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Abstract: Microorganisms are critical drivers of biological processes that contribute significantly to
plant sustainability and productivity. In recent years, emerging research on plant holobiont theory
and microbial invasion ecology has radically transformed how we study plant–microbe interactions.
Over the last few years, we have witnessed an accelerating pace of advancements and breadth
of questions answered using omic technologies. Herein, we discuss how current state-of-the-art
genomics, transcriptomics, proteomics, and metabolomics techniques reliably transcend the task
of studying plant–microbe interactions while acknowledging existing limitations impeding our
understanding of plant holobionts.
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1. Introduction

Technological advancements in high-throughput genome sequencing and mass spec-
trometry have transformed biological sciences. Today, there is an ever-growing list of
revolutionary approaches with the suffix-omics [1] that extends beyond those derived from
the central dogma, i.e., genomics, transcriptomics, proteomics, and metabolomics. The
application of these technologies in plant sciences has transformed our understanding
of plant–microbe interactions [2]. Since the publication of the Arabidopsis thaliana micro-
biome [3], providing our first detailed look at this complex microbial world, scientists
around the world have revealed how plants and microbes have their own sophisticated
communication networks and division of labor that is subject to selection in alternative
environments [4].

In recent years, it is becoming increasingly apparent that plant phenotypes are a result
of the combined expression of the host and associated microbial genomes, leading to the
popularization of the ‘holobiont’ theory [5]. As a result, the concept of a plant holobiont, an
assemblage of highly cooperative and minimally conflicting plant–microbe interactions, is
becoming more frequently used in plant sciences [6]. Today, the field of plant holobiont
research invokes the study of interlinkages between plant and individual microbial behavior
and evolution to understand how functionally integrated they are or how natural selection
operates on them [7]. While the concept of holobionts can seem unnecessarily complex at
times, ecological functions provided by microbes are now regarded as an important feature
of plant fitness [8]. Thus, unraveling the complexity of holobionts promises to deliver
innovations in plant ecosystem productivity for sustainable agriculture [9,10] by rooting
out stochasticity and fortifying predictability [11].

The paradigm shift towards the increasingly recognized concept of plant holobionts
introduces new questions to be answered [12,13] and, consequently, a new theoretical
framework for omic technologies to follow. Conceptually, due to inherently dynamic biotic-
abiotic interactions with the environment, the plant holobiont structure and composition
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will experience adaptive cycles of expansion, consolidation, and resilience [11]. Under such
premises, plants and microbes “work together” to continually adapt the plant holobiont to
perpetually changing environmental conditions. Efforts to assess the strength of genetic,
molecular, and metabolic relationships between plants and microbes across environments
would contribute to a more accurate view of the plant holobiont at evolutionary and
ecological scales. Therefore, in this perspective, we discuss the promises and challenges
of omics technologies in studying plant holobionts and how omics information can be
aggregated across these adaptive cycles to effectively understand the long-term fidelity of
plant–microbe interactions and discern their connectivity to ecological functions in plant
holobionts (Figure 1).
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Figure 1. The application of major omic technologies and their integration provide complementary
data necessary for dissecting complex traits and phenotypes associated with plant-microbe inter-
actions. The promises and challenges of each omic technology will be influenced by the genetic,
functional, and environmental complexity inherent to the biological system being studied.

2. Advancements in Omics Are Key to Defining Plant Holobionts

Major scientific breakthroughs in the study of plant–microbe interactions are driven
by technological advancements that facilitate cost-efficient, high-throughput analysis of
DNA, RNA, proteins, and metabolites. In the past decade, high-throughput sequencing
technologies, e.g., Illumina (https://www.illumina.com/, accessed on 15 September 2022)
Pacific Biosciences (https://www.pacb.com/, accessed on 15 September 2022) and Oxford
Nanopore Technologies (https://nanoporetech.com/, accessed on 15 September 2022),
have fostered rapid progress in the field of plant–microbe research by delivering insights
into relevant genetic and genomic expression signatures. Innovations in tandem mass
spectrometry [14] have provided access to how those genomic signatures are translated to
proteins and their subsequent metabolic products. Today, as a result of these advances, we
are now able to answer questions at astonishing levels of mechanistic detail.

