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Simple Summary: The properties and structure of ecological networks in marine microbial commu-
nities determine ecosystem functions and stability; however, the principles of microbial network
assemblages are poorly understood. In this study, we revealed the influences of species phylogeny
and niches on the self-organization of marine microbial co-occurrence networks and provided a
mathematical framework to simulate microbial network assemblages. Our results provide deep
insights into network stability from the perspective of network assembly principles and not just
network properties, such as complexity and modularity.

Abstract: Evolutionary and ecological processes are primary drivers of ecological network constric-
tions. However, the ways that these processes underpin self-organization and modularity in networks
are poorly understood. Here, we performed network analyses to explore the evolutionary and eco-
logical effects on global marine microbial co-occurrence networks across multiple network levels,
including those of nodes, motifs, modules and whole networks. We found that both direct and indi-
rect species interactions were evolutionarily and ecologically constrained across at least four network
levels. Compared to ecological processes, evolutionary processes generally showed stronger long-
lasting effects on indirect interactions and dominated the network assembly of particle-associated
communities in spatially homogeneous environments. Regarding the large network path distance,
the contributions of either processes to species interactions generally decrease and almost disappear
when network path distance is larger than six. Accordingly, we developed a novel mathematical
model based on scale-free networks by considering the joint effects of evolutionary and ecological
processes. We simulated the self-organization of microbial co-occurrence networks and found that
long-lasting effects increased network stability via decreasing link gain or loss. Overall, these results
revealed that evolutionary and ecological processes played key roles in the self-organization and

modularization of microbial co-occurrence networks.

Keywords: microbial ecology; microbial community; network; self-organization; marine

1. Introduction

The alterations of species interactions in ecological network, whether direct and
indirect, are giving rise to cascading extinctions [1,2]. Thus, there is an urgent need to

Biology 2022, 11, 592. https:/ /doi.org/10.3390/biology11040592 https:/ /www.mdpi.com/journal/biology


https://doi.org/10.3390/biology11040592
https://doi.org/10.3390/biology11040592
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-2085-5247
https://doi.org/10.3390/biology11040592
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology11040592?type=check_update&version=2

Biology 2022, 11, 592

20f19

explore the determinants of species interactions and the ways that they drive assemblage
dynamics of ecological networks. Direct species interactions are widely considered to be
constrained by evolutionary and ecological processes [3-8]. For examples, phylogeny and
optimal niches or functional traits, the proxies of evolutionary and ecological processes,
respectively, are key predictors of species interactions [9-13]. However, the question of
which process plays the dominant role in constructing species ties is still understudied.
Additionally, few studies pay attention to the relative contributions of these processes to
indirect species interactions within ecological networks.

Ecological networks are inherently hierarchical [14], and thus the assembly driven by
evolutionary and ecological processes can be characterized from various network levels,
such as nodes, sub-networks (e.g., motif [15] and module), and the whole network. The
metrics at node level, e.g., the degree [16] and within- and among-module connectivity [17],
could measure the topological role of species in ecological networks [18-20]. However, less
is known on how such topological properties are jointly driven by the phylogeny and niches
of these species. At the sub-network level, motifs are common network backbones, and their
elements may have similar traits or shared evolutionary histories [15,21,22]. Modules are
purely identified by mathematical methods, such as the algorithms of greedy modularity
optimization [23] and short random walks [24], but constrained by evolutionary and
ecological processes revealed by previous reports on pollination networks, seed-dispersal
networks and microbial networks [17,20,25,26]. At the whole network level, both processes
are observed as primary drivers that shape microbial networks [27-29], but how these
processes shape network global properties, such as self-organization and modularity, is
less reported.

Such self-organization and modularization of ecological networks could be essentially
revealed by establishing a mathematical model and simulating network assembly. In order
to construct ecological networks, there are the three key features that must be re-emphasized
from previous studies [30]: (i) the aggregations of nodes are dynamic; the network can gain
or lose them, and they can connect or disconnect with each other [31], meaning that species
have dynamic connections with other species. (ii) The nodes harbor specific properties,
such as phylogeny and niches. (iii) External forces such as environmental disturbance
can also act on network structures. Moreover, we expect that evolutionary and ecological
processes should further take into account the self-organization of ecological networks. It
is critical for us to understand how ecological networks respond to environmental changes
and access network stability beyond posteriori knowledge.

