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Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation
of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have
been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent
proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4" T cells. Therefore,
the mechanism of GM-CSF-producing CD4" T cell differentiation and the role of GM-CSF in the development of autoimmune
and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its
relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side

effects have also been addressed in this review.

1. Introduction

Granulocyte macrophage colony-stimulating factor (GM-
CSF) is a hematopoietic growth factor which was originally
recognized as a stimulator for the proliferation of granulo-
cytes and macrophages from bone marrow precursor cells
[1]. It has also been shown to promote the survival and
activation of mature myeloid cells and therefore contributes
to the maintenance of innate immune homeostasis [2].
Recent studies suggest that GM-CSF also has proinflamma-
tory functions and plays critical roles in the development of
autoimmune and inflammatory diseases, particularly in Th17
driven diseases [3, 4].

2. Biology of GM-CSF

2.1. Production of GM-CSF. GM-CSF is produced by a variety
of cells. Major sources of GM-CSF include activated T and B
cells, monocytes/macrophages, endothelial cells, fibroblasts,
and other sources such as neutrophils, eosinophils, epithelial
cells, mesothelial cells, chondrocytes, Paneth cells, and tumor
cells [5-7]. The production of GM-CSF in T cells is stimulated
by IL-18 and IL-23 in mice [3, 8], IL-1p3 and IL-12 in humans
[9], and also prostaglandin E2 [10]. In fibroblasts, endothelial
cells, chondrocytes, and smooth muscle cells, it is stimulated

by TNF-« and IL-1, and in macrophage/monocytes it is
stimulated by toll like receptors (TLRs) [5]. In lymphocytes,
the transcription factor nuclear factor of activated T cells
(NFAT) is reported to be required for the production of
GM-CSF [11, 12]. However, the production of GM-CSF can
be inhibited by IFN-y [13], IL-4 [14], IL-10 [15], and also
pharmacological agents such as cyclosporine A [16, 17] or
glucocorticoids [18].

2.2. GM-CSF Receptor and Signaling. The GM-CSF receptor
is expressed on myeloid cells and on some nonhaemopoietic
cells such as endothelial cells but not on T cells [19, 20].
The GM-CSF receptor is a heterodimer of an «-subunit
which binds GM-CSF with low affinity and a signaling fc-
subunit which is shared with the IL-3 and IL-5 receptors [21].
The [c-subunit constitutively associates with Janus kinase 2
(JAK2) and is tyrosine phosphorylated by it resulting in an
assembly of dodecameric signaling complex and initiation
of signaling [22]. The effects of GM-CSF are mediated in
a dose-dependent manner, by two f3-chain residues: Ser585
and Tyr577 [23]. At low concentrations of GM-CSE, as in
normal healthy tissues, signaling occurs via Ser585 of the [3-
chain, which leads to activation of the PI-3 kinase pathway
and results in myeloid cell survival. At high concentrations
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of GM-CSE, as at the site of inflammation, signaling via
Ser585 is extinguished and signaling occurs exclusively via
Tyr577 residue, which activates the Jak2/STAT5 pathway,
Ras/mitogen-activated protein kinase pathway and PI-3
kinase pathway, resulting in cell survival, proliferation, and
activation [23-26].

2.3. Action of GM-CSF. GM-CSF stimulates proliferation
and activation of macrophages, monocytes, neutrophils,
eosinophils, dendritic cells, and microglia [1, 27]. However,
since GM-CSF-deficient mice did not have a defect in myeloid
cell development [28], a redundant role of GM-CSF in
myeloid cell development and differentiation under steady
state or homeostatic conditions is predicted. In addition to
its function as a hematopoietic growth factor, GM-CSF is now
recognized to have a variety of functions on mature hemopoi-
etic cells. GM-CSF enhances proinflammatory cytokine pro-
duction [29], antigen presentation [30, 31], and phagocytosis
[32-35] and promotes leukocyte chemotaxis and adhesion [5,
36-38]. GM-CSF deficient mice have increased susceptibility
to pulmonary [28, 39-41] and intestinal infections [42]
followed by systemic infection, indicating its importance in
maintaining immune homeostasis particularly in the lung
and intestines, which are constitutively exposed to pathogens.

2.3.1. Macrophages. GM-CSF stimulates the terminal dif-
ferentiation of macrophages and the acquisition of normal
immune functions via the transcription factor PU.I [32].
GM-CSF also regulates phagocytosis of microbial pathogens
by macrophages through the upregulation of pathogen
associated molecular pattern (PAMP) receptors such as
C-type lectins including mannose receptors or Dectin-1,
scavenger receptors, integrins, or Fcy receptors via PU.1
[24, 32-34, 43]. Complement-dependent phagocytosis is also
enhanced by GM-CSF to control microbial pathogens [44].
GM-CSF also upregulates the expression of TLR2, TLR4,
or CD14 and boosts the production of proinflammatory
cytokines such as TNE IL-6, IL-12p70, IL-23, or IL-18 [24,
32, 45, 46], leading to polarization of macrophages to the
MI- (classic-) like phenotype, thus, promoting Thl-Thl7
responses [29, 47, 48] and contributing to tissue destruction
[49]. On the other hand, M-CSF polarizes macrophages to
the M2- (alternative-) like phenotype, which produces anti-
inflammatory cytokines such as IL-10 and CC-chemokine
ligand 2 (CCL2) and promotes tissue repair and remodeling
[49]. GM-CSF also regulates many functions in macrophages
including cell adhesion [32], pulmonary surfactant lipid and
protein catabolism [32], and several important antimicrobial
activities such as the production of reactive oxygen species
(ROS) or expression of antimicrobial enzymes [40].

2.3.2. Dendritic Cells (DCs). GM-CSF positively regulates
the development of migratory CD103"CDI1b" DCs [50]
but negatively regulates the development of resident CD8"
DCs [51]. GM-CSF also strongly induces the development
of inflammatory monocyte-derived DCs (moDCs) in vitro
[52]. However, it has not been well established whether GM-
CSF also regulates the development of moDCs in vivo. It
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was reported that the number of moDCs was increased
in GM-CSF transgenic mice [53]. Furthermore, NF-«BI-
dependent GM-CSF production in CD4 T cells was reported
to be required for the generation of moDCs in inflamma-
tory arthritis and antigen-induced peritonitis mouse models.
The number of moDCs was markedly reduced in draining
lymph nodes from GM-CSF-/— mice with inflammatory
arthritis or in the spleen of mice reconstituted with NF-
kBl-/— CD4 T cells in acute peritonitis, demonstrating that
GM-CSF contributes to the differentiation of these cells
during inflammation in vivo [54]. On the other hand, GM-
CSF was shown to be dispensable for the differentiation of
moDCs, at least during acute infections, since the number
of moDCs was not decreased in GM-CSF—/— mice or GM-
CSF receptor deficient mice during acute infections [55,
56]. These data indicate that although GM-CSF strongly
regulates the production of moDCs in vitro and in vivo,
there may be another GM-CSF-independent pathway for the
development of moDCs [56]. Besides the regulation of DC
development, GM-CSF also upregulates cross-presentation,
bacterial uptake [53], or production of proinflammatory
cytokines such as IL-6 or IL-23 in resident DCs [57].

