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Abstract

Corneal injury and aberrant wound healing commonly result in corneal fibrosis and subse-

quent vision loss. Intermediate-conductance calmodulin/calcium-activated K+ channels

(KCa3.1) have been shown to promote fibrosis in non-ocular and ocular tissues via upregula-

tion of transforming growth factor beta (TGFβ). TRAM-34 is a selective inhibitor of KCa3.1

and reduces fibrosis by downregulation of TGFβ-induced transdifferentiation of stromal

fibroblasts to myofibroblasts. Ascorbic acid has been demonstrated to be effective in pro-

moting corneal re-epithelialization and reduction of neovascularization via anti-VEGF and

anti-MMP mechanisms. This study evaluates tolerability and efficacy of a novel combination

of TRAM-34 (25μM) and ascorbic acid (10%) topical treatment for corneal fibrosis using an

established in vivo rabbit model and conducting clinical eye examinations. Markers of cor-

neal fibrosis were evaluated in all corneas at study endpoint via histopathology, immunofluo-

rescence, and quantitative real-time PCR. The eyedrop treated eyes showed significantly

improved clinical outcomes based on modified McDonald Shadduck scores, reduction of

clinical haze on Fantes scores, and reduction of central corneal thickness (CCT). At cellular

and molecular levels, eyedrop treatment also significantly reduced expression of alpha

smooth muscle actin (α-SMA) mRNA and protein, collagen III mRNA, and fibronectin mRNA

compared to non-treated eyes. Our study suggests that a tested new bimodal eyedrop is

well tolerated and effectively reduces corneal fibrosis/haze in rabbits in vivo.

Introduction

Corneal haze or fibrosis is a common sequela to corneal injury, infection, and ocular surgery

in all mammalian species. The long-term sequelae of corneal damage is frequently significant

permanent visual loss [1–5]. This can have a major impact on quality of life for both human

and veterinary patients.
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Corneal wound healing is a complex process involving numerous cytokines, activation of

keratocytes, transdifferentiation of fibroblasts to myofibroblasts, angiogenesis, and increased

extracellular matrix (ECM) deposition [5–7]. The cytokine transforming growth factor beta

(TGFβ) has been shown to play a major role in the formation of corneal fibrosis via activation

of fibroblasts and differentiation of activated fibroblasts to myofibroblasts [7–9]. It is well

established that the persistence of opaque myofibroblasts in the corneal stroma leads to corneal

haze and stromal opacity, and that a reduction in myofibroblasts correlates with improved cor-

neal transparency following corneal injury [5, 7, 10, 11]. A variety of therapeutic strategies

including gene therapy, mitomycin C, pirfenidone, vorinostat, and others have demonstrated

that reduction of TGFβ will reduce myofibroblast formation, thus inhibiting corneal fibrosis

[1, 2, 12–20]. However, some of these therapeutic modalities can have negative side effects and

very few are approved for clinical use at present [21].

TRAM-34 (1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole) is a selective inhibitor of

intermediate-conductance calmodulin/calcium-activated K+ channels (KCa3.1) [22]. These

channels are expressed in mitochondrial and cytoplasmic membranes and are known to assist

with regulation of cell cycle progression and proliferation [23]. KCa3.1 channels are upregu-

lated in response to injury [24–26]. Previous studies have shown activation of KCa3.1 to be

important in the development of fibrosis in various organ systems such as the lung, liver, and

kidney [26–28]. Recently, the peer-reviewed literature has demonstrated the role of KCa3.1 in

corneal cell proliferation and its importance in corneal fibrosis [24]. In vitro corneal cell cul-

ture experiments have demonstrated that KCa3.1 mediates the TGFβ-1 induced proliferation

and differentiation of fibroblasts to myofibroblasts [24, 25]. Inhibition of KCa3.1 by TRAM-34

downregulates these processes and thus may present a therapeutic target for treatment and

prevention of corneal fibrosis [29].

Ascorbic acid is abundant in the corneal epithelium of various species and has antioxidant

properties as well as protective effects in corneal disease [30]. Application of topical ascorbic

acid has been associated with improved corneal epithelial wound healing in vivo and is thought

to aid in reconstruction of epithelial basement membranes as well as upregulating corneal epi-

thelial stem cell formation [31]. Studies in rabbits in vivo have shown reduction of corneal neo-

vascularization with the use of topical ascorbic acid via reduction of vascular endothelial

growth factor (VEGF) and matrix metalloproteinase-9 (MMP9) [32].

