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Multiplexed imaging is a recently developed and powerful single-cell biology research tool.
However, it presents new sources of technical noise that are distinct from other types of
single-cell data, necessitating new practices for single-cell multiplexed imaging processing
and analysis, particularly regarding cell-type identification. Here we created single-cell
multiplexed imaging datasets by performing CODEX on four sections of the human colon
(ascending, transverse, descending, and sigmoid) using a panel of 47 oligonucleotide-
barcoded antibodies. After cell segmentation, we implemented five different normalization
techniques crossed with four unsupervised clustering algorithms, resulting in 20 unique
cell-type annotations for the same dataset. We generated two standard annotations:
hand-gated cell types and cell types produced by over-clustering with spatial verification.
We then compared these annotations at four levels of cell-type granularity. First, increasing
cell-type granularity led to decreased labeling accuracy; therefore, subtle phenotype
annotations should be avoided at the clustering step. Second, accuracy in cell-type
identification varied more with normalization choice than with clustering algorithm. Third,
unsupervised clustering better accounted for segmentation noise during cell-type
annotation than hand-gating. Fourth, Z-score normalization was generally effective in
mitigating the effects of noise from single-cell multiplexed imaging. Variation in cell-type
identification will lead to significant differential spatial results such as cellular neighborhood
analysis; consequently, we also make recommendations for accurately assigning cell-type
labels to CODEX multiplexed imaging.

Keywords: Multiplexed tissue imaging, CODEX, single-cell analysis, normalization, unsupervised clustering, spatial
analysis, cell-type identification, colon
INTRODUCTION

Multiplexed imaging techniques allow imaging up to 60 markers in a tissue simultaneously, which
increases the number of identifiable cell types in situ (1–3). This enables a level of spatial analysis of
cells that not possible using other immunophenotyping approaches (4, 5). Spatial and structural
relationships are now at the forefront of biological, consortia-led, and clinical studies using these
technologies (6–10). However, these multiplexed imaging technologies have unique sources of
org August 2021 | Volume 12 | Article 7276261
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noise: imperfect cell segmentation, image processing artifacts,
and tissue processing artifacts like autofluorescence (2, 11–14).

Although not problematic for qualitative analysis, these
sources of noise can interfere with quantitative single-cell
analysis—particularly cell-type identification. Incorrect cell-
type identification will lead to false interpretations of spatial
features and study conclusions. Most studies using multiplexed
imaging technologies have employed previously established
pipelines created for non-imaging-based, single-cell-type
identification, such as hand-gating flow plots or unsupervised
clustering, and have used various methods of raw data processing
and normalization (10, 15–20).

Here we describe a study benchmarking the effects of
normalization techniques and unsupervised clustering algorithms
on multiplexed imaging data. In this study, we evaluated the
performance of five major normalization techniques and four
unsupervised clustering algorithms on mitigating the effects of
noise in cell-type identification in a dataset generated by the co-
detection by indexing (CODEX) multiplexed imaging technology.
MATERIALS AND METHODS

CODEX Imaging
CODEX multiplexed imaging was done using a CODEX staining
and imaging protocol previously described in detail (16, 19).
Settings used for the microscope are listed in Supplemental
Table 1. The 47 antibodies were custom conjugated to
oligonucleotides following the published protocol. Antibody
information is summarized in Supplemental Table 1. Raw
imaging data were then processed using the CODEX Uploader
for image stitching, drift compensation, deconvolution, and cycle
concatenation. Processed data were segmented using the
CODEX Segmenter, a watershed-based single-cell segmentation
algorithm. Both the CODEX Uploader and Segmenter are
software can be downloaded from our GitHub site (https://
github.com/nolanlab/CODEX).

Normalization Techniques
We compared single-cell quantified data without processing to
that processed using four different normalization techniques:

Z Normalization
Each marker intensity was Z normalized separately for all cells
within the dataset. This normalized the range of each marker as
fluorescent intensities of each marker can depend on antibody
staining strength and exposure times.