Here, our objective is to study the evolutionary and ecological processes that shape
marine microbial co-occurrence networks across multiple network levels. Based on global
ocean metagenomic data from the TARA project across three depth layers and two size
fractions [32], we analyzed the effects of phylogeny and niches on microbial co-occurrence
networks across the levels of nodes, motifs, modules and the whole network, and further
developed a novel mathematical model for simulating the self-organization of microbial
networks based on a scale-free network [33,34]. We focused on three key questions: (1) How
are direct and indirect interactions in microbial co-occurrence network constrained by both
evolutionary and ecological processes? (2) What is the relative importance of evolutionary
and ecological processes in determining co-occurrence network assemblages? (3) How do
the characteristics of these two processes underpin co-occurrence network stability under
environmental disturbance?

2. Materials and Methods
2.1. Datasets

We obtained meta data from the global ocean data of TARA project [32], and the
samples were grouped into six subsets according to the three depth layers (SRF: surface
water layer; DCM: deep chlorophyll maximum layer; MES, mesopelagic zone) and two
size fractions (free-living: 0.22-3.0 um; particle-associated: 0.80-5.0 pm) [32,35]. For the
consistency of downstream analyses, the read depths of each sample of metagenomic 165
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rRNA tags were rarefied to 10,000. Phylogenetic tree of representative OTUs was extracted
from SILVA 128 database (QIIME release) [36] based on 97% similarity.

2.2. Network Construction, Motif and Latent Space Analyses

In each sub-dataset, OTUs observed in over a half of the samples were selected
for network constructions. The correlations between OTUs were inferenced via SparCC
tool [37-39] and carried out by ‘sparcc” function (iter = 100, inner_iter = 100, th = 0.3) [38].
The correlations between OTUs that were no less than 0.65 were kept for network con-
structions. The memberships of nodes were identified by the fast-greedy modularity opti-
mization method [23] via ‘cluster_fast_greedy’ function. The frequencies of each node for
motif positions in undirected networks were counted using Simmons’s method, which was
conducted via the ‘mcount’ function (six_node = TRUE) [40]. For each node in the network
with the largest connectivity, the positions within the latent space in two dimensionalities
and the probabilities of clustering memberships were calculated by the Variational Bayes
Latent Position Cluster Model (VBLPC) [41]. To determine the optimal number of groups,
we searched the minimum Bayes information criterion (BIC) with desired group scopes
(Figure S1A). The latent space distances between OTUs were calculated as Euclidean dis-
tances. These network analyses were conducted in R version 3.6.1 with the packages of
‘SpiecEasi’ V1.0.7, ‘iGraph’ V1.2.4.2, ‘bmotif’ V1.0.0 and "VBLPCM’ V2.4.5 [38,40-42].

2.3. Statistical Analyses

Phylogenetic tree was transferred into pairwise distance matrix via ‘cophenetic’ func-
tion. The optimal habitat value, as a niche for each out, was calculated based on envi-
ronmental variables [43]. Between-OTU niche differences were calculated as Euclidean
distances, and between-OTU differences in topology properties of network motifs and
module levels were calculated as Bray distance based on motif position frequencies and
the probabilities of clustering memberships. We used multiple logistic regression in the
distance matrices with 999 permutations [44] to quantify the effects of phylogeny and
niches on network adjacent matrices (binary data). Similarly, we also used multiple linear
regression in distance matrices to examine the regression coefficients of pairwise phylogeny
and habitat distance against pairwise motif or module differences. These analyses were
performed with packages of ‘base’, ‘'vegan’ V2.5-6 [45] and “ecodist’ V 2.0.1 [46].