Both TRAM-34 and ascorbic acid have previously been shown to be safe and well-tolerated

when administered to the cornea topically with minimal effects or cellular toxicity [24, 25, 31–

34]. In this study, we investigate the hypothesis that a dual formulation of topical TRAM-34

and ascorbic acid will be well-tolerated, safe, and effective at reducing corneal haze after

wounding in an in vivo model.

Materials and methods

Animals

Twelve healthy 2 to 3-month-old female New Zealand white rabbits (Charles River Laboratory

Inc., Wilmington, MA) weighing 2.5 to 3 kg were utilized for this study. All studies were per-

formed in accordance with the Association for Research in Vision and Ophthalmology

(ARVO) statement for the use of animals in ophthalmic and vision research and were

approved by the University of Missouri Institutional Animal Care and Use Committee. Fol-

lowing the 3R rule (reduce, replace, and refine) animal rule to keep the number of animals in

experiments as low as possible, both eyes of 12 rabbits were utilized. Twenty-four eyes were

divided into 4 groups. Group-1 (left eyes: injury cohort) received alkali (n = 6). Group-2 (right

eyes: naïve cohort) received BSS onto the normal eye (n = 6). Group-3 (left eyes: therapy
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cohort) received alkali injury and eyedrop twice daily for 5 days (n = 6). Group-4 (right eyes;

safety cohort) received eyedrop twice daily onto the naïve eye for 5 days (n = 6). All rabbits

underwent a complete ophthalmic examination by an American Board of Veterinary Ophthal-

mology approved senior ophthalmology resident prior to onset of the study, including slit

lamp biomicroscopy (SL-15 Kowa Company, Ltd, Tokyo, Japan), indirect ophthalmoscopy

(Wireless indirect ophthalmoscope, Keeler Instruments Inc., Broomall, PA, USA and pan reti-

nal 2.2 indirect lens, Volk Optical Inc., Mentor, OH, USA). All rabbits were determined to be

free of ocular disease.

In vivo corneal wound model

Using an established corneal wound model, corneal alkali wounding was induced in the left

eye of each rabbit [35]. Briefly, after initial clinical examinations and extraocular imaging, rab-

bits were anesthetized by intramuscular injection of ketamine hydrochloride 50mg/kg (MWI,

Boise, ID) and xylazine hydrochloride 10mg/kg (Akorn, Lake Forest IL). Proparacaine hydro-

chloride 0.5% (Alcon, Fort Worth, TX) was topically applied to the cornea and a wire eyelid

speculum was placed. A 7mm-diameter filter paper was soaked in 0.5N sodium hydroxide

(NaOH) solution and then applied onto the axial cornea for 30 seconds while visualized under

a surgical microscope (Leica Wild Microscope MEL53; Leica, Wetzlar, Germany). Following

removal of the filter paper, the wounded cornea was immediately and copiously rinsed with

sterile balanced salt solution (BSS) to remove residual alkali solution. Fluorescein stain (Flu-

Glo, Akorn, Inc., Buffalo Grove, IL, USA) was applied to verify corneal burns.

Tram-34/ascorbic acid preparation and treatment

The bimodal eyedrop formulation was prepared by solubilizing TRAM-34 (25μM) and ascor-

bic acid (10%) in balanced salt solution (BSS) and adjusting the pH using either hydrochloric

acid (HCl) or sodium hydroxide (NaOH) to achieve a pH approaching 6.4 as assessed by an

electronic pH meter at room temperature under sterile conditions.

Corneal health and corneal haze analysis

Corneal health was evaluated prior to study initiation and at regular intervals throughout the

study period. Using slit-lamp biomicroscopy, ocular health was graded according to the modi-

fied McDonald-Shadduck (mMs) scoring system [36] and corneas were imaged using a slit-

lamp biomicroscope fitted with a digital imaging system (Kowa, portable Vk-2 Version 5.5) as

previously described, as well as a stereomicroscope (Leica MZ16F, Leica Microsystems Inc.,

Buffalo Grove, IL) equipped with a digital camera (SpotCam RT KE, Diagnostic Instruments

Inc., Sterling Heights, MI) [20, 37]. Scoring was performed daily for the first 5 days, then at

days 7, 14, and 28. Ophthalmic testing including Schirmer tear testing (Fischer Scientific, Pitts-

burgh, PA, USA), fluorescein staining, applanation intraocular pressure (IOP) measurements

(Tono-Pen AVIA, Reichert Technologies, Depew, NY, USA), pachymetry (Accutome Accu-

Pach VI, Keeler Instruments Inc., Broomall, PA, USA), and extraocular imaging was per-

formed at days 0, 3, 7, 14, and 28.