Log (Double Z) Normalization
The first Z normalization was performed on each marker intensity,
and then another Z normalization was applied to each cell. These
values were then transformed into probabilities. Finally, a negative
log transformation was applied to the complement of the
probabilities. Because the first Z normalization equalizes signal
intensities, marker Z scores can be compared. Furthermore, as
each cell should only be positive for between one and fivemarkers of
Frontiers in Immunology | www.frontiersin.org 2
the 47 recognized by antibodies in the staining panel, applying the
second Z normalization identifies positive markers with high
probability. Using a negative log transformation of the
complement of the probability is necessary to amplify values of
high probabilities for input into clustering algorithms.

Min_Max Normalization
First the 1st and 99th percentiles were found to cap minimum and
maximum values, respectively, for each fluorescent channel and
then each value in the channel was normalized by taking the
difference between minimum over the range of values. Reducing
to the 99th percentile aids removes artificially high background
fluorescent intensities often seen in imaging datasets.

Arcsinh Normalization
An arcsinh transformation was performed on marker intensities,
and the resulting values were scaled with a cofactor of 150. This
type of normalization is appropriate when dataset contain low or
negative values resulting from background subtraction.

Unsupervised Clustering Techniques
Hand gating was carried out using a hierarchical strategy to label
each cell as shown in Supplemental Figure 1 using CellEngine
(https://cellengine.com/). X-shift with angular distance, X-shift
with Euclidian distance, and k-means clustering were performed
using the VorteX software available from our GitHub site
(https://github.com/nolanlab/vortex). Default settings were used
with k values obtained from the elbow-point inflection from each
clustering technique. Leiden-based clustering was performed
using the scanpy Python package with default parameters.

F-Score and Neighborhood Analysis
F-score analysis was performed as described in Figure 3A using
the indicated reference dataset for each comparison.
Neighborhood analysis was performed using the same Python
scripts described previously (10). Neighborhoods were named
for cell types enriched within the neighborhood as compared to
the tissue as a whole (Supplemental Figure 12).
RESULTS

CODEX Multiplexed Imaging of the
Human Colon
We conducted our analysis on data we collected as a part of the
Human BioMolecular Atlas Program (HuBMAP) consortia
effort that focuses on systematic mapping healthy tissue
structure across human organ systems and making the data
publicly available (6). For this analysis we used imaging data
collected from four tissue blocks from the same human donor
from the transverse, ascending, descending, and sigmoid colon
(regions 1-4, respectively) made into a single array. We used a 47
oligonucleotide-barcoded antibody panel to image with the
CODEX technology (16, 19), which involves cyclic stripping,
annealing, and imaging of fluorescently labeled oligonucleotides
August 2021 | Volume 12 | Article 727626
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complementary to the oligonucleotides that barcode the
antibodies used in staining (Figure 1A).

The antibody panel includes targets for discriminating several
major epithelial subtypes of the colon, stromal cell types, and
both adaptive and innate immune cell types (Figure 1B). Using
only six markers we can observe major cell subsets of the colon:
immune (magenta), goblet (green), proliferating (cyan), nerve
(gray), general epithelial (yellow), and smooth muscle (red) cells
(Figures 1C, D).

CODEX imaging of the colon tissue resulted in a single-cell
dataset composed of ~130,000 cells with fluorescence values
quantified from each marker by standard processing of
Frontiers in Immunology | www.frontiersin.org 3
CODEX imaging data: tile stitching, drift compensation, cycle
concatenation, background subtraction, deconvolution,
determination of best focal plane, and segmentation of single
cells ready for cell type annotations (Figure 1E).