2.3.3. Neutrophils. In mature neutrophils, GM-CSF upregu-
lates the expression of the integrin CDI11b, which increases
cellular adhesion and tissue entry [36]. GM-CSF also upreg-
ulates the antimicrobial functions of neutrophils, such as
phagocytosis or ROS production [58]. However, the expres-
sion of PU.1 in neutrophils of autoimmune pulmonary alveo-
lar proteinosis patients was normal, indicating that GM-CSF
is not involved in neutrophil differentiation [58].

2.3.4. B Cells. Among B cells, the innate-like Bl B cells
reside predominantly in serosal cavities such as the pleural
or peritoneal cavity. In response to microbial infection, Bla
B cells (a subset of Bl B cells) recognize bacteria via direct
TLR-dependent pathogen recognition and differentiate into
innate response activator (IRA) B cells, which produce GM-
CSF and also express the GM-CSF receptor [59, 60]. GM-CSF
acts on its receptor in an autocrine manner and induces IgM
production from B cells [59, 61]. Mixed chimeric mice with
B cell-restricted GM-CSF deficiency showed high bacterial
titer and morbidity after infection but did not show alveolar
proteinosis [60], indicating that B cell-derived GM-CSF is
necessary for protective IgM responses but dispensable for
surfactant clearance by alveolar macrophages. These data
indicate that the cellular source and location of GM-CSF is
important.

3. T Cell and GM-CSF

Although GM-CSF is widely expressed in both stromal and
hematopoietic cells, recent murine studies suggest that GM-
CSF from CD4" T cells is essential in inflammatory mouse
models such as experimental autoimmune encephalomyelitis
(EAE), arthritis models such as collagen-induced arthritis
(CIA) or SKG-arthritis, interstitial lung disease in SKG mice
(SKG-ILD), peritonitis, or myocarditis [3, 4, 54, 57, 62-64].
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FIGURE 1: The differentiation of GM-CSF-producing CD4" T cells
and cytokine networks. Activated macrophages and dendritic cells
(DCs) produce proinflammatory cytokines such as IL-23, IL-183, and
IL-6, which can promote the differentiation of Th17 and Th1/17 cells,
leading to more GM-CSF production from Th1/17 cells. Increased
levels of GM-CSF upregulate further production of proinflamma-
tory cytokines from macrophages/DCs, creating a positive feedback
loop. Activated macrophages/DCs also produce proinflammatory
cytokines, such as IL-13 and TNFa, which stimulate the production
of GM-CSF from resident tissue cells, including endothelial cells,
epithelial cells, fibroblast, or chondrocytes.

Although GM-CSF is known as one of the Th17 cytokines, Thl
cells and Th2 cells also express GM-CSF [64-67]. Moreover,
recent studies represent the existence of GM-CSF-producing
Th cells distinct from Thl, Th2, or Thl7 cells [62, 64]
(Figure 1).

3.1. Th17 and Th1/17 Cells. Thl7 cells have been shown to
be strong inducers of tissue inflammation and autoimmune
diseases. However, a number of studies determined that IL-
17 inhibition does not prevent but rather only ameliorates the
development of EAE [3, 4, 68, 69], CIA [70], SKG-arthritis,
or SKG-ILD [63] and that neutralizing IL-17 is a rather
unsatisfactory method for blocking Th17 mediated diseases
[71, 72]. Recently, it was reported that “classical” Th17 cells,
which mainly produce IL-17, are not pathogenic and that Th17
cells have high plasticity. As such, they instead differentiate
into highly pathogenic cells, called Th1/17 cells [73]. Th1/17
cells are characterized by their ability to coproduce IL-17,
IFN-y, and GM-CSF and are identified by the coexpression
of T-bet, RORyt, and the chemokine receptors CXCR3 and
CCR6 [9, 74-78]. Human Th1/17 cells also express CDI161, a
hallmark of Thl7 progeny cells in humans that is induced
by RORyt [76, 79, 80]. Recent studies report that GM-CSF
is critical for the pathogenicity of Thi7 cells [3, 4] and the
presence of Th1/17 cells was observed at the inflammatory site
of inflammatory bowel disease (IBD), multiple sclerosis (MS),
and juvenile idiopathic arthritis (JIA) [76, 78, 81, 82].

In mice, IL-23 and IL-1f induce the production of GM-
CSF in T cells whereas IL-12 suppresses its expression [3,
4, 77, 83]. In contrast, in humans IL-1§ renders Th17 cells
sensitive to IL-12 and both IL-18 and IL-12 promote the
differentiation of Th1/17 cells [9, 75, 81, 84, 85] (Figure 1). As
described in Section 2.3, GM-CSF induces the differentiation
of Ml-like macrophages and upregulates the production of
proinflammatory cytokines such as IL-6, IL-12, IL-23, or IL-
1/3 from antigen presenting cells (APCs) [57]. This results in
further differentiation of Th17 and Th1/17 cells, thus creating
a positive feedback loop [3, 63].

Studies show that GM-CSF expression in CD4" T cells is
not regulated by T-bet [3, 4] and ROR-responsive elements
are identified in the promoter of the gene encoding GM-
CSF [4]. Moreover, ectopic RORyt expression in CD4" T
cells results in GM-CSF production, indicating that GM-
CSF production in Th1/17 cells is induced by RORyt [4].
Conversely, RORyt-deficient CD4" T cells can produce GM-
CSE, indicating the existence of additional pathways to induce
GM-CSF production in CD4" T cells [3].