Corneal haze scoring was performed according to the established Fantes grading scale [38].

Haze was scored by three independent examiners (AAF, PKB, SK) masked to the treatment

group. In summary, grade 0 is a clear cornea; grade 0.5 is considered clear with trace haze on

tangential illumination; grade 1 is minimal haze on direct or diffuse illumination; grade 2 is

mild haze easily visible on direct focal slit lamp examination; grade 3 is moderate opacity

which partially obscures iris detail; grade 4 is severe opacity that completely obscures iris

details at the site of corneal injury.
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Intraocular pressure and central corneal thickness measurement

Intraocular pressure and central corneal thickness (CCT) recordings were measured at day 0,

3, 7, 14, and 28 using an applanation tonometer and ultrasonic pachymeter, respectively. All

measurements were performed under general anesthesia after application of topical anesthetic

with the rabbits in lateral recumbency and the eye being measured facing up. All IOP measure-

ments were performed between 9am and 11am to minimize diurnal variations.

Euthanasia and tissue collection

Rabbits were humanely euthanized with intravenous pentobarbital 150mg/kg (SomnaSol,

Henry Schein Animal Health, Dublin, OH, USA) while under general anesthesia on day 28

post-injury. Corneas were harvested and halved using sharp dissection. One half of the corneal

sections were immediately placed in 24x24x5 mm molds (Fischer Scientific, Pittsburgh, PA,

USA) containing optical cutting temperature compound (Tissue Plus O.C.T., Fisher Health-

Care, Houston, TX, USA) and snap frozen. Frozen tissue blocks were maintained at -80˚C

until further processing. The remaining half of the corneal section was placed in a pre-labeled

cryo-vial and stored immediately at -80˚C until further processing for gene expression studies.

Histopathology and immunofluorescence studies

Serial corneal sections (8 μm) were prepared from cryo-preserved corneal tissues using a cryo-

stat (HM525 NX UV; Microm GmbH, Walldorf, Germany), placed on labeled glass micro-

scope slides (Superfrost Plus; Fisher Scientific, Pittsburgh, PA, USA), and stored at −80˚C

until staining. Hematoxylin and eosin (H&E) staining was performed as previously described

for histopathologic examination [3, 39]. Tissue sections for immunofluorescence studies were

immunostained for alpha smooth muscle actin (α-SMA; M0851; Dako, Carpentaria, CA,

USA) using established methods to evaluate for the presence of myofibroblasts in tested cor-

neal tissue [40, 41]. In brief, tissue sections were incubated at room temperature for 30 minutes

with 2% bovine serum albumin and then probed with mouse monoclonal anti-α-SMA anti-

body (1:200 dilution), and incubated at room temperature for 60 min, followed by overnight

incubation at 4˚C. The sections were then incubated with Alexa-Fluor 488 goat anti-mouse

IgG secondary antibody (1:1000 dilution, A11001; Invitrogen, Carlsbad, CA, USA) for 1 hour

in darkness at room temperature. Antifade Mounting Medium containing DAPI (H1200, Vec-

tor Laboratories, Inc. Burlingame, CA, USA) was used to stain the nucleus and mount corneal

sections. The stained corneal sections were imaged using a fluorescence microscope (Leica)

and the α-SMA positive cells were quantified in six randomly selected, non-overlapping full

thickness central corneal columns, extending from anterior to posterior stromal surfaces.

RNA extraction, cDNA synthesis, and quantitative reverse transcription

polymerase chain reaction

Total RNA was extracted from tissues using the RNeasy kit (Qiagen, Valencia, CA), according

to the manufacturer’s protocol and stored at -80˚C until analysis. The quantitative reverse

transcription polymerase chain reaction (qRT-PCR) was performed using One Step Plus Real-

Time PCR system (Applied Biosystems, Carlsbad, CA) according to manufacturer’s instruc-

tions as previously described [24, 25, 41]. This reaction mixture was run at universal cycle

(95˚C for 10 min, 40 cycles at 95˚C for 15 s, and 60˚C for 60 s) following manufacturer’s

instructions. GAPDH was used as a housekeeping gene for α-SMA, fibronectin, and collagen-

3, with the primer sequences described in Table 1.
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The fluorescence threshold value (Ct) was calculated to detect signal differences in associa-

tion with an exponential increase of PCR products in the log linear phase. Relative expression/

fold change over the corresponding values for the control was calculated by the 2-ΔΔCt

method. Two to three independent experiments were executed, each sample was run in tripli-

cate, and the average fold changes in mRNA levels were calculated.