Methods for Normalization and
Unsupervised Clustering Techniques
Used for Cell Type Identification
We first used the hand-gating approach to hierarchically gate out 35
distinct cell types in the dataset (Figures 2A, B and Supplemental
Figure 1). Hand gating is often used for cell type identification in
immunophenotyping techniques like flow or mass cytometry and is
A B

C D

E

FIGURE 1 | CODEX multiplexed imaging of the human colon. (A) Schematic of the CODEX protocol for imaging of sections of ascending, transverse, descending,
and sigmoid colon. (B) The 47 CODEX oligonucleotide-barcoded antibodies used discriminate several major epithelial subtypes of the colon, stromal cell types, and
both adaptive and innate immune cell types. (C) Image with six representative markers highlighted with data for CD45 (magenta), MUC2 (green), Ki67 (cyan),
Synaptophysin (gray), Cytokeratin (yellow), and aSMA (red) (scale bar = 1 mm). (D) Magnified view of the region indicated with the cyan box in panel (C) (scale bar =
100 mm). (E) The workflow for single-cell multiplexed imaging preprocessing used in this study.
August 2021 | Volume 12 | Article 727626
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A
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D

FIGURE 2 | Strategies used for cell type annotation via five methods of data normalization and four clustering algorithms. (A) Far left: Spatial plot of x, y positions
cells gated based on quantified fluorescent signal for aSMA and Cytokeratin. Plots to the right: Single-positive gating shows location of identified populations with the
same x, y positions. (B) Cell-type comparisons at four levels of granularity with the level 1 having the highest degree of granularity of 35 cell types and level 4 having
the lowest degree of granularity of 7 types. (C) Schematic of data treatment and representative UMAP plots for, from left to right, original CODEX data, Z normalized
data, log(double Z) transformed data, min-max normalized data, and arcsinh normalized data. (D) Data, normalized or not, was clustered using the Leiden algorithm,
k-means, X-shift with Euclidian distance, or X-shift with angular distance. All cell type annotations were merged for each cell and combined into one dataset for
comparison of annotations.
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an often used gold-standard for comparison of cell-type annotations
(21). In addition to gating out marker values, with CODEX data we
can also visualize or gate on the spatial location of cells based on
markers (Figure 2A).

Since the granularity of cell-type definition is dependent on
the data analyzer, we also explored the confidence of cell-type
discrimination with multiplexed imaging data. To do this, we
defined four levels of cell-type granularity: level 1, 35 cells types
(including a “noise” cell type); level 2, 20 cell types; level 3, 14 cell
types; and level 4, 7 cell types (Figure 2B). Discrimination at the
highest level of granularity should provide the most detailed
understanding of tissue biology, but increasing granularity comes
at a cost of confidence in accuracy.

To compare the influence of normalization techniques, the
quantified fluorescent data was subjected to one of four
normalization techniques: Z, log(double Z), min-max, or arcsinh,
or left in its original raw format (Figure 2C). The transformed data
were then used as input to four different unsupervised clustering
algorithms: Leiden (graph-based), X-shift (density-based) with
either Euclidian or angular distances, and k-means (Figure 2D).
This produced 20 separate clusterings, with each cell annotated
based on cluster membership, that could be directly compared to
each other and to the hand-gated standard.
Comparison of Normalization and
Unsupervised Clustering Techniques to
Hand-Gated Cell Type Annotations
All percentages of cell types were fairly similar across with values
within 10% for all cell type annotations (Supplemental Figure 2)
and numbers of unique cell types identified were similar across
the clusterings (Supplemental Figure 3). To compare
annotations more statistically between the unsupervised and
hand-gated populations, the F-score was calculated for all
clustering algorithms and normalization combinations at each
cell type. The F-score is a commonly used metric to refer to the
concordance of a prediction and a gold standard and is defined as
the harmonic mean of the precision and recall (Figure 3A,
Supplemental Figure 4). This metric is widely used because it
considers false positives and false negatives. The F-score ranges
from 0 to 1 where 0 is no concordance and 1 is perfect accuracy
between the gold standard and the predication.

F-scores summarized over all cell types revealed that the highest
level of granularity in cell-type identification had a low-level
agreement with the gold-standard hand gating (0.1-0.3,
Figures 3B, C) with high variation. The F-score average increased
(to 0.4-0.6) at higher levels of granularity (Figures 3B, D and
Supplemental Figure 5). As expected, given the variation in F-
scores, grouping of the data on a per cell type basis revealed stark
inter-cell and intra-cell variation of F-scores (Figure 3E).