3.2. Th-GM Cells. Recently, it was reported that IL-2- or
IL-7-activated STAT5 promotes the generation of GM-CSF-
producing CD4" T cells with low or undetectable expression
of T-bet, GATA-3, RORyt transcripts. These cells repre-
sent a new distinct subset of Th cells, namely, Th-GM
[62, 64]. In humans, these Th-GM cells are identified as
CCRI10"CCR4"CXCR3™CCR6™ Th cells [64]. It was reported
that IL-7-activated STAT5 directly bound to promoter regions
of the gene encoding GM-CSF [62]. The contribution of
IL-7 has been implicated in autoimmune diseases such as
multiple sclerosis or rheumatoid arthritis [86, 87], which also
suggests the contribution of Th-GM cells in these diseases.
High expression of IL-3, which is also involved in several
autoimmune diseases [88-90], was also reported in Th-GM
cells [62]. These cells were reported to be able to induce
a more severe experimental autoimmune encephalomyelitis
(EAE) than Thl7 or Thl cells [62, 64]. It is possible that
Th-GM cells provide GM-CSF to induce the expression of
IL-23 from APCs and cooperate with Th1/17 or Thl cells to
exacerbate the development of inflammation.

3.3. Thl Cells. Thl cells are another source of GM-CSF
[4]. It was reported that Thl cells also need GM-CSF to
mediate inflammation in the central nervous system (CNS)
[4]. However, the amount of GM-CSF produced by Thl cells
is found to be consistently lower than that produced by Th17
cells, particularly during in vitro culture [65].

3.4. Th2 Cells. Th2 cells also produce GM-CSF [66, 67].
Although a positive correlation was found between GATA-3"
cells and GM-CSF" cells in the nasal mucosa of patients with
allergic rhinitis [91], there is no study to our knowledge that
directly analyzes the role of GATA-3 in GM-CSF production.
Further investigation is therefore needed to elucidate the pre-
cise mechanism of GM-CSF production from CD4" T cells
and their contribution to the development of autoimmune
and inflammatory diseases.



4. GM-CSF in Autoimmune and
Inflammatory Diseases

4.1. GM-CSF in Central Nervous System. Multiple sclerosis
(MS) is a chronic inflammatory disease of the central
nervous system and is pathologically characterized by
demyelination and subsequent axonal degeneration. Past
studies have shown that CD4" T cells play a critical role
in the development of MS and experimental autoimmune
encephalomyelitis (EAE), a widely used mouse model of
MS. It has been widely believed that Th17 cells are the main
encephalitogenic population in autoimmune inflammation
[92]; however, IL-17 has been found to be dispensable for the
development of EAE [4, 93]. On the other hand, GM-CSF
deficiency or neutralization of GM-CSF has been reported
to prevent the onset of EAE [94, 95]. The administration of
recombinant GM-CSF worsened the disease in EAE [94]
and elevated concentrations of GM-CSF have been reported
in the cerebrospinal fluid but not in the serum of patients
with relapsing-remitting or secondary progressive MS
[96, 97].

Recent findings show that GM-CSF is secreted by CNS-
infiltrating helper T cells and is essential for encephalito-
genicity in EAE [3, 4, 64]. GM-CSF induces the proliferation
and activation of microglial cells, which is required for the
onset of EAE [95, 98]. Activated microglial cells produce
highly neurotoxic substances such as ROS, nitrogen species,
glutamate, and TNF-a [99-102]. Furthermore, GM-CSEF-
producing CD4" T cells induce the differentiation of neuro-
toxic MlI-like phenotype of microglia [103] and upregulate the
production of proinflammatory mediators such as IL-1f3, IL-
6, and TNF«, which contribute to myelin sheath damage, via
upregulation of TLR and CD14 expression [45].

Studies also show that GM-CSF is required for recruit-
ment of peripheral myeloid cells that contribute to blood-
brain barrier (BBB) and blood-spinal cord barrier (BSCB)
disruption and demyelization into the CNS [104, 105]. As we
described in Section 3.1, GM-CSF induces the polarization of
the M1-like macrophage phenotype and exacerbates the posi-
tive feedback loop of Th17 and Th1/17 differentiation. Indeed,
an increased M1/M2 profile ratio of monocyte/macrophages
in the blood as well as in the CNS favors relapsing EAE and a
reduced M1/M2 ratio promotes an attenuated manifestation
of the disease [106]. The ability of CNS-invading myeloid cells
to respond to CD4" T cell-derived GM-CSF was shown to be
vital for the development of EAE [4].

Taken together, CNS-infiltrating CD4" T cells initially
activate microglia and induce production of proinflamma-
tory cytokines, which contribute to myelin sheath damage
[95]. This initial neuroinflammation results in BBB destruc-
tion and leukocyte infiltration into the CNS parenchyma, fol-
lowed by restimulation of T cells by resident and infiltrating
APCs [107], leading to further APC activation.

These reports indicate that GM-CSF plays a central role
in MS and indicate that the inhibition of GM-CSF will be a
useful therapeutic strategy for MS. MORI103, a fully human
monoclonal antibody that binds human GM-CSE is currently
being tested in a phase Ib trial for MS [108] (Table1). The
result of this and future trials are highly anticipated.
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4.2. GM-CSF in Arthritis. Rheumatoid arthritis (RA) is a
systemic chronic autoimmune disease characterized by per-
sistent and erosive inflammatory polyarthritis. Recent studies
indicate that GM-CSF plays a central role in the pathogenesis
of RA as in MS, by activating or promoting differentiation
and survival of macrophages and neutrophils [109, 110]. The
concentrations of GM-CSF were elevated in the synovial fluid
and plasma of RA patients [111, 112]. A case report showed
that the administration of recombinant GM-CSF exacerbated
the disease activity of RA [113]. The frequency of GM-CSF-
producing Th cells was significantly increased in synovial
fluid cells compared to peripheral blood mononuclear cells
(PBMCs) in patients with juvenile idiopathic arthritis (JIA)
and correlated with erythrocyte sedimentation rate (ESR)
levels [81, 114]. Synovial GM-CSF-producing T cells were
predominantly CD161 positive and coexpressed IFN-y but
not IL-17 [81], indicating that these cells are Th1/17 cells.
Alternatively, human synovial fibroblasts and chondrocytes
were also reported to produce GM-CSF in response to IL-1
and TNF stimulation [115, 116].

The contribution of GM-CSF in the development of
arthritis was also reported in several mouse models of
arthritis. In the collagen-induced arthritis (CIA) model, GM-
CSF deficient mice failed to develop arthritis [117], and
the administration of anti-GM-CSF neutralizing antibodies
ameliorated existing disease, prevented disease progression,
and reduced the concentrations of TNF and IL-1 in the
joints of treated mice [118]. On the other hand, GM-CSF
administration exacerbated arthritis in CIA [119].