Moving forward, our understanding of the plant holobiont will require host-centered
omic strategies paired with commonly used microbial-focused techniques, such as ampli-
con sequencing and meta-omics [15]. Over the past decade, microbiome sequencing and
analysis has improved our understanding of the structure and diversity of the microbial
world that grows in (endosphere) and on above-(phyllosphere) and below-ground (rhizo-
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sphere) plant tissues. Early efforts that used standardized protocols for 16S ribosomal RNA
(rRNA) sequencing expanded our worldly understanding of microbial diversity [16,17], its
extent and limit, and how a plant host and/or environment selects for specific taxonomic
and phylogenetic composition [18]. Similar to 16S rRNA sequencing, DNA barcoding of
Internal Transcribed Spacer (ITS) region of the nuclear DNA has been a key molecular
method for our understanding of fungal diversity [19–22].

Today, next-generation sequencing technologies are increasingly used in attempts to
identify key or “core” microbiome members that consistently engage with plants directly; a
key ecological parameter in holobiont theory. The most actively applied approach to define
a core microbiome prioritizes membership by taxonomic rank, which is determined by
a member’s occupancy and abundance across longitudinal studies [23]. In the simplest
way, taxa with relatively high abundance or observed more frequently can be interpreted
as core taxa, though conditionally rare species can also play important roles [24]. While
high-throughput sequencing using marker genes (e.g., 16S rRNA, ITS or 18S rRNA gene)
is being performed at unprecedented spatial and temporal levels [25], these methods lack
functional information. Therefore, in addition to taxonomic approaches, it is important to
integrate or, at the very least, follow up with functional data (metagenomics [26], metatran-
scriptomics [27], metaproteomics [28], and metabolomics [29–31]) because we are learning
that microbiomes having different species can still encode similar functions [32]. It is
expected that comparative functional metagenomics combined with other downstream
meta-omic methods represents a critical step to our discoveries of interacting mechanisms
between plants and microbes that explain consistently defined core microbiome taxa or
function [33,34].

As discussed later in this perspective, integrating multi-omics data is inherently
difficult because genome expression, transcription, translation, and metabolism all operate
on different timescales [35]. As the field of plant sciences trends towards ever-larger
data sets with multiple omic layers, state-of-the-art approaches will employ machine-
learning and explainable artificial intelligence approaches that serve as a means to classify
and interpret key relationships across a multitude of variables (e.g., plant host genotype,
microbiome composition and function, environment, time, space, etc.) [36].

3. From Genes to Ecosystems: Studying Plant–Microbe Interactions across the
Complexity Landscape

Incorporating natural genetic, environmental, and functional complexity into a single
experimental framework represents a key challenge for all omic technologies—sparse data
combined with methodological limitations can lead to insufficient information or, even
worse, misleading biological inferences [37]. Hence, identifying the genetic, molecular, and
metabolic factors underpinning emergent plant microbiome-associated phenotypes in the
environment is recognized as a daunting task. To address this, plant–microbe interaction
studies adopt experimental frameworks that either seek to control or embrace natural
complexity (Figure 2) [38,39].

Using a reductionist approach, relatively low levels of genotypic and functional
diversity are studied in habitats operating with a highly controlled environment. Under
this framework, simplicity and experimental control offers greater interpretability. Today,
a major advantage of using a reductionist approach is the ability to develop and use
engineered plant–microbe habitats, for example, EcoFab devices [40], to control complexity
while seamlessly integrating with omic measurements. On the one hand, the reductionist
strategy offers an opportunity to define plant holobionts with exquisite mechanistic detail,
providing genetic and/or molecular explanations for plant–microbe interactions. On the
other hand, this strategy is not poised for studying higher-order ecological processes and
their importance.
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Figure 2. Dimensions of complexity and diversity in plant–microbe interactions. Studying plant–
microbe interactions in both reduced and highly complex biological systems is necessary to obtain a
complete understanding of these complex relationships. As complexity increases, the completeness
and reliability of omic technologies will be challenged.