Understanding the inter-cell variation of F-scores can help us
gauge the appropriate granularity for cell-type assignment.
Certain cell types (e.g., interstitial cells of Cajal, plasma,
stromal cells) were consistently categorized accurately (average
F-score of 0.6), whereas other cell types (e.g., CD4- CD8- T cells,
CD4+ T cells, CD127+ pCD4+ T cells) were not (average F-score
Frontiers in Immunology | www.frontiersin.org 5
of 0.05), regardless of normalization technique or clustering
algorithm used.

A major reason certain cell types have consistently low F-
scores is that these types of cells were not identified by many of
the approaches (Supplemental Figure 6). Another reason is that
the granularity of cell type definition at level 1 includes the use of
phenotypic markers to split cell types. For example, the
identification of CD4+ T cells at level 1 is poor because CD4+

T cell subpopulations were based on CD127 and CD69
expression. Although these distinct cell types were evident in
many clustering datasets based on average expression profiles,
the intensity profiles of single-cell data are a continuum rather
than binary, characteristic of many phenotypic markers like
CD69 and CD127 (Supplemental Figure 7A). This makes it
harder to consistently resolve cell types based on phenotypic
markers. The next level of granularity, level 2, eliminates these
phenotypic separations, and CD4+ T cells were one of the more
consistently recognized cell types (F-score increased from 0.05
with level 1 granularity to 0.5 at level 2) (Supplemental
Figure 7B). Consequently, phenotypic definitions of cell types
should be avoided in cell-type annotations.

We verified these general trends using another quantitative
metric, Cohen’s kappa, which is a measure of chanced corrected
accuracy. Cohen’s kappa ranges from 0 to 1 with higher scores
indicative of better agreement between two labels. Cohen’s kappa
was also inversely correlated with the granularity of the cell type
(Supplemental Figure 8A). This metric demonstrated that X-
shift clustering with Euclidian distance clustering performed
poorly regardless of normalization technique (Supplemental
Figures 8B, C). The F-scores and the Cohen’s kappa scores
were correlated indicating agreement within the two metrics
(Supplemental Figure 8D).

Understanding intra-cell variation of F-scores informs how
different combinations of clustering algorithms and normalization
techniques influence cell-type labeling accuracy for CODEX data.
For some cell types (e.g., neuroendocrine cells and neutrophils)
there was high intra-cell variation of F-scores (~0.7 range), whereas
for other cell types (e.g., enterocytes) there was considerably less
intra-cell variation of F-scores (~0.15 range). We highlight three
examples with both high and low intra-cell variation are instructive
of the differences in normalization and clustering techniques.

Neuroendocrine cells are a rare cell type (~0.3% of all cells)
and are uniquely positive for chromogranin A (CHGA). CHGA
had a low signal intensity in the fluorescence but also had a low
background signal (Supplemental Figure 9A). F-scores were
largely dependent on normalization technique and not on the
unsupervised clustering algorithm (Figure 3F and Supplemental
Figure 9B). When Z normalization was applied, these cells were
consistently identified (F-score of 0.65); in contrast, without
normalization, these cells were not identified (F-score of 0).

Neutrophils are also rare (~0.3% of all cells) and are identified
due to expression of CD45, CD15, and CD16, which are markers
also shared by other immune and epithelial cells. CD15 and CD16
had higher background signals than other markers (Supplemental
Figure 9C), and the F-scores were dependent on the normalization
technique (Figure 3G and Supplemental Figure 9D).
August 2021 | Volume 12 | Article 727626
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The min-max and arcsinh normalizations had high consistency
(<0.1 F-score range) regardless of the clustering algorithm, whereas
F-scores determined with other normalization techniques varied
widely and depended on the downstream clustering algorithms
(~0.5 F-score range).