To estimate species preference in phylogeny and niches within networks, we proposed
the novelty network-based metrics (Figure 1), that is, the mean neighbor phylogeny distance
(MNPD) and mean neighbor niche distance (MNND), respectively. These two metrics
were calculated by the following formula:

1 n
MNPD; = — x ) PDjji # | 1)
j

and: )
1 .,
MNNDi:;x;NDijzyé] 2)

where PDj; and NDj; denote phylogenetic and niche distance between species i and its
neighbor j, and 7 is the number of neighbors belonging to species i. Further, we constructed
1000 random networks corresponding to empirical networks according to Erdos-Renyi
model and generated a null distribution of null. MNPD; and null. MNND; values. The
standardized effect scores of ses. MNPD; and ses. MNND; were given by:

obs. MNPD; — mean(null. MNPD;)
sd(null. MNPD;)

ses. MNPD; = 3)

and:
0bs. MNND; — mean(null. MNND;)

sd(null. MNND;)

ses. MNND; = 4)
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Step 1
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i

Step 2

Randomly shifting
with Erdos—Renyi model ohs MNPD
(or 0bs. MNND,

0.46 0.48 0.50 0.52
null. MNPD (or null. MNND)

Step 3 0bs.MNPD
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0bs MNPD - mean(null. MNPD)
sd(null. MNPD)
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ses. MINND =

-4

ses.MNPD (or ses. MNND)

Figure 1. The flowchart of the summarizing procedure for estimating mean neighbor phylogeny
and niche distance (MNPD and MNND) at node level. First, the observed MNPD and MNND
(obs. MNPD and obs. MNND) were quantified based on empirical networks. Second, the links of
empirical networks were randomly shifting with the Erdos—Renyi model, and null distributions of
MNPD and MNND (null. MNPD and null. MNND) were generated. Third, the standardized effect
sizes of MNPD and MNND (ses. MNPD and ses. MINND) were calculated based on observed and null
values. The absolute values of ses. MINPD (ses. MNND) larger than two show statistical significance
(two sides, p < 0.05).

To further explore the design principles of ecological networks at the motif level, we
calculated the preferences in phylogeny and niche of motif position j (j = 1,2,3...,148) by:

ses.MNPD; = Y (f; x ses.MNPD;) ©®)
1

and:
ses. MNND; = ) (fij x ses. MNND) (6)
i
where fl-]- is the frequency of the node i in motif position j (}_; fl-j =1). As for the module
level, the preferences in the phylogeny and niches of module k were given by:

Zi (/\l] X SE’S.MNPDi)
Y Aij

ses. MNPD; = 7)
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and:
Zi (/\1] X ses.MNNDi)

Y Aij
where A;; is the probability of node i clustering into module k.
We tested the linear relationships between the phylogenetic or niches distance and
network path distance with ‘Im” functions. Further, a random forest algorithm [47] was
used to classify the network path distance based on species phylogeny and niche distance.
Finally, we calculated the Pearson’s correlations between phylogeny or niches distance and

latent space distance across network path distance. These analyses were performed with
packages of ‘base” and ‘randomForest’ V4.6-14.

ses. MNND; = (8)

2.4. Mathematical Mechanism Model
2.4.1. The dynamic of a Scale-Free Network in Ecology Community

Most of ecological networks were generally self-organized and exhibited scale-free
property, such as food webs [48,49], species co-occurrence [20,50] and pollination net-
works [51,52]. In scale-free networks, the probability p of a vertex with certain k links (or
degree) followed a power law distribution [33,34,53]:

Pl =k ©)

where v is an attraction factor. A greater y means the weaker ability of a node to attract
other nodes [54]. The value of y < 3.47 holds for almost all of empirical networks, and the
most of these are range from 2 to 3 [53,55].