Moving to the other side of the complexity-control spectrum, a holistic approach cap-
tures ecological interactions with the plant holobiont. Using this experimental framework,
large-scale surveys incorporating marker gene or metagenomic sequencing are used to
study plant–microbe interactions across complex natural environments. This approach
offers an opportunity to disentangle the relative influence of genotypic, environmental, and
functional variables and the ecological importance between these variables [41]. Except for
a few exemplary examples [42,43], holistic approaches are often without omic information
due to cost and labor.

Arguably the next step forward in plant–microbe interaction studies is to integrate
reductionist and holistic approaches [44]. Unfortunately, integrating these approaches is
not likely achievable for a single research group. Instead, integration takes place across
large, interdisciplinary research projects such as several notable efforts supported by the
Department of Energy (https://genomicscience.energy.gov/sfas/, accessed on 15 Septem-
ber 2022) and the Earth Microbiome Project (https://earthmicrobiome.org/, accessed on
15 September 2022) [17]. When complete integration is not feasible, it is recommended
that careful experimental design be implemented to bridge the knowledge gaps between
the reductionist-holistic divide by working inward from both sides of the complexity-
control spectrum [38]. In the sections below, we highlight state-of-the-art examples of omics
technologies being applied across the complexity-control spectrum and acknowledge key
challenges that must be addressed.

3.1. Recent Advancements and Current Impediments for Genomics, Transcriptomics, Proteomics,
and Metabolomics for Studying the Plant Holobiont

As discussed in the section above, designing an experiment that generates accurate
and meaningful results that can be built upon is a challenging task when studying plant
holobionts because there are many confounding factors that warrant careful attention.
Coordination between research objectives and technology approaches is essential to deploy
the appropriate measurements to acquire the desired information. This section aims
to highlight the current state-of-the-art research employing omic technologies to better
understand plant–microbe interactions as well as notable impediments to their application
in complex biological systems.

3.1.1. Genomic and Transcriptomics

In the past decade, considerable efforts have been made using next-generation ge-
nomics and transcriptomics to understand how plant genomes influence the presence and
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function of bacteria and fungi in associated microbiomes [45–51]. Yet, the extent to which
plants exert genetic control over their microbiomes is difficult to disentangle from other
natural exogenous stimuli. Natural environments can have biotic and abiotic influences
that can mask the effects of host genes that vary between locations and years, demanding
multi-year, large-scale field experiments [52,53]. Reductionist approaches using laboratory-
controlled conditions can eliminate these confounding factors; however, these studies may
also overestimate the influence of certain plant genes and fail to identify genotypic signa-
tures associated with plasticity under context-dependent requirements [54]. Nevertheless,
remarkable progress has been made in our understanding of how host genetics drives the
composition and function of associated microbiomes [55–57].

The contribution of microbial genes to host function and adaptation is similarly
dependent on ecological context [58,59]. Yet, the contribution of microbial genetics in
holobionts remains difficult to assess simply because the vast majority of microbes lack
reference genomes, and this is because most microorganisms are challenging to grow
under laboratory conditions. While recent advancements in experimental technologies
promise to close this gap using microbial culturomics [60] to isolate and sequence individual
genomes, amplicon-based studies (e.g., 16S rRNA, 18S rRNA and ITS) will likely remain
the most broadly applied genomic technique to study microbiome diversity and its impact
on host function and adaptation [61]. Relevant to the concept of a holobiont, amplicon
studies have also begun to shed light on the importance of microbe–microbe interactions
within plant communities [61,62]. Yet, as mentioned previously, while amplicon studies
are useful for estimating microbial diversity, they fail to provide evidence pertaining to
the functional potential and activity of the sampled microbiota. With decreasing costs
for massively parallel DNA and RNA sequencing, metagenomic and metatranscriptomic
approaches promise to fill this knowledge gap. Today, entire microbial genomes can
be reconstructed from metagenome sequencing [63], yielding metagenome-assembled
genomes (MAGs) that have increased our functional knowledge of specific microbes within
many plant species [64–66]. For instance, the study by Xu et al. [66] is an exemplar study
demonstrating the utility of genome-resolved metagenomics coupled with downstream
reductionist experiments for dissecting plant–microbe interactions in the root-associated
microbiome [66]. On the basis of assessing the activity of microbes in mixed communities,
isotopic labeling with DNA-based sequencing can be used [67–69], but metatranscriptomics
remains the most widely adopted technology to assess the functional responses of both
plants and microbes to interactions with each other [70–73] and external environmental
stresses [74–76].

