC, and this action was also acknowledged in breast
cancer susceptibility, progression, and survival of Chinese
women [58]. Lohberger et al. proposed that CCNB1 and
CDK1/2 are involved in the G2/M cell cycle checkpoint, pro-
viding an inner relationship between CCNB1 and CDK fam-
ily [59]. The combination of CCNB1 and CDC20 high
expression could predict the poor prognosis of liver cancer
[60], similar to what we got in ACC. In a word, CCNBI
was involved in the process of ACC disease progression
and occupied the central position of several pathways,
implying that it could become a potential gene for further
study.

NDCB80 is required for chromosome segregation and
spindle checkpoint activity [61]. It could affect the growth
of hepatocellular carcinoma [62] and promote proliferation
and metastasis of colon cancer [62]. In our study, the expres-
sion of NDC80 was much higher in ACC stage 4 than in
stage 1-3 but had nothing to do with gender. NDC80 was
mainly centralized in cell cycle pathways and had protein
interaction with CASC5, SPC25, AURKB, SPC24, NUF2,
BUBI1, ZWINT, CENPE, BUBI1B, and MAD2L1. We should
pay attention to whether NDC80 and CCNBI1 had a co-
expression in ACC, prompting that the combined detection
of these two genes can improve the diagnostic rate of ACC.
NDC80 could also be a promising marker to identify ACC
and estimate the prognosis of this cancer.

5. Conclusions

Based on a series of bioinformatics analyses, our study
concluded that CCNB1 and NDCB80 are particularly relevant
for the high risk and poor prognosis of ACC in theory, sug-
gesting that these two genes can be beneficial for proper
diagnosis and treatment of this disease. However, more
efforts should be invested in clinical experiments to learn

Computational and Mathematical Methods in Medicine

these genes’ biological functions and pathological evolution
in ACC.
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ACC: Adrenocortical carcinoma

TCGA: The Cancer Genome Atlas

GEO: Gene Expression Omnibus

GEPIA: Gene expression profiling interactive analysis

C3ARI: Complement C3a receptor 1
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