Statistical analysis

Results are expressed as mean ± standard error of the mean (SEM). Statistical analysis was per-

formed using a commercially available software (GraphPad Prism 6.0, GraphPad Software, La

Jolla, CA, USA). Kolmogorov-Smirnov’s test was used to determine whether data were normally

distributed. Data that were not normally distributed were transformed using the natural log

function. Unpaired t-test was performed for α-SMA qPCR safety study. A one-way or two-way

ANOVA followed by Bonferroni multiple comparisons test was performed for clinical scoring

and tissue processing data, respectively. Results were considered significant at p� 0.05.

Results

In vivo safety and toxicity

Unwounded rabbit eyes of the Group-2 (naïve cohort) and Group-4 (safety cohort) had mMs

scores of zero throughout the study, indicating no ocular irritation (Fig 1). Additionally,

Group-2 (naïve cohort) and Group-4 (safety cohort) eyes showed no significant differences in

the central corneal thickness (CCT) (Fig 2A) or IOP (Fig 2B) as well as any fluorescein uptake

(data not shown) at all tested times in the study. Also, molecular analysis of fibrotic marker, α-

SMA, with qRT-PCR did not find significant differences in the corneas of the Group-2 (naïve

cohort) and Group-4 (safety cohort) (Fig 3). The comparisons of mMs scores of the wounded

eyes with eyedrop (Group-3: therapy cohort) versus without eyedrop (Group-1: injury cohort)

exhibited significantly lower mMs scores on day-14 (p = 0.0041) and day-28 (p = 0.0002) (Fig

1). The IOP and CCT analysis of these two groups are shown in Fig 5A and 5B, respectively.

Corneal morphology

H&E staining of unwounded eyes of Group-2 (naïve cohort) and Group-4 (safety cohort)

showed no morphological differences in corneal tissues (Fig 4A and 4B). Conversely, H&E

stained corneal tissues of wounded eyes of Group-1 (injury cohort) that had no eyedrop dem-

onstrated re-epithelialization with keratinization of the epithelial layer, as well as stromal

edema and disorganization of the collagen layers within the stroma (Fig 4C). By contrast, H&E

stained wounded corneal tissues of Group-3 (therapy cohort) that received eyedrop showed

Table 1. Quantitative reverse transcription PCR primer sequences.

Gene Primer sequence (5’-3’) Tm (˚C)

α-SMA Forward TGG GTG ACG AAG CAC AGA GC 60

Reverse CTT CAG GGG CAA CAC GAA GC 60

Fibronectin Forward GCG CCA CCT ACA ACA TCA TA 60

Reverse CAC TGG CAC GAG AGC TTA AA 60

Collagen-3 Forward AGA ACA CGC AAG GCT GTG AGA CTA 60

Reverse CCA ACG TCC GCA CCA AAT TCT TGA 60

GAPDH Forward GCC TCA AGA TCA TCA GCA ATG CCT 60

Reverse TGT GGT CAT GAG TCC TTC CAC GAT 60

https://doi.org/10.1371/journal.pone.0262046.t001
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return of organized stromal collagen fibrils with minimal to no corneal edema, as well as

return to normal full thickness epithelium (Fig 4D).

In vivo efficacy

Corneal wounding and ocular health evaluations were performed to evaluate the efficacy of

the eyedrop. All employed corneas were healthy prior to the initiation of the study. Following

wounding, all corneas developed significant opacity consistent with severe edema and inflam-

mation, and were fluorescein stain positive (data not shown). Corneal wounds had epithelial-

ized in all rabbits by day 5 of the study without complication from infection or self-trauma

based on negative fluorescein staining and slit-lamp clinical examination. Likewise, IOP

between Group-1 (injury cohort) and Group-3 (therapy cohort) eyes was not significantly dif-

ferent during the study (Fig 5A). Comparison of CCT in Groups 1 and 3 was also performed.