Enterocytes are a common cell type (~12% of all cells) identified
based on cytokeratin staining and lack of specialized epithelial
markers (e.g., MUC2). The intra-cell F-score variation was low for
these cells. Differences between normalization and clustering
Frontiers in Immunology | www.frontiersin.org 6
technique were less pronounced than for neuroendocrine cells and
neutrophils, although for enterocytes agreement depended more on
the clustering technique than for rarer cells types. For enterocytes,
Leidenandk-means clusteringhadmore consistentF-scores thandid
X-shift-based methods (Figure 3H and Supplemental Figure 9E).

It is important to select the normalization and clustering
technique that maximizes the performance on the cell types (e.g.,
neuroendocrine cells and neutrophils) that have high intra-cell
variation of F-scores. Our analysis indicates that a normalization
A

B

C

D

E

F G H

FIGURE 3 | F-score comparisons between clustering and normalization technique to hand-gated standard demonstrate high inter-cellular and high intra-cellular
variation. (A) Method for calculating F-scores with cell-type assignments. (B) Average F1 score for each normalization. (C) Clustering combinations stratified by level
of granularity. (D) Level 1 and level 4 F-scores averaged across cell types for each combination of normalization technique and clustering algorithm. (E–H) Level 1 F-
scores for (E) each cell type and, in expanded views, (F) neuroendocrine cells, (G) neutrophils, and (H) enterocytes pulled out for comparisons of clustering or
normalization technique (black data point is mean and error bars indicate standard deviation).
August 2021 | Volume 12 | Article 727626
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A B
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G

FIGURE 4 | Hand-gating is confounded by cell segmentation noise. (A) Level 4 F-score averaged across cell types for each combination of normalization technique
and clustering algorithm as compared to hand-gating standard. (B) Heatmap of fold differences between cell-type percentages for level 4 for each combination of
normalization technique and clustering algorithm as compared to hand gating annotations. (C) CD34 versus CD31 fluorescent intensity (endothelial markers) for, from
left to right, all cells, actual endothelial cells that are downstream of the Cytokeratin gate (orange box), and both mislabeled epithelial cells (blue) and all other epithelial
cells (green). (D) Plots of, from left to right, all gated cells, three populations indicated by orange, green, and blue boxes in panel (C), and just endothelial and
mislabeled epithelial cells. (E) Overview of technique to generate an over-clustered standard dataset: 1) 90 clusters were generated by X-shift angular distance
clustering with the original cell data, 2) clusters were annotated with cell type by evaluation of marker average profiles and location of cells withing tissue, and 3)
common cell types were merged to a final standard dataset of 28 clusters. (F) Level 4 F-scores averaged across cell types for each combination of normalization
technique and clustering algorithm as compared to over-clustered standard. (G) Level 4 F-scores for the endothelial cell population for combinations of normalization
and clustering techniques compared to the over-clustered standard (black data point is mean and error bars indicate standard deviation).
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method such as Z normalization reduces clustering artifacts
associated with noise associated with low signal or
high background.

Hand-Gating Annotations Are Limited by
Segmentation Noise
F-score averages increased at lower levels of granularity as
expected, although, surprisingly, the endothelial cell population
had a consistent low average score (Figure 4A). We investigated
this by computing the fold change of cell-type percentage from
each clustering result compared to the hand-gated standard
(Figure 4B and Supplemental Figure 10A). Endothelial cells
were identified more frequently (5- to 10-fold higher total
numbers) by clustering annotation compared to hand gating.
In contrast, there were fewer epithelial cells (5- to 10-fold fewer
total numbers) identified by clustering than by hand-gating
assignment. This suggests that the hand-gated standard may
have incorrectly misclassified endothelial cells as epithelial cells.
In the hand-gating process, endothelial cells were identified as
cells that were negative for cytokeratin and positive for CD34
and CD31 (Figure 4C). Only 2% of cells that expressed
cytokeratin were also positive for CD34 and CD31 (Figure 4C
and Supplemental Figure 10B).