Moving forward, the combination of host and microbial genomic and transcriptomic
information is critically important to improving our understanding of the plant holobiont.
In addition to the experimental advancements that further the coverage and resolution
of DNA and RNA sequencing in mixed communities [77–80], innovative computational
approaches that improve taxonomic classification [81,82] as well as assembly-based and
mapping-based meta-genomic and -transcriptomic profiling are equally important [83,84].
With continual improvements, the integrated study of the genetic features of a plant
host alongside that of its associated microbes is becoming a more feasible, though still
underdeveloped, approach to understanding plant holobionts [85].

3.1.2. Proteomics

Proteins are considered the central intermediates between a genotype and phenotype,
serving as the effectors of function in biology [86]. Currently, it is important to recognize
that proteins are no longer considered to be simple translations of genetic code. The ex-
tent of chemical diversity proteins can obtain after translation is quite remarkable [87,88],
whereby disparate sources of biological variation (e.g., alternative splicing of RNA and
post-translational modifications) will affect the fidelity and robustness of a protein structure
and function. In general, attempts to compositionally map proteins and their abundances
is largely achieved by mass spectrometry-based approaches [89,90]. Over the past several
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decades, advancements in proteomics have led to new mechanistic insights into how plant
hosts recognize their associated microbes and regulate their establishment, persistence,
and function [51,91,92]. Beyond the large-scale endeavors that compositionally map and
quantify proteome expression changes, the field of proteomics research is recognized as the
key data layer to defining the dynamic signal exchange between organisms that allows for
recognition between friend and foe [93]. For instance, proteomics has advanced our under-
standing of early recognition events in the classic example of a plant–microbe interaction—
Legume-Rhizobium symbiosis [94]. Measuring cellular and subcellular proteomes not only
gives information about what happens to a particular host cellular compartment under
symbiotic relationships [51,95–98], but also includes information necessary to monitor
signaling events occurring during the early stages of symbiotic interactions [99–103].

With respect to studying the plant holobiont, and similar to the other omics, the
ability to integrate host and microbe omics data together is a challenging yet necessary
step forward. Unlike animal and human host-microbe systems [104–106], only in the past
recent years has the field of plant–microbe research started to implement metaproteomics
into experimental designs [107–109]. This is largely explained by experimental and techni-
cal aspects that challenge the depth and coverage of mapping plant-associated metapro-
teomes, especially those that are endophytic. As such, early attempts to apply metapro-
teomics so far largely consist of reductionist approaches to study plant–microbe [110]
and microbe–microbe interactions [111]. Moving forward, innovations to improve the
experimental [112–115], technical [116], and computational extraction and analysis of
metaproteome data [28,117] from more complex environmental matrices, such as native
soil, will be crucial to advancing our understanding of plant holobionts.

3.1.3. Metabolomics

Within plant holobionts, metabolites are the immediate effectors underlying the basic
processes of recognition and communication between organisms and they are a currency
and commodity shared between symbiotic, commensal, parasitic and pathogenic rela-
tionships. Based on genome predictions, we know that plants, and even their associated
microbes, have the ability to produce thousands of molecules that together interact with
and influence ecosystems [118]. Currently, mass spectrometry-based metabolomics is one of
the key technologies used to characterize these diverse complex chemical inventories [119].
In the past decade, the improved accessibility and knowledge obtained from metabolomics
has been crucial to understanding how plant metabolites shape their microbial communities
and how microbially derived molecules affect plant hosts and ecosystems [120–122]. In
general, metabolomics is frequently applied to (i) characterize plant root exudation and
its impact on microbes in the surrounding environment and (ii) the effect of associated
microbes on host metabolism.