The eyedrop treated Group-3 eyes showed significantly decreased CCT at days 7, 14, and 28

(p<0.05) than the non-eyedrop treated Group-1 eyes (Fig 5B).

Fig 1. In vivo tolerability evaluation with modified McDonald Shadduck scoring (mMS). In safety evaluation, no significant difference in mMS scores between naïve

eyes of Group-2 and unwounded eyedrop-treated eyes of Group-4 up to 28 days was observed. Conversely, alkali wounded eyes of Group-1 showed significant

difference in mMS compared to the eyes of Group-3 at day-14 and day-28 (n = 6 for each group; @ = p value<0.01; # = p value<0.001).

https://doi.org/10.1371/journal.pone.0262046.g001
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In vivo reduction of fibrosis

Rabbit eyes that received eyedrop after injury (Group 3: therapy cohort) demonstrated a

markedly increased transparency based on significant differences in Fantes scores compared

to untreated injured corneas (Group 1: injury cohort) at days—7 (p = 0.001), 14 (p = 0.0027),

and 28 (p = 0.0001) (Fig 6). Slit-lamp (Fig 7A) and stereomicroscopic images (Fig 7B) revealed

marked differences in corneal haze between injured eyes receiving eyedrop (Group-3: therapy

cohort) and the untreated injured eyes (Group-1: injury cohort).

Profibrotic gene expression and immunohistochemistry

Alkali wounded eyes (Group-1: injury cohort) demonstrated significant upregulation of profi-

brotic markers compared to naïve corneas (Group-2: naïve cohort) via qRT-PCR, including α-

SMA (p<0.0001), collagen-3 (p = 0.011), and fibronectin (p<0.0001) as shown in Fig 8. The

corneas of wounded rabbit eyes that received eyedrop (Group-3) showed significantly

decreased (p<0.0001) expression of α-SMA at day 28 compared to the non-treated corneas

(Group-1) (Fig 8A). A similar trend was observed for other tested profibrotic markers colla-

gen-3 (Group-3 vs Group-1, p = 0.0482; Fig 8B) and fibronectin (Group-3 vs Group-1,

p<0.0001; Fig 8C). To test if the eyedrop affects expression of profibrotic α-SMA protein,

immunofluorescence staining was performed. A significant increase in α-SMA-positive cells

(p =<0.0001) in Group-1 wounded corneas (Fig 9B) compared to the Group-2 naïve corneas

(Fig 9A) was observed. The eyedrop-treated corneas of Group-3 (Fig 9C) showed significantly

reduced α-SMA+ cells compared to untreated injured corneas of Group-1 (p<0.0001). The

quantification of α-SMA+ cells in groups 1–3 is shown in Fig 9D.

Discussion

Corneal wound healing entails a complex cascade of interrelated signaling pathways and cyto-

kines. Formation of corneal haze has been shown to be a result of normal corneal healing path-

ways which activate and transform fibroblasts to myofibroblasts and induce ingrowth of blood

vessels [5, 11, 42, 43]. Our laboratory and others have demonstrated that corneal clarity can be

Fig 2. In vivo tolerability evaluation showing central corneal thickness and intraocular pressure. No significant difference in central corneal

thickness (A) or intraocular pressure (B) in the naïve eyes of Group-2 and unwounded eyedrop-treated eyes of Group-4 was observed until 28 days

(n = 6 for each group).

https://doi.org/10.1371/journal.pone.0262046.g002
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preserved with inhibition of profibrotic and angiogenic factors during the wound healing pro-

cess, in particular, TGFβ and VEGF [1, 2, 4, 12–14, 17, 21, 24, 32, 40, 44, 45].

Our study has demonstrated that the combination of TRAM-34 and ascorbic acid, when

applied topically to wounded rabbit corneas, significantly decreases corneal haze in vivo. This

was proven by a reduction in clinical parameters including Fantes scores, mMs scores, and

CCT. Testing for reduction of fibrotic markers collagen-III, fibronectin, and α-SMA also all

demonstrated statistically significant reductions in the presence of these markers. The

Fig 3. In vivo tolerability evaluation showing α-SMA fibrotic expression. The naïve eyes of Group-2 and unwounded

eyedrop-treated eyes of Group-4 showed no significant differences in α-SMA gene expression observed until a longest

tested time point, 28 days (n = 6 for each group; ns = not significant).

https://doi.org/10.1371/journal.pone.0262046.g003
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treatment was well tolerated in unwounded control eyes with no evidence of deleterious clini-

cal side effects based on mMs scoring, CCT, and IOP. Twice daily dosing was used in this

study to good effect but it is possible that treatment intervals in higher mammals (dogs, cats,

horses, people) may require more frequent application due to differences in tear film and blink

rates.