Imperfect cell segmentation often happens in regions where
cells are in close proximity and are not separated. This contributes
to the noise in multiplexed imaging data. To understand if this
might be the reason for mislabeling of endothelial cells, we looked
at the spatial locations of endothelial cells, the mislabeled
epithelial cells, and the epithelial cells that were defined by
hand gating. The mislabeled endothelial cells were located
closely adjacent to the epithelium (Figure 4D). This indicates
that cells were misassigned due to segmentation noise in locations
where the cytokeratin stain bleeds into endothelial cell
populations. Because hand gating only can segregate cell types
hierarchically using two markers at a time, this strategy cannot
deal with segmentation noise well.

Since hand-gating cell type identification does not handle cell
segmentation noise well, we required a new gold standard. To
create this standard, the original data was over-clustered into 90
clusters using X-shift clustering with angular distance
(Figure 4E). We used X-shift clustering with angular distance
as this approach was accurate across levels of granularity
(Supplemental Figure 8C). Over-clustering the data enhanced
separation of cell types often confounded by noise into distinct
clusters and overlaying these clusters on imaging data enabled
expert users to determine accurate cell-type annotations based
on staining and morphology. Clusters were also classified and
merged using average cluster profiles, resulting in identification
of 28 unique cell types.

Comparing the clustering outputs to this new gold-standard
annotation substantially increased the average F-score of
endothelial cells at level 4 granularity from 0.2 to 0.6
(Figure 4F). However, there was still high variation between
clustering outputs for endothelial cells. Isolating the endothelial
cells at level 1 revealed that the accuracy of cell-type annotation
was more dependent on normalization technique than clustering
Frontiers in Immunology | www.frontiersin.org 8
technique. Z normalization and log(double Z) normalizations
provided more consistent performance than did min-max or
arcsinh normalizations (Figure 4G and Supplemental
Figure 11). This result further emphasizes the importance of
CODEX data normalization prior to clustering.

Cross Comparison of Normalization and
Unsupervised Clustering Techniques
In general, the over-clustering annotations demonstrated a bias
towards agreement with X-shift angular clustering and original
untransformed data as expected since these were the conditions
used to generate the annotations (Supplemental Figure 12). To
understand the extent of inter-agreement between choices of
clustering algorithm and normalization technique, we used each
individual clustering result as the gold standard for comparison.
We first averaged the F-scores for each clustering output and cell
type. Similar to previous observations, the normalization method
dominated similarity between combinations of clustering and
normalization algorithms (Figure 5A).

By further averaging all F-scores across these comparisons we
identified normalization techniques and clustering algorithms
that resulted in the greatest variation in cell-type assignment
(Figures 5B, C). Hand-gated assignments had the lowest overall
average, which confirms that this method is not ideal for CODEX
multiplexed imaging assignment. In clustering algorithm
comparisons, X-shift with Euclidian distance had the highest
variance and lowest F-score average (Figure 5B). Furthermore,
k-means and Leiden clustering algorithms had the highest
consistency and least variation (Figure 5A).

We also averaged F-scores to compare all combinations for
each cell type (Figure 5D). The results are consistent with those
of individual comparisons (compare to Figure 3E). Certain cell
types are consistently recognized accurately (e.g., interstitial cells
of Cajal, plasma cells) and others are not assigned accurately
(e.g., CD4+ T cells, CD127+ pCD4+ T cells). This strengthens the
argument that phenotypic cell-type calling should be limited in
initial clustering due to the low confidence of these cell-type
definitions (Supplemental Figure 13).

Neighborhood Analysis Reveals Sources
of Noise in Cell-Type Calling
CODEX multiplexed data can be used to spatially map cell types
and to characterize cell neighborhoods (10). We identified cell
neighborhoods for five exemplary annotations at the highest
level of cell-type granularity (Supplemental Figure 14). Visual
inspection revealed that some neighborhoods (e.g., plasma-
enriched interstitial epithelial lymphocytes) are present in all
regions of the colon, whereas there was considerable variation in
other neighborhoods (e.g., transit amplifying zone) (Figure 6A
and Supplemental Figure 15). Particularly noticeable are the
differences between muscularis externa and noise (enriched for
noise cells) neighborhoods. Both neighborhoods primarily
depend on one cell type: noise and smooth muscle muscularis
externa, respectively.