In SKG mice, another model of autoimmune arthritis,
GM-CSE upregulated proinflammatory cytokine production
such as IL-1$ or IL-6 from macrophages in a dose dependent
manner [63, 120]. This in turn induced further differentiation
and expansion of IL-17-producing and GM-CSF-producing
CD4" T cells [63]. The progression of arthritis in SKG mice
was inhibited by the neutralization of GM-CSF and slightly
by the neutralization of IL-17A [63], indicating that GM-CSF
plays a more critical role than IL-17A in SKG arthritis.

Mavrilimumab, a fully human anti-GM-CSF receptor «
antibody, is currently being developed and a phase II study
in RA patients reported significant efficacy with no serious
adverse events such as pulmonary alveolar proteinosis [121].
In this study of patients with active RA despite methotrexate
treatment, 55.7% of all participants treated with mavrili-
mumab met the primary end point of achieving >1.2 decrease
from baseline in the disease activity score (DAS28-CRP) at
week 12. At the highest dose of mavrilimumab (100 mg),
66.7% of subjects met the primary end point versus only
34.7% of the subjects in the placebo group [121].

MORI103, which is also being tested for MS, has shown
preliminary evidence of efficacy in a phase Ib/Ila trial for
patients with active RA [122]. Subjects receiving higher doses
of MORI103 (1.0 and 1.5 mg/kg) showed significant improve-
ment in DAS28 scores and joint counts and significantly
higher European league against rheumatism response rates
than subjects receiving placebo [122]. Both mavrilimumab
and MOR103 showed rapid treatment responses and provided
evidence of clinical efficacy that support further clinical
investigation. Table 2 shows the results of clinical trials with
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TaBLE 1: Clinical trials targeting GM-CSE.

Target Drug Type Indication Phase Status

GM-CSFR N([évliﬁ“;‘g(;*;b mAb RA I Completed

GM-CSE MOR103 mAb ll\l/g IbI/liIa ggggi::zj, not published yet
GM-CSE N(al\r/ln'il“l;(r)g?b mAD PlaqueRl;toriasis III g(r)lzl())li:;d, notpublishedyet
cucr o el L T sl
GM-CSF MORAD-022 mAb RA I On-going

GM-CSFR: GM-CSF receptor; mAb: monoclonal antibody; RA: rheumatoid arthritis; MS: multiple sclerosis.

TaBLE 2: Effects of GM-CSF inhibitors in RA.

Drug Regimen Patients Efficacy (versus placebo)
DAS28 change: —1.2 at week 12
41.0%, 61.0%, 53.8%, and 66.7% versus 34.7%
Mavrilimumab 19, 30, 50, or 100 mg, SC N =233 (P =0.543, 0.011, 0.071, and 0.001)
(CAM-3001) every other week On stable MTX  ACR at week 12100 mg dose versus Placebo
Phase II ACR20: 69.2% versus 40.0% (P = 0.005)
[121] ACRS50: 30.8% versus 12.0% (P = 0.021)
ACR70: 17.9% versus 4.0% (P = 0.030)
Significant differences in DAS28 change between placebo and MOR-103:
MORI03 0.3, 1.0, or 1.5 mg/kg, IV None, weeks 4 through 10, weeks 4 through 6
Phase Ib/ITa once a week for 4 weeks, N =96 ACR at week 4, 1.0 mg/kg versus placebo
[122] with follow-up to 16 weeks ACR20: 68.2% versus 7.4% (P < 0.0001)

ACR50: 22.7% versus 3.7% (ns)
ACR70: 4.5% versus 0.0% (ns)

SC: subcutaneous injection; IV: intravenous injection; MTX: methotrexate; DAS28: 28-joint disease activity score; ACR20: American College of Rheumatology
20% response rate; ACR50: American College of Rheumatology 50% response rate; ACR70: American College of Rheumatology 70% response rate.

mavrilimumab and MORI03. A list of ongoing/completed
clinical trials targeting GM-CSF or its receptor is presented in
Table 1, with more information available at ClinicalTrials.gov.

4.3. GM-CSF in Lung Disease

4.3.1. Pulmonary Alveolar Proteinosis. Pulmonary alveolar
proteinosis (PAP) is a rare syndrome characterized by the
accumulation of surfactant in pulmonary alveoli resulting in
varying degrees of respiratory insufficiency and myeloid cell
dysfunction leading to increased risk of infection [123, 124].
Several clinical forms of PAP have been identified includ-
ing autoimmune PAP caused by GM-CSF autoantibodies,
hereditary PAP caused by GM-CSF receptor mutations, and
secondary PAP associated with various underlying clinical
disorders which is presumed to cause this syndrome by
reducing alveolar macrophage numbers or function [125]. It is
also reported that GM-CSF deficient mice develop abnormal
lung histology that is virtually indistinguishable from human
PAP [126].

Pulmonary surfactant is tightly regulated by balanced
production, secretion, reuptake, and catabolism within alve-
oli. GM-CSF regulates surfactant catabolism in alveolar
macrophages via PU.1 but does not regulate surfactant endo-
cytosis or uptake and catabolism of surfactant by alveolar

epithelial cells type II (AEC-II) [32, 127]. GM-CSF is also
required to stimulate numerous immune functions and ter-
minal differentiation of alveolar macrophages [32] and induc-
tion of IgM production from B cells [60, 61]. Therefore, GM-
CSF deficient mice have high susceptibility to pulmonary
infections [28, 39-41] accompanied by systemic infections.
Based on the pathogenesis of PAP, several new therapeutic
approaches for treating autoimmune PAP targeting GM-CSF
are in clinical trials, including plasmapheresis [128], GM-CSF
administration [129, 130], and rituximab [131, 132].