Direct analysis of plant–microbe relationships in situ could provide the most rel-
evant data for understanding these biological phenomena, but this can be incredibly
difficult to reproduce, replicate and standardize because of high variability in environmen-
tal factors, such as soil properties, and it can be easily confounded by the surrounding
breakdown of unrelated organisms and other biomaterials [123]. Therefore, the vast ma-
jority of metabolomic research employs a reductionist approach. To date, the rhizospheric
effect on microbiome composition and function has been studied mostly in sterile or
(semi)sterile soil or artificial environmental matrices and habitats, such as hydroponic
growth systems [124–126]. Because of major technical advancements in mass spectrom-
etry, we now know a great deal about root exudate composition in model species such
as Arabidopsis [127–129], maize [130], and rice [131,132] and their effects on associated
microbiota [133–135]. Today, there are still a small number of examples of metabolomics
being applied to study root exudates in either field [136,137] or greenhouse soils [138,139];
however, recent experimental advancements promise to address challenges related to
non-sterile soil matrices [140].
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Crucial to understanding metabolic linkages in plant holobionts, metabolomics can
provide a deep appreciation and understanding of how microbially derived metabolites
impact plant phenotypes [141–143], either by specific pairwise plant–microbe interac-
tions [144–147] or microbiome-driven changes in plant metabolomes [148]. At present,
there is still little, or no effort made to differentiate the origin of metabolites analyzed in
plant–microbe co-cultures and this makes linking metabolome information to a particular
phenotype challenging. Attempts to distinguish metabolites will benefit our understanding
of plant–microbe and microbe–microbe metabolic interactions and thus the use of stable-
isotope labeling [149,150] is considered as a promising technical advancement towards our
understanding of plant holobionts.

3.1.4. Integrative Systems Biology

Combining multiple-omic technologies can be challenging due to the extent of data,
lack of consensus between data types, and the different scales at which each technology mea-
sures the plant holobiont. When successfully integrated, multi-omic studies offer unprece-
dented insights into the mechanistic interplay between plants and microbes [137,151–153].
Advancements in computational tools and deep-learning applications that account for the
increased and varied data types are improving interpretability (reviewed in [154–156] while
network analyses continue to be a useful approach to analyze the integration of multiple
data set types [157,158]. Moving forward, efforts by the research community to extend
the utility and accessibility of computations tools and bioinformatic workflows will be
a key factor in our scientific advancement of the plant holobiont concept into practical
applications. For instance, the open-source data science platform KBase (http://kbase.us,
accessed on 15 September 2022) [159], a freely available community resource offering a suite
of tools and workflows designed as a “one-stop-shop” to integrate and analyze complex
data types, has seen tremendous growth in utilization by the research community. Equally
important to the accessibility of tools is the underlying data. Effective data sharing, using
FAIR principles [160], is important for this growing research community. While proper data
sharing for DNA and RNA sequences is becoming more routine, the ability to “FAIRify”
mass spectrometry data from proteomics and metabolomics still represents a significant
challenge for the research community. The development of data infrastructures such as
GNPS (https://gnps.ucsd.edu/, accessed on 15 September 2022) [161] represented, and
continues to be, an exciting and important step in the right direction for capturing and
retaining knowledge obtained by mass spectrometry.

4. Conclusions

Understanding the mechanistic principles central to plant holobiont theory provides an
opportunity to predict and augment beneficial and detrimental plant–microbe interactions
to improve the sustainability and productivity of natural and agricultural systems [162,163].
The interrelatedness between biological and technical advancements has always had im-
portant implications on major breakthroughs and scientific advancements. We anticipate
that the incredible complexity of plant holobionts will serve as fertile ground for new
innovations in omics techniques and related technologies that will pioneer new advances
in plant biology. Therefore, we hope that this perspective serves to stimulate new multi-
disciplinary research conducted in an environment that embraces the complexity of plant
holobionts in order to catalyze new advancements to open up new biological questions for
the plant–microbe research community.
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