Imaging noise was particularly located within the tissue sample
from the transverse colon (region 1) as there were areas where the
August 2021 | Volume 12 | Article 727626
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tissue folded during the cutting process, and some edge effects that
were noticeable in the folded area (Supplemental Figure 16A).
Focusing on this region, the F-scores for noise depended more on
clustering algorithm than normalization; use of X-shift angular
distance clustering resulted in the highest average F-score
(Figure 6B and Supplemental Figure 16B). This result closely
mirrors the trend of the ability of clustering algorithm to identify
higher numbers of unique cell types (Supplemental Figure 3).
This suggests the need for overclustering of CODEX multiplexed
data to segregate out noise from the cell-type clusters.

Hand-gating did not accurately pick up the noise in the folded
region and labeled many cells in this area as immune cell types.
Frontiers in Immunology | www.frontiersin.org 9
This is another limitation of the hand-gating approach. Even
though no actual noise cells were identified by the Z
normalization and Leiden combination, this combination did
identify the noise neighborhood. This demonstrates the ability of
this combination of normalization and clustering to recognize
noise at later stages of the data analysis pipeline.

Smooth muscle muscularis externa had significant
background signal from the MUC2 channel in tissue from the
sigmoid colon (region 4). Smooth muscle cells were often
incorrectly assigned as cells of goblet or epithelium origin as
demonstrated by assignment to the muscularis externa
neighborhood (Supplemental Figure 16C). Only Leiden
A B

C

D

FIGURE 5 | F-score comparisons between all clustering and normalization techniques as standards. (A) Clustered heatmap with F-scores averaged across cell
types. The yellow rectangle indicates the comparisons made in Figure 3, the cyan rectangle indicates the comparisons made in Figure 4, and the green rectangle
indicates the comparisons made when log double Z normalization combined with Leiden clustering was used as the gold standard. The red rectangle indicates
exemplary similarities between normalization techniques. (B, C) Level 1 F-scores averaged over cell types for (B) clustering and (C) normalizations for all
comparisons shown in panel (A, D) Level 1 F-scores averaged over cell types for all normalization and clustering combinations (black data point is mean and error
bars indicate standard deviation).
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clustering with either Z or arcsinh normalizations were able to
accurately eliminate noise and accurately assign the majority of
the smooth muscle cells (Figure 6C and Supplemental
Figure 16D). This demonstrates that cell-type assignment
without image verification can lead to faulty cell annotations.
Of the normalization techniques, Z normalization best reduced
high background signal noise.
Frontiers in Immunology | www.frontiersin.org 10
DISCUSSION

Manual identification of cell types in multiplexed imaging data
requires significant time and expertise. Noise from imaging artifacts,
imperfect segmentation, or tissue processing artifacts can hinder
accurate cell-type annotation. Decreasing the time required and
increasing the quality of cell type annotations is crucial for
A

B C D

FIGURE 6 | Cellular neighborhood analysis reveals additional noisy cell populations that can be managed by data normalization. (A) Cellular neighborhoods shown
for Region 1 and 4 for five of the 23 cell-type annotations. (B) Level 1 F-score averages for Region 1 for the noise cell type and averaged across all cell types.
(C) Level 1 F-score averages for Region 1 for the smooth muscle muscularis externa cell type and averaged across all cell types (black data point is mean and error
bars indicate standard deviation). (D) Recommendations for normalization and cell type annotations of segmented single-cell CODEX data.
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conducting robust and reproducible analysis on tissues from large
cohorts of subjects. By analysis of cell-type annotation of CODEX
multiplexed imaging data that result from several combinations of
normalization and clustering approaches provided insight into
optimal strategies, summarized in Figure 6D.