4.3.2. Interstitial Lung Disease. The mechanism of pulmonary
fibrosis in interstitial lung disease (ILD) has been studied
using Idiopathic pulmonary fibrosis (IPF) or a bleomycin-
induced mouse model of pulmonary fibrosis. Pulmonary
fibrosis in IPF is considered to be inflammation-independent
and mainly initiated by TGF-f3 produced by damaged epithe-
lial cells. In fact, anti-inflammatory therapies have little
benefit in IPF [133-135]. However, neutrophils, which pro-
duce ROS, MMPs, neutrophil elastase, or myeloperoxidase
and cause lung parenchymal and stromal cell injury [136-
138] or Th2 cytokines such as IL-4 or IL-13, which induce
fibroblast differentiation or extracellular matrix synthesis
[139, 140], have been reported to contribute to lung fibrosis
to some extent. Additionally, GM-CSF was reported to take



part in the progress of pulmonary fibrosis. It was reported
that TNFa-induced endothelin-1 (ET-1) upregulates GM-
CSF production from airway smooth muscle cells (ASMCs)
[141] and that GM-CSF was increased in the bronchoalveolar
lavage fluid (BALF) of patients with pulmonary fibrosis [142,
143]. GM-CSF stimulates macrophages to release profibrotic
cytokines and also induces fibrosis by direct stimulation of
airway smooth muscle cells [144, 145]. In fact, overexpression
of GM-CSF in the lungs led to severe neutrophil, eosinophil,
and macrophage infiltration and fibrotic reactions [145-147].

In contrast with idiopathic pulmonary fibrosis (IPF),
connective tissue disease-associated ILD (CTD-ILD) is often
characterized by a clearer response to immunosuppression,
indicating that autoimmune/inflammatory mechanisms play
a more significant and central role in the pathogenesis of
CTD-ILD [148, 149]. SKG mice, a model of autoimmune
arthritis, were reported to develop chronic-progressive inter-
stitial lung disease (ILD) that histologically resembles CTD-
ILD [63, 150, 151]. Recently, it was reported that ILD in
this mouse was characterized by massive infiltration of Th17
cells, GM-CSF-producing CD4" T cells, and CD11b*Grl*
neutrophils with fibrosis [63]. Naive SKG T cells were skewed
to differentiate into GM-CSF-producing cells. Furthermore,
GM-CSF secreted by T cells enhanced IL-6 and IL-1/3 produc-
tion by macrophages, which in turn enhanced differentiation
of IL-17A and/or GM-CSF-producing T cells and infiltration
of neutrophils into the lungs [63]. Neutralization of GM-CSF
completely blocked the development of this ILD, whereas
neutralization of IL-17A did not, showing that GM-CSF not
IL-17A is critical for the development of ILD in SKG mice
[63]. Importantly, neutralization of GM-CSF ameliorated ILD
in SKG mice even after the onset of ILD [63], suggesting that
GM-CSF inhibition is a useful therapeutic strategy for CTD-
ILD. Mavrilimumab, a fully human anti-GM-CSF receptor «
antibody and MORI103, a fully human monoclonal anti-GM-
CSF antibody, are undergoing clinical trials in RA patients
[121, 122]. Further studies and future trials targeting GM-CSF
are awaited with interest.

4.4. GM-CSF in Intestine. Recent developments suggest that
the development of Crohns disease (CD) is caused by a
mucosal innate immunodeficiency with a variety of genetic
defects [152] and a dysfunction of granulocytes, macrophages,
and intestinal epithelial cells [153, 154]. In the intestine, GM-
CSF contributes to gut barrier function and resistance to
bacterial translocation by promoting the recruitment and
activation of monocytes/macrophages, neutrophils, and DCs.
This is accompanied by differentiation of Thl and Th17 cells.
GM-CSF also promotes tissue repair via increased intesti-
nal epithelial cell proliferation and increased macrophages
as effectors of wound healing [155-157]. However, in CD
patients, the inherent defects in the mucosal barrier increase
the translocation of pathogens to the bowel tissue [152].
Moreover, increased levels of GM-CSF autoantibodies have
been reported in patients with ileal/ileocolonic CD, com-
pared with those with colon involvement only, ulcerative
colitis (UC) patients, or healthy controls. The high levels of
GM-CSF antibodies directly correlated with disease activity
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and inversely correlated with neutrophil phagocytic activ-
ity [158]. Increased GM-CSF autoantibodies affect mucosal
integrity, bacterial killing and neutrophil migration, pro-
liferation, and survival [156]. GM-CSF deficient mice also
developed a more severe intestinal and systemic infection
after enteric infection [42] and were more susceptible to
acute dextran sodium sulfate- (DSS-) induced colitis [159].
Both severity of infection and colitis were largely prevented
by GM-CSF administration [160, 161]. On the other hand,
GM-CSF overexpression in the stomach leads to autoimmune
gastritis [162] and experimental peritonitis or intraperitoneal
LPS exposure in GM-CSF deficient mice resulted in blunted
proinflammatory responses and mortality [163]. The expres-
sion of GM-CSF at the mRNA level increases from the
stomach distally down through the colon, indicating that
gastrointestinal expression of GM-CSF expression parallels
bacterial localization [164]. These data indicate that the
threshold of GM-CSF levels between inflammation and
immune homeostasis can vary with tissue location or organs.

These findings indicate that administration of GM-CSF
could be beneficial for the treatment for CD patients. Initial
reports indicated that the administration of GM-CSF in
CD patients with moderate to severe disease activity had a
high rate of clinical response and remission with minimal
adverse effects [165, 166]. Moreover, a randomized phase II
clinical trial demonstrated that GM-CSF was significantly
more effective than placebo in obtaining a corticosteroid-
free clinical remission [167]. Conversely, a recent large
randomized trial found that it was no more effective than
placebo for induction of clinical remission or improvement
in active CD [168]. CD patients are known to have substantial
heterogeneity in pathogenic mechanisms and so GM-CSF as
a therapy may only be appropriate for a subgroup of patients.
Additionally, it is also important to verify the efficacy of GM-
CSF not only for the induction of remission but also for
the maintenance of remission. Therefore, further studies are
needed to elucidate the efficacy of GM-CSF as a treatment as
well as the appropriate patient character or phase of disease
to apply GM-CSF administration as a therapy.

4.5. GM-CSF in Allergic Disease. GM-CSF also was reported
to take part in Th2 response in allergic airway inflamma-
tion via activation of DCs [169-171]. In mouse models of
asthma, allergen-exposed epithelial cells release GM-CSF
which activates DCs and also prolongs eosinophil survival
[170, 172]. Consequently, GM-CSF neutralization reduced
allergic hyperresponsiveness in mice models [169, 170, 172].
KB003, a “humaneered” anti-GM-CSF antibody, is tested in
a phase II trial for severe asthma (Table 1). The result of this
trial is awaited.