Fig 5. Intraocular pressure and central corneal thickness in wounded eyes -/+ eyedrop. No significant differences in intraocular

pressure observed in Group-1 wounded and Group-3 wounded and eyedrop-treated eyes (A). Central corneal thickness was significantly

lower in Group-3 wounded and eyedrop-treated eyes at days 7, 14, and 28 (B). (n = 6 for each group; � = p value<0.05).

https://doi.org/10.1371/journal.pone.0262046.g005

Fig 4. Representative H&E stained corneal tissue sections showing toxicity and efficacy in vivo. Corneal sections of

naive Group-2 (A), unwounded eyedrop-treated Group-4 (B), alkali wounded Group-1 (C), and alkali wounded and

eyedrop-treated Group-4 (D) eyes. Group-2 (A) and Group-4 corneas showed normal corneal morphology. Alkali

injury led to significant stromal edema and disorganized collagen, as well as a thin keratinized epithelial layer (C) and

eyedrop treatment markedly improved corneal pathology through better collagen fibrils organization, less stromal

edema, and re-epithelialization with a full-thickness epithelium (D). Magnification 20x.

https://doi.org/10.1371/journal.pone.0262046.g004
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TRAM-34 was developed as a possible therapeutic alternative to agents such as clotrimazole

for treatment of ion channel activity disorders including sickle cell disease, and to avoid the

systemic toxicity associated with clotrimazole’s inhibition of cytochrome P450 enzymes [22,

46–48]. Since its development, it has been utilized primarily as a research tool in the study of

the intermediate conductance Ca2+-activated K+ channels in various organs including lung,

liver, and kidney as well as in certain tumors [23, 26–28, 46, 47, 49, 50]. More recent studies

have demonstrated the role of KCa3.1 in the development of fibrosis via activation of TGFβ
[27, 50, 51]. Several in vitro and in vivo studies have shown that TRAM-34 inhibition of the

KCa3.1 channel effectively inhibits TGFβ activation and ultimately reduces fibrosis in the lung,

liver, and kidneys [26–28].

In ocular tissues, selective blockade of KCa3.1 via application of TRAM-34 has been shown

to downregulate TGFβ-activated pro-fibrotic gene expression in both conjunctiva and cornea,

and thus reduce activation and differentiation of fibroblasts to myofibroblasts [24, 25].

Another study demonstrated that application of TRAM-34 to alkali-wounded mouse corneas

Fig 6. Fantes haze scores in wounded eyes -/+ eyedrop. A significantly lower Fantes scores was noted in Group-3 wounded and eyedrop-treated eyes at day 7,

14, and 28. (n = 6 for each group; @ = p value<0.01; # = p value<0.001; $ = p value<0.0001).

https://doi.org/10.1371/journal.pone.0262046.g006
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may be beneficial in prevention of corneal angiogenesis via inhibition of epidermal growth fac-

tor (EGF) [29]. One study from our group specifically examined the ocular toxicity of TRAM-

34 in primary human conjunctival fibroblast cultures by treating the fibroblasts with TRAM-

34 at doses of 0, 1, 5, 10, 25, or 50 μM for up to 7 days to evaluate for cellular toxicity [24]. In

Fig 7. Clinical status of corneal haze in wounded eyes -/+ eyedrop. Representative slit lamp images (A) and stereo

biomicroscopy images (B) demonstrating levels of corneal haze from day 0 to 28 in Group-1 and Group-3 eyes.

Eyedrop-treated eyes showed substantially reduced corneal haze.

https://doi.org/10.1371/journal.pone.0262046.g007

Fig 8. Pro-fibrotic gene expression in naïve and wounded eyes -/+ eyedrop. qRT-PCR analysis showing gene expression of α-SMA (A), Collagen-III (B) and

Fibronectin (C) in Group-1 alkali treated, Group-2 naïve, and Group-3 alkali and eyedrop-treated eyes. A significantly increased α-SMA, Collagen III, and Fibronectin

expression was detected in alkali treated corneas compared to the naïve corneas, and eyedrop treatment after alkali injury significantly decreased these profibrotic gene’s

expression (n = 6 for each group; � = p value<0.05; $ = p value<0.0001).

https://doi.org/10.1371/journal.pone.0262046.g008
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the aforementioned study by Anumanthan et al, there was a moderate decrease in cellular via-

bility at the 50μM dose based on trypan blue exclusion assay, but 25μM and lower doses were

well tolerated in the conjunctival cells. Our study supports ocular tolerability of this therapy in
vivo in the rabbit model with twice daily dosing.