To explore the assemblage dynamic of microbial co-occurrence networks, we took evo-
lutionary and ecological processes into account and extended the above formula (Figure 2A).
The connectivity strength c;; between species i and j is given by:

cij = Wk, 4+ Wk, ™ i i i j € (10

where Wp and Wy are the weight of preferences for the similarity of phylogeny and niches
to c;j, respectively, and k; ; is the average degree of i and j. The parameters of yp; j and vy j
are the mutual attraction factors between i and j driven by phylogeny and niche similarity,
as described by following formula:

Ypij = —a+ Y wp; X P (11)
1

and:
YN = —a+ Y Wy X N (12)
1

where a is a constant representing the original attraction between species, wp; and wy
are the weights of the preference of phylogeny and niches similarity among species across
network path distance I. If | = 0, wpy and wy o reflect the direct phylogeny (P) and
niche (Np) attraction, respectively, originating from the preferences for phylogeny and
niche similarity between i and j. If | > 0, wp; and wy ; reflect the weight of the indirect
phylogeny (P;) and niche (Nj) attraction, respectively; attraction received from neighboring
(I =1); and the non-neighboring (I > 1) vertexes with a distance of [ to i or j.
We assumed that wp; and wy ; accorded with an exponential attenuation model:

Ap
= 1=0,1,2,..., 13
P = T exp(Br x (14 1)) " =
and: ) BN
WN,1 v x (14 Eh) 1=0,1,2,...,m (14)

T T+exp(By x (I+1))
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where Ap and Ay reflects the relative importance of phylogeny and niches, respectively.
Bp and By is the attenuation rate of weight across network path distance I, Eh (Eh > 0) is
the degree of environment heterogeneity. Then, Wp is given by:

Wp =) wpy/ ) (wpy+wn,) (15)
l 1
and:
Wy =1-—Wp (16)
A Self-organization assembalge dynamic B Species pool Initialize network
O Q%04
OOO OO ] . @ 0 ¢ o
@90 0 9 ® o0 @
0 e ) © 5 © oo O
%o @ e © o [ )
o @ N @ ¢]
] o0 @ @ @ (9] @ g ° @ ® e ®
0g® 0 e o OO Qg °e o ©
) e, OOOOOOO QO%OOOOO
I=m 2 @ @e - @ ¢ @
C; =Wok [ + Wk, ™ i # § @:{Pp. Np,. PD,. ND, | M (1)
Cc D
TN AE}
AR 24
1f | \/\’\.\, : 60+ :
NI 1 Fa Y :
NATNL T 7 N !
‘* c' | g -T A '
~ - :‘_.-\.__:‘ '_gs;_/ l"l . 404 : o
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LA LTN S - 5 :
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o ;o Mty 20+ !
*
----- post-steady :
M (1) :
pre-steady 0- AN L A
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) 0 25 50 75
Time (7)

Time(?)

Figure 2. The simulation of self-organized assemblages in microbial networks. (A) The self-organized
assemblages of microbial networks constrained by species phylogeny and niches. The connectivity c;;
between species i and j is constrained by phylogeny (P) and niches (N). These two constraints could be
directly affected by this pair of species (I = 0) and their neighbor (I = 1) or non-neighbor species (I > 1).
(B) Characteristics of species pool and network initialization. In species pool, species i has preferences
in phylogeny (Pp;) or niche similarity (Np;). The phylogeny and niche distance between species
iand j are denoted by PD;; and NDj;,
are randomly selected and linked. The initialized network is denoted by symmetrical adjacent matrix

respectively. For network initialization, three pairs of species

M (t = 0). (C) The simulation of self-organized assemblages in microbial networks. Symmetrical
adjacent matrix M (t) was repeatedly updated according to network assembly procedures until
termination events were triggered (See details in Supplementary Material) and the complete assembly
of a pre-steady network. When environment heterogeneity changes (AEh), M (t) becomes involved
in iterations until iteration termination and achieves a post-steady state. (D) The link dynamic in
network assembly process. The red line is the number of network links across assembly time. The
green and blue lines are the number of loss and gain links in assembly processes.
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The mutual attractions between pair nodes driven by phylogeny (P;) and niches (IN})
in network path distance / are given by following formula:

1
b= 3 (Pi,j,l + Pj,i,l>/ Pijo = Pjio 17
and:
1
Nl: i (Ni,]',l + N‘,i,l)’ Ni,j,O = Nj,i,O (18)

where P; ;o and N; ;o represent the direct mutual attractions of phylogeny and niches
between i and j, respectively, given by:

1 Pp;+Pp;
and: . Np 4N
pi pj
Nijo =5 X 7;\”} I (20)

)

where Pp; and Np; denote the preference of species i in phylogeny and niche similarity,
respectively. The phylogenetic and niche distances between i and j are represented by PD;;
and ND;j, respectively. Considering the indirect effects on the co-occurrence of i and j,
the phylogenetic and niche attractions for 7 or j from non-neighbor species of j or i with a
distance of / are given by Formulas (19) and (20), respectively, as follows:

P =t Xippkzl+PP]+1XZPP(011)+PPZ' 1)
Lt
and:
N = & x (1 3 NPwin NP1 NP +N”’> 22)
ijl — ~ - e —— — -
"=\ BT NDgy p & ND(oﬂ)j

where k # j, 0 # i, k,0 €V. (k,i,1) and (o0,},1) is the aggregations of neighbor or not-
neighbor nodes belonging to i and j with distance I, respectively. The size of (k,7,1) and
(0,j,1) are g and p, respectively.

2.4.2. The Specie Pool Construction

In order to obtain the aggregation of species for ecological network simulations, we
generated species pools with regard to phylogeny and niches (Figure 2B). The community
phylogeny was constructed by a random phylogenetic tree according to the Paradis’s
algorithms [56], and the branch length was generated from uniform distribution U(0, 1).
The niche distance between species i and j is given by:

NDI‘]‘ = CPDZ',]' +¢ for PDij < PS (23)

and:
NDI‘]‘ = U(ﬁlcPS, ﬁzCPS) +¢ for PD,‘]‘ > PS; B1 < B2 (24)

where PS is phylogeny signal in the optimal niche, which is a threshold of the phyloge-
netic distance for the linear relationship between phylogenetic and niche distance. The
parameters of ¢, B1 and By, are constant, and ¢ is noise sampled from the normal distribu-
tion N(0, 0.01). Finally, pairwise phylogenetic distance PD;; and niche distance ND;; are
standardized by Z-score transformation.

2.4.3. Modeling of Network Assembly

At time f(, the species pool with v species and a symmetrical adjacency matrix
Myxo(t =0) (m;; = m;;, m;; € 0, 1) with e(t = 0) links is generated. Additionally,
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we then repeated the following five steps until there were no loss and gain links among
nodes or the number of iterations reached the maximum value. The brief procedures are
shown in Figure 2.

Step 1: At time ¢, existing species i in networks are likely to interact with new in-
troduced species or other existing species that have no interaction with species i. Re-
garding this, through Formula (25), we first calculated the pre-connectivity strength pc; ;
between connected node i and its non-neighbor node j with a pre-average degree of i and
j: pki,j = ki,]'(t) +1:

peij = Wypk, "' + Wypk, (25)

Step 2: To restrict the number of novel interactions generated at time f, we define
a threshold pcy, that is a quantile of pc;;, with a given probability p.; and a minimal
threshold pcilil . If pejj > min (pcy, pcin"i’qu, node i would prepare to connect node j with
probability min(pc;j,1) through a binomial experiment. After that, a pre-connectivity
adjacency matrix My, is created.

Step 3: Then, we generate a transitive adjacency matrix My, through:
th == M(t) + Mcon (26)

Step 4: After the introduction of novel species or interactions, original network pat-
terns are changed and some existing interactions between species are weakened and may
disconnect. Thus, we calculated the connectivity strength matrix C;;, based on My, through
Formula (25), and then defined a threshold of connectivity strength pc? for disconnection.
If Cira,ij < pcﬁffn, the link between i and j would disconnect with a probability p;;s through
the binomial experiment. After that, a pre-disconnected matrix M;; was created.