5. Conclusion

GM-CSF plays pivotal roles not only in maintaining immune
homeostasis but also in exacerbating inflammatory reactions.
Recent findings indicate that GM-CSF inhibition will be
an attractive therapeutic strategy for many autoimmune
and inflammatory diseases. Studies also indicate that it is
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necessary to monitor possible side effects such as PAP or CD,
although GM-CSF inhibition has no demonstrated serious
adverse reactions so far, which is indicative of its wide
therapeutic index [63, 173, 174]. Further studies are necessary
to identify the molecular mechanisms that regulate GM-CSF
production and the role of GM-CSF in the development
of inflammatory diseases to devise preventive or curative
strategies for autoimmune and inflammatory diseases.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

(1]

(8]

(10]

(11]

A. W. Burgess, J. Camakaris, and D. Metcalf, “Purification
and properties of colony stimulating factor from mouse lung
conditioned medium,” The Journal of Biological Chemistry, vol.
252, no. 6, pp. 1998-2003, 1977.

J. A. Hamilton and A. Achuthan, “Colony stimulating factors
and myeloid cell biology in health and disease,” Trends in
Immunology, vol. 34, no. 2, pp. 81-89, 2013.

M. El-Behi, B. Ciric, H. Dai et al., “The encephalitogenicity of
T 17 cells is dependent on IL-1- and IL-23-induced production
of the cytokine GM-CSE’ Nature Immunology, vol. 12, no. 6, pp.
568-575, 2011.

L. Codarri, G. Gyiilvészii, V. Tosevski et al., “RORy3t drives
production of the cytokine GM-CSF in helper T cells, which is
essential for the effector phase of autoimmune neuroinflamma-
tion,” Nature Immunology, vol. 12, no. 6, pp. 560-567, 2011.

J. A. Hamilton, “GM-CSF in inflammation and autoimmunity;’
Trends in Immunology, vol. 23, no. 8, pp. 403-408, 2002.

A. J. Fleetwood, A. D. Cook, and J. A. Hamilton, “Functions
of granulocyte-macrophage colony-stimulating factor,” Critical
Reviews in Immunology, vol. 25, no. 5, pp. 405-428, 2005.

H. Fukuzawa, M. Sawada, T. Kayahara et al., “Identification of
GM-CSF in Paneth cells using single-cell RT-PCR;” Biochemical
and Biophysical Research Communications, vol. 312, no. 4, pp.
897-902, 2003.

J. R. Lukens, M. J. Barr, D. D. Chaplin, H. Chi, and T.-
D. Kanneganti, “Inflammasome-derived IL-1beta regulates the
production of GM-CSF by CD4(+) T cells and gammadelta T
cells;” Journal of Immunology, vol. 188, no. 7, pp. 3107-3115, 2012.
T. Duhen and D. J. Campbell, “IL-18 promotes the differen-
tiation of polyfunctional human CCR6"CXCR3" Thl/17 cells
that are specific for pathogenic and commensal microbes,” The
Journal of Immunology, vol. 193, no. 1, pp. 120-129, 2014.

H. Quill, A. Gaur, and R. P. Phipps, “Prostaglandin E2-
dependent induction of granulocyte-macrophage colony-
stimulating factor secretion by cloned murine helper T cells,”
Journal of Immunology, vol. 142, no. 3, pp. 813-818, 1989.

C. Shang, J. Attema, D. Cakouros, P. N. Cockerill, and M. E
Shannon, “Nuclear factor of activated T cells contributes to
the function of the CD28 response region of the granulocyte
macrophage-colony stimulating factor promoter,” International
Immunology, vol. 11, no. 12, pp. 1945-1956, 1999.

B. V. Johnson, A. G. Bert, G. R. Ryan, A. Condina, and P. N.
Cockerill, “Granulocyte-macrophage colony-stimulating factor
enhancer activation requires cooperation between NFAT and

(16]

(20]

(21]

[22]

AP-1 elements and is associated with extensive nucleosome
reorganization,” Molecular and Cellular Biology, vol. 24, no. 18,
pp. 7914-7930, 2004.

H. Ozawa, S. Aiba, S. Nakagawa, and H. Tagami, “Interferon-
gamma and interleukin-10 inhibit antigen presentation by
Langerhans cells for T helper type 1 cells by suppressing their
CD80 (B7-1) expression,” European Journal of Immunology, vol.
26, no. 3, pp. 648-652, 1996.

J. H. Jansen, G. H. M. Wientjens, W. E. Fibbe, R. Willemze,
and H. C. Kluin-Nelemans, “Inhibition of human macrophage
colony formation by interleukin 4,” The Journal of Experimental
Medicine, vol. 170, no. 2, pp. 577-582, 1989.

K. Sagawa, M. Mochizuki, S. Sugita, K. Nagai, T. Sudo, and K.
Itoh, “Suppression by IL-10 and IL-4 of cytokine production
induced by two-way autologous mixed lymphocyte reaction,”
Cytokine, vol. 8, pp. 501-506, 1996.

A. Tsuboi, E. S. Masuda, Y. Naito, H. Tokumitsu, K.-I. Arai, and
N. Arai, “Calcineurin potentiates activation of the granulocyte-
macrophage colony-stimulating factor gene in T cells: involve-
ment of the conserved lymphokine element 0 Molecular
Biology of the Cell, vol. 5, no. 1, pp. 119-128, 1994.

S. M. Hatfield and N. W. Roehm, “Cyclosporine and FK506
inhibition of murine mast cell cytokine production,” Journal of
Pharmacology and Experimental Therapeutics, vol. 260, no. 2,
pp. 680688, 1992.

I. M. Adcock and G. Caramori, “Cross-talk between pro-
inflammatory transcription factors and glucocorticoids;’
Immunology and Cell Biology, vol. 79, no. 4, pp. 376-384, 2001.

E Colotta, E Bussolino, N. Polentarutti et al., “Differential
expression of the common f3 and specific & chains of the
receptors for GM-CSF, IL-3, and IL-5 in endothelial cells,
Experimental Cell Research, vol. 206, no. 2, pp. 311-317, 1993.

M. Roasa, S. Gordon, and P. R. Taylor, “Characterisation of the
expression and function of the GM-CSF receptor alpha-chain in
mice,” European Journal of Immunology, vol. 37, no. 9, pp. 2518-
2528, 2007.

M. Martinez-Moczygemba and D. P. Huston, “Biology of
common beta receptor-signaling cytokines: IL-3, IL-5, and GM-
CSE’ Journal of Allergy and Clinical Immunology, vol. 112, no. 4,
pp. 653-666, 2003.