Ascorbic acid has been evaluated for use topically in rabbits at various concentrations rang-

ing from 10mg/mL to 0.5mg/mL after induction of corneal neovascularization via surgical

placement of a stromal suture [32]. Lee et al showed significantly reduced presence of markers

of angiogenesis VEGF and MMP9 in treated groups compared to controls, as well as a lower

ratio of corneal surface area of neovascularization in the treatment groups at 10mg/mL ascor-

bic acid [32]. Additional data from a recent study using an in vivo mouse model of corneal epi-

thelial scraping, with subsequent application of a single dose of topical 10% ascorbic acid,

showed a significant improvement in corneal re-epithelialization in the treatment group [31].

A novelty of this study is preparation and evaluation of eyedrop consisting of water soluble

vitamin, ascorbic acid, and a highly selective and potent inhibitor of the intermediate-conduc-

tance Ca2+-activated K+ channel (KCa3.1), TRAM-34, that does not block cytochrome P450.

Also, previous studies of topical TRAM-34 found it highly effective in preventing fibrosis in

ocular and non-ocular systems in vitro and in vivo [24, 25, 29]. Likewise, ascorbic acid has

been previously evaluated in rabbits in vivo and shown great success in treating corneal ulcers

and improving corneal healing [30, 31, 33, 52]. To the best of authors knowledge, a combina-

tion of these agents has never been tested previously. This is the first study formulating, pre-

paring, and evaluating the safety and efficacy of a bimodal eyedrop consisting of TRAM-34

and ascorbic acid in rabbits in vivo. Another strength of the study is use of alkali dosing in rab-

bit that produces fibrosis in the cornea without significant neovascularization.

There are certain limitations to this study. For example, no direct comparisons of the anti-

fibrotic effect of combination eyedrop with TRAM-34 or ascorbic acid alone were performed,

Fig 9. Representative immunofluorescence of α-SMA protein in naïve and wounded eyes -/+ eyedrop. A

significantly increased α-SMA+ cells were found in alkali wounded rabbit corneas (B) compared to the naïve corneas

(A). Eyedrop treatment after injury significantly decreased α-SMA+ cells in rabbit corneas (C) compared to alkali

injured rabbit corneas without eyedrop treatment (B). Panel D shows quantification of SMA+ cells in corneas of 3

groups (n = 6 for each group; # = p<0.001; $ = p<0.0001;). Scale bar = 50μm.

https://doi.org/10.1371/journal.pone.0262046.g009
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the changes in cellular and molecular parameters in corneal tissues were evaluated only at one

time point (28 days), and minimal efforts were made to characterize underlying mechanisms.

Also, we did not evaluate effects of TRAM-34 on corneal epithelial and stromal fibroblast cells

despite the fact that potassium channels could modulate cellular proliferation, an important

factor in corneal wound healing. Our future studies will address these limitations.

We observed downregulation of multiple fibrotic markers associated with TGFβ-mediated

fibrosis, including collagen III, fibronectin, and α-SMA, in this study’s therapy cohort (group

3). The reduction of these markers supports our conclusion that our therapy targets TGFβ and

has antifibrotic properties in rabbit corneas. In this study, anti-angiogenic markers such as

VEGF and MMP9 were not specifically tested, as that was not the primary aim of the current

research. However, future studies may examine other markers to help further delineate the

mechanisms of both TRAM-34 and ascorbic acid and their combined effect on corneal stromal

wound healing.

The combination of TRAM-34 and ascorbic acid applied topically was well tolerated and

effective in prevention of corneal fibrosis through inhibition of TGFβ-mediated fibroblast

migration and myofibroblast differentiation. Further studies are needed to determine the

safety and efficacy in other species as well as the optimal dosing regimen. Additionally, further

study is required to examine the efficacy of this therapy in treating an established fibrotic cor-

neal lesion.
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