Step5: Finally, we obtained the new adjacency matrix at time ¢ + 1 through:
M(t+1) = Mpq — My;s (27)

2.4.4. Sensitive Analysis

We conducted a sensitivity analysis for the network assemblage model by Gaussian
generalized linear model (GGLM) and random forest classification. First, the importance of
phylogeny was set as twice as niche in the network assemblage, and the other of parameters
varied within the given ranges (Table S1). Then, we varied the rest of parameters and gener-
ated 100 sets. For each parameter set, we sampled 100 replicates from modeling simulations.
Finally, we defined the sensitivity of modeling outcomes to parameters as the regression
coefficients of GGLM, where the dependent variables were the contributions of phylogeny
and niche distance to network path distance given by random forest classification, and the
independent variables were variable parameters.

To simulate the response of networks in the changes of environment heterogeneity, we
examined the effects of the indirect interactions on the response of network dynamics in
environment heterogeneity. In this model, environment heterogeneity is represented by Eh,
which alters the weight of the contributions of phylogeny and niches to the probability of
species co-occurrence. After completion of pre-steady network G(V, E) with presetting Eh
(default Eh = 0), Eh was increased to 2 and adjacent matrix of G was repeatedly updated.
When the iterations achieved termination, we obtained a post-steady network G'(V’, E’).
Finally, we calculated link turnover, including the percentages of link gain (G) and loss (L)
by following formula:

|Es|
_ 1=8 —
G = T x 100%, EqCE,EgNn E=0 (28)
and: | ‘
E
L=1231x100%, E,CE Eqn E'=0 (29)

|E]
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where |E| represents the number of links in pre-steady network.

3. Results

Species phylogeny and niche similarity significantly correlated (p < 0.05) with, but
showed differentiated contributions to, the marine microbial co-occurrence network struc-
ture at the motif, module and whole-network level (Figure 3A). Particularly, phylogeny
made more contributions to network construction than niches at the motif level (Figure 3A;
paired t-test, p = 0.07), while it was inconsistent at the module and whole-network level
(Figure 3A; both p > 0.1). Specifically, at mesopelagic zone (MES), phylogeny, rather than
niches, was a primary driver of particle-associated communities across three network
levels (Figure 3A; p = 0.016), but not for free-living communities (Figure 3A). When the
network path distance between species was considered, both phylogeny and niche distance
positively correlated with network path distance up to around three, and then showed
incongruent trends (Figure 3B). Such a phenomenon was further supported by the fact that
phylogeny and niche distances were significantly (p < 0.05) positively related to network
path distance within the same modules (Figure 3C), and these relationships were stronger
than those across modules (Figure 3C). These results implied phylogeny and niche pro-
cesses had strong constraints on network assemblage within a short range of network path
distance, which may be particularly important for network module clustering.

A C
SRF DCM MES SRF DCM MES
Free . O .O b o =z Relative o84
2 contribution ' ) p
- [OI0 [O0| @10 Teo ol |7
Part . O .J . O & 0.0 0
Z
Free OO O. OO = -0.5 0.4-/& é % §
= 738, =
rt OO O@ @ O 5 B Ego.o-;é'” =
i)
PhyleNiche PhyloNiche PhyloNiche g
0.8

w
(=]
-~
L
\
olAud
Jed

Phylo Niche . ?‘/\
P [ =
104 0.0 4
0.8+
g 054 0817 ;
g , # Er
8 %47 //_ _ - 0.4 % s 3
0.2+ i F
CoA=+""% VB ey B d
00+ A 00 BT e -
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3 6 9 12 3 6 ] 12 3 6 9 12 3 6 9 12 3 6 9 12
Network path distance Network path distance