G. Hansen, T. R. Hercus, B. J. McClure et al., “The structure
of the GM-CSF receptor complex reveals a distinct mode of
cytokine receptor activation,” Cell, vol. 134, no. 3, pp. 496-507,
2008.

M. A. Guthridge, E. E Barry, E A. Felquer et al, “The
phosphoserine-585-dependent pathway of the GM-CSF/IL-
3/IL-5 receptors mediates hematopoietic cell survival through
activation of NF-xB and induction of bcl-2,” Blood, vol. 103, no.
3, pp. 820-827, 2004.

P-Y. Berclaz, B. Carey, M.-D. Fillipi et al., “GM-CSF regulates
a PUl-dependent transcriptional program determining the
pulmonary response to LPS,” American Journal of Respiratory
Cell and Molecular Biology, vol. 36, no. 1, pp. 114-121, 2007.

T. R. Hercus, U. Dhagat, W. L. T. Kan et al., “Signalling by the Sc
family of cytokines,” Cytokine and Growth Factor Reviews, vol.
24, no. 3, pp. 189-201, 2013.

M. A. Guthridge, J. A. Powell, E. E. Barry et al., “Growth factor
pleiotropy is controlled by a receptor Tyr/Ser motif that acts as
a binary switch,” The EMBO Journal, vol. 25, no. 3, pp. 479-489,
2006.



(27]

[28

(30]

(31]

(34]

[36]

(37]

(38]

(39]

[40]

J. A. Hamilton, “Colony-stimulating factors in inflammation
and autoimmunity,” Nature Reviews Immunology, vol. 8, no. 7,
pp. 533-544, 2008.

E. Stanley, G. J. Lieschke, D. Grail et al., “Granulocyte/macro-
phage colony-stimulating factor-deficient mice show no major
perturbation of hematopoiesis but develop a characteristic
pulmonary pathology;” Proceedings of the National Academy of
Sciences of the United States of America, vol. 91, no. 12, pp. 5592
5596, 1994.

A.J. Fleetwood, T. Lawrence, J. A. Hamilton, and A. D. Cook,
“Granulocyte-macrophage colony-stimulating factor (CSF) and
macrophage CSF-dependent macrophage phenotypes display
differences in cytokine profiles and transcription factor activ-
ities: implications for CSF blockade in inflammation,” Journal
of Immunology, vol. 178, no. 8, pp. 5245-5252, 2007.

P. J. Morrissey, L. Bressler, L. S. Park, A. Alpert, and S. Gillis,
“Granulocyte-macrophage colony-stimulating factor augments
the primary antibody response by enhancing the function of
antigen-presenting cells,” Journal of Immunology, vol. 139, no.
4, pp. 1113-1119, 1987,

J. M. Alvaro-Garcia, N. J. Zvaifler, and G. S. Firestein,
“Cytokines in chronic inflammatory arthritis. IV. Granulo-
cyte/macrophage colony-stimulating factor-mediated induc-
tion of class II MHC antigen on human monocytes: a possible
role in rheumatoid arthritis; The Journal of Experimental
Medicine, vol. 170, no. 3, pp. 865-875, 1989.

Y. Shibata, P.-Y. Berclaz, Z. C. Chroneos, M. Yoshida, J. A.
Whitsett, and B. C. Trapnell, “GM-CSF regulates alveolar
macrophage differentiation and innate immunity in the lung
through PU.1,” Immunity, vol. 15, no. 4, pp. 557-567, 2001.

P-Y. Berclaz, Y. Shibata, J. A. Whitsett, and B. C. Trapnell, “GM-
CSE via PU, regulates alveolar macrophage FcyR-mediated
phagocytosis and the IL-18/TFN-y-mediated molecular connec-
tion between innate and adaptive immunity in the lung,;” Blood,
vol. 100, no. 12, pp. 4193-4200, 2002.

P-Y. Berclaz, Z. Zsengellér, Y. Shibata et al, “Endocytic
internalization of adenovirus, nonspecific phagocytosis, and
cytoskeletal organization are coordinately regulated in alveolar
macrophages by GM-CSF and PU.1,” Journal of Immunology,
vol. 169, no. 11, pp. 6332-6342, 2002.

A. D. Cook, E. L. Braine, and J. A. Hamilton, “Stimulus-
dependent requirement for granulocyte-macrophage colony-
stimulating factor in inflammation,” Journal of Immunology, vol.
173, no. 7, pp. 4643-4651, 2004.

T. Sakagami, K. Uchida, T. Suzuki et al., “Human GM-CSF
autoantibodies and reproduction of pulmonary alveolar pro-
teinosis,” The New England Journal of Medicine, vol. 361, no. 27,
pp. 2679-2681, 2009.

J. Gomez-Cambronero, J. Horn, C. C. Paul, and M. A. Bau-
mann, “Granulocyte-macrophage colony-stimulating factor is a
chemoattractant cytokine for human neutrophils: involvement
of the ribosomal p70 S6 kinase signaling pathway,” Journal of
Immunology, vol. 171, no. 12, pp. 6846-6855, 2003.

D. Metcalf, “Hematopoietic cytokines,” Blood, vol. 111, no. 2, pp.
485-491, 2008.

R. Paine III, A. M. Preston, S. Wilcoxen et al., “Granulocyte-
macrophage colony-stimulating factor in the innate immune
response to Pneumocystis carinii pneumonia in mice,” The
Journal of Immunology, vol. 164, no. 5, pp. 2602-2609, 2000.

A. M. LeVine, J. A. Reed, K. E. Kurak, E. Cianciolo, and
J. A. Whitsett, “GM-CSF-deficient mice are susceptible to

(41]

(42]

(43]

[44]

(48]

(51]

Mediators of Inflammation

pulmonary group B streptococcal infection,” Journal of Clinical
Investigation, vol. 103, no. 4, pp. 563-569, 1999.

J. E Seymour, G. J. Lieschke, D. Grail, C. Quilici, G. Hodgson,
and A. R. Dunn, “Mice lacking both granulocyte colony-
stimulating factor (CSF) and granulocyte-macrophage CSF
have impaired reproductive capacity, perturbed neonatal gran-
ulopoiesis. Lung disease, amyloidosis, and reduced long-term
survival,” Blood, vol. 90, no. 8, pp. 3037-3049, 1997.