In general, of the normalization methods we tested (Z, log
(double Z), min-max, or arcsinh), Z normalization was the most
consistent technique for handling different sources of noise
including low intensity signal, high background signal,
segmentation noise, and imaging artifacts. Furthermore, Z
normalization resulted in accurate identification of both rare
and common cell types. Consequently, we recommend Z
normalization of values from each marker prior to cell-type
identification (Figure 6Di).

Accuracy in cell-type identification depended more on
normalization technique than it did on the downstream
unsupervised clustering algorithms. The algorithms tested,
which were the graph-based Leiden, the density-based X-shift
with either Euclidian or angular distances (15), and k-means
clustering, performed similarly, although X-shift clustering with
Euclidian distances consistently performed poorly across
conditions and annotated standards. Clustering algorithms that
resulted in higher numbers of distinct clusters were more
accurate in separating distinct phenotypes at the most granular
level of cell-type annotation. Furthermore, hand-gating
annotations failed to recognize a noise cell type due to cells
positive for all markers, image processing artifacts, or tissue
artifacts (like folded tissue) and was confounded by
segmentation noise such as bleed through of cytokeratin signal
into neighboring endothelial cells.

Many granular cell-type definitions that were phenotypic
separations (e.g., activated CD4+ T cells vs. inactivated CD4+ T
cells) were inaccurately assigned by all normalization and
clustering algorithms. Consequently, irrespective of the
clustering algorithm used, settings should be chosen to produce
significantly higher number of clusters than cell types expected
(Figure 6Dii). Further detailed annotation should then be done
using expression profiles, direct image overlay of cells, and
avoiding granular phenotypic cell type calling (Figure 6Diii).

However, phenotypic markers can be useful once cell types
have been established to look at differential expression between
the same cell type in different experimental conditions (e.g. PD1
staining on T cells). Also, here we imaged healthy human
intestine, whereas in tumor tissues there can be in EMT
(Epithelial-Mesenchymal Transition) and MET transition
states. This also makes separation of cell types challenging with
EMT or MET markers. However, computational analysis such as
pseudotime analysis of the transition continuum would be
interesting once broader cell types have been established.

With this in mind, selection of antibodies thus plays a
significant role in downstream spatial tissue analysis and
recognition of cell types. In short, if the research question is to
maximize the number of cell types identified to understand the
distinct landscape of the tissue, then antibody markers that were
restricted to certain cell types (e.g. CHGA-Neuroendocrine)
should be selected. On the other hand, phenotypic markers are
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useful in comparing a certain cell type state in greater detail
between experimental conditions.

Beyond making a choice between phenotypic and cell-type
markers, antibody clone selection can significantly affect staining
quality. Improving the signal-to-noise ratio makes it easier to
separate out cell types from one another in unsupervised
clustering. Best practices for selecting antibodies can be found
in a recent primer (22). Briefly, one should compare available
clones, validate with positive and negative controls with both
unconjugated and conjugated antibodies, titrate antibody
concentration and exposure time, and alter order used within
the multiplexed imaging to increase signal-to-noise ratios to
improve cell type identification accuracy. While time-
consuming, quality assessment of CODEX antibodies will
critically impact downstream quantitative results.

In the future, we expect that machine learning-based cell-type
annotation transfer models will be built using accurately
annotated data (23). This type of model will enable rapid cell-
type annotations for replicates or additional samples imaged
with a similar imaging panel. This further underscores the
necessity for generating an accurate, high-confidence sets of
cell-type annotations as training sets.

Additional analytical methods will be needed to address the
root causes of additional noise in multiplexed imaging data. As
examples, efforts are focused on cell segmentation with
generalizable whole-cell segmentation masks trained from a
variety of mult iplexed imaging data (11) . Second,
computational methods for correcting small imperfections in
segmentation and reassigning signal to the proper cells are in
development. Third, amplification approaches within the
multiplexed imaging techniques themselves will aid in
improving signal-to-noise ratios and elimination of tissue- and
imaging-based noise (24, 25). We expect, however, that even
after these noise issues are addressed, downstream data analysis
will depend on data normalization and cell-type annotation of
high-quality reference datasets.
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