Figure 3. The effects of species phylogeny and niches on marine microbial network constructions.
(A) The relative contributions of species phylogeny (Phylo) and niche distance to network construction
across motif, module and whole-network (whole) levels in free-living (Free) and particle-associated
(Part) communities at surface water layer (SRF), deep chlorophyll maximum layer (DCM) and
mesopelagic zone (MES), where pattern size and color intensity are the strength of relative contri-
bution, and colors represent the positively (blue) or negatively (red) relative contributions. (B) The
relationships between network path distance and phylogeny or niche distance at the whole network
level, where color represent depth layers (red: SRF; green: DCM blue: MES), and line type represents
community fractions (solid: Free; dashed: Part). The curves were fitted by generalized additive
models. The shaded region indicates standard errors of the curves. (C) The linear relationships
between network path distance and phylogeny or niche distance across modules (blue line) or within
the same modules (red line), where line type is the statistical significance of linear regression analysis
(solid: p < 0.05).
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To determine whether species prefer to interact with phylogenetically close species or
ecologically similar species, we developed novel indicators of mean neighbor phylogeny
distance (MNPD)- and mean neighbor niche distance (MINND)-based ecological networks.
Compared with the module level, nodes and motif positions showed the highest and lowest
divergence, respectively, in ses. MINPD-ses. MNND plots (Figure 4A). Across six groups of
microbial communities, over 95% of nodes showed a preference in phylogeny or niche-
similar neighbors (ses. MNPD < 0 or ses. MNND < 0) and more than 65% of them showed a
statistical significance (ses. MINPD < —2 or ses. MNND < —2; Figure 4B). For motif positions,
all ses. MNPD and ses. MNND values were less than 0. This was especially true for the
mesopelagic zone as all motif positions showed significant preferences in phylogeny or
niche similarity: ses. MNPD or ses. MNND values < —2 (Figure 4B). These results indicate that
phylogeny and niche processes have stronger constraints on network motifs or modules
than on nodes. In addition, ses. MNPD had more significantly (p < 0.05) positive influences
on node connectivity in particle-associated communities than in free-living ones, which
were supported by the generalized linear model (Table 1).
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Figure 4. The mean neighbor phylogeny and niche distance of species in microbial networks. (A) The
ses. MNPD-ses. MNND plot for marine microbial communities across node, motif and module levels,
where ses. MNPD or ses. MNND of motifs and modules were calculated according to the proportions
of their node members. (B) The block proportions in ses. MNPD-ses. MNND plots across nodes,
motifs and modules, where a ses. MNPD (or ses. MNND) larger than 2 indicates that one object has a
significant preference in a more distantly related phylogeny (or niche) at same network level, while
a ses.MINPD (or ses. MNND) less than —2 indicates one object has significant preference in a more
closely related phylogeny (or niche).
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Moreover, a random forest classification analysis [47] showed that phylogeny and
niche distance affected both direct and indirect species interactions, that is, network path
distances = 1 and >1, respectively (Figure 5). Regarding a large network path distance,
the contributions of phylogeny and niches for the network path distance between two
species generally increased and then decreased with a network path distance of around six.
Such patterns showed a peak in the network path distances from two to five (Figure 5A).
Notably, the contribution of phylogeny was around two times higher than that of niches
in particle-associated communities at MES, and showed stronger long-lasting effects on
indirect species interactions (Figure 5A). The highest importance of phylogeny and niches
to network path distance classification were 0.286 and 0.247, respectively (Figure 5A).

Table 1. The influences of ses. MNPD and ses. MNND on node connectivity were analyzed by the
generalized linear model. SRF: surface water layer; DCM: deep chlorophyll maximum layer; MES:
mesopelagic zone.

Size Fraction Layer ses. MNPD ses. MNND
SRF 0.133 —0.0236
Free-living DCM 0.2302 0.8291 *
MES —0.1677 —0.2277
SRF 0.7122 *** —0.0927
Particle-associated DCM 0.3903 ** —0.0811
MES 0.1315 —0.7282 **

¥4 p < 0.001; *: p < 0.01; % p < 0.05.

To further assess the influence of phylogeny and niches on indirect species interac-
tions, we calculated the latent space distance between species with a variational Bayes
method [41] and estimated the Pearson’s coefficients between the distance matrices of latent
space and phylogeny or niches across the network path distance. We found that species
phylogeny or niche distance significantly correlated with the latent space distance (p < 0.05;
Figure 5B), 