Y. Hirata, L. Egea, S. M. Dann, L. Eckmann, and M. E. Kagnoff,
“GM-CSF-facilitated dendritic cell recruitment and survival
govern the intestinal mucosal response to a mouse enteric
bacterial pathogen,” Cell Host and Microbe, vol. 7, no. 2, pp. 151-
163, 2010.

C. H. Serezani, S. Kane, L. Collins, M. Morato-Marques, J.
J. Osterholzer, and M. Peters-Golden, “Macrophage dectin-1
expression is controlled by leukotriene B4 via a GM-CSF/PU.1
axis,” Journal of Immunology, vol. 189, no. 2, pp. 906-915, 2012.

H. L. Collins and G. J. Bancroft, “Cytokine enhancement of
complement-dependent phagocytosis by macrophages: syn-
ergy of tumor necrosis factor-a and granulocyte-macrophage
colony-stimulating factor for phagocytosis of Cryptococcus
neoformans,” European Journal of Immunology, vol. 22, no. 6,
pp. 1447-1454, 1992.

B. Parajuli, Y. Sonobe, J. Kawanokuchi et al., “GM-CSF increases
LPS-induced production of proinflammatory mediators via
upregulation of TLR4 and CD14 in murine microglia,” Journal
of Neuroinflammation, vol. 9, article 268, 2012.

C. A. Sorgi, S. Rose, N. Court et al., “GM-CSF priming drives
bone marrow-derived macrophages to a pro-inflammatory
pattern and downmodulates PGE, in response to TLR2 ligands,”
PLoS ONE, vol. 7, no. 7, Article ID e40523, 2012.

T. Krausgruber, K. Blazek, T. Smallie et al., “IRF5 pro-
motes inflammatory macrophage polarization and T H1-TH17
responses,” Nature Immunology, vol. 12, no. 3, pp. 231-238, 2011.

E A. W. Verreck, T. De Boer, D. M. L. Langenberg et al.,
“Human IL-23-producing type 1 macrophages promote but
IL-10-producing type 2 macrophages subvert immunity to
(myco)bacteria,” Proceedings of the National Academy of Sci-
ences of the United States of America, vol. 101, no. 13, pp. 4560-
4565, 2004.

D. Zhou, C. Huang, Z. Lin et al., “Macrophage polarization and
function with emphasis on the evolving roles of coordinated
regulation of cellular signaling pathways,” Cellular Signalling,
vol. 26, no. 2, pp- 192-197, 2014.

I. L. King, M. A. Kroenke, and B. M. Segal, “GM-CSF-de-
pendent, CD103" dermal dendritic cells play a critical role in Th
effector cell differentiation after subcutaneous immunization,”
Journal of Experimental Medicine, vol. 207, no. 5, pp. 953-961,
2010.

E. Daro, B. Pulendran, K. Brasel et al., “Polyethylene glycol-
modified GM-CSF expands CDIIb"#"CD11c"" but not
CDI11b"“CDI11¢"" murine dendritic cells in vivo: a comparative
analysis with Flt3 ligand,” The Journal of Immunology, vol. 165,
no. 1, pp. 49-58, 2000.

C. Caux, B. Vanbervliet, C. Massacrier et al., “CD34+ hema-
topoietic progenitors from human cord blood differentiate
along two independent dendritic cell pathways in response to
GM-CSF+TNFaw,” Journal of Experimental Medicine, vol. 184,
no. 2, pp. 695-706, 1996.

Y. Zhan, E. M. Carrington, A. van Nieuwenhuijze et al.,
“GM-CSF increases cross-presentation and CD103 expression



Mediators of Inflammation

(54]

[55]

[56]

(57

(58]

(59]

(60]

(61]

(63]

[64]

(65]

[66]

(67]

(68]

by mouse CD8" spleen dendritic cells,” European Journal of
Immunology, vol. 41, no. 9, pp. 2585-2595, 2011.

I. K. Campbell, A. van Nieuwenhuijze, E. Segura et al., “Dif-
ferentiation of inflammatory dendritic cells is mediated by
NE-kappaBl-dependent GM-CSF production in CD4 T cells,
Journal of Immunology, vol. 186, no. 9, pp. 5468-5477, 2011.

M. Greter, J. Helft, A. Chow et al., “GM-CSF controls nonlym-
phoid tissue dendritic cell homeostasis but is dispensable for the
differentiation of inflammatory dendritic cells,” Immunity, vol.
36, no. 6, pp. 1031-1046, 2012.

Y. Zhan, Y. Xu, and A. M. Lew, “The regulation of the develop-
ment and function of dendritic cell subsets by GM-CSF: more
than a hematopoietic growth factor;” Molecular Immunology,
vol. 52, no. 1, pp. 30-37, 2012.

I. Sonderegger, G. Iezzi, R. Maier, N. Schmitz, M. Kurrer, and
M. Kopf, “GM-CSF mediates autoimmunity by enhancing IL-
6-dependent Th17 cell development and survival,” Journal of
Experimental Medicine, vol. 205, no. 10, pp. 2281-2294, 2008.
K. Uchida, D. C. Beck, T. Yamamoto et al., “GM-CSF autoan-
tibodies and neutrophil dysfunction in pulmonary alveolar
proteinosis,” The New England Journal of Medicine, vol. 356, no.
6, pp. 567-579, 2007,

P. J. Rauch, A. Chudnovskiy, C. S. Robbins et al., “Innate
response activator B cells protect against microbial sepsis;’
Science, vol. 335, no. 6068, pp. 597-601, 2012.

G. E Weber, B. G. Chousterman, I. Hilgendorf et al., “Pleural
innate response activator B cells protect against pneumonia via
a GM-CSF-IgM axis,” The Journal of Experimental Medicine, vol.
211, no. 6, pp. 1243-1256, 2014.

C. M. Snapper, M. A. Moorman, F. R. Rosas, M. R. Kehry, C. R.
Maliszewski, and J. J. Mond, “IL-3 and granulocyte-macrophage
colony-stimulating factor strongly induce Ig secretion by sort-
purified murine B cell activated through the membrane Ig, but
not the CD40, signaling pathway;” Journal of Immunology, vol.
154, no. 11, pp. 5842-5850, 1995.

W. Sheng, F. Yang, Y. Zhou et al., “STAT5 programs a distinct
subset of GM-CSF-producing T helper cells that is essential for
autoimmune neuroinflammation,” Cell Research, vol. 24, no. 12,
pp. 1387-1402, 2014.

A. Shiomi, T. Usui, Y. Ishikawa, M. Shimizu, K. Murakami,
and T. Mimori, “GM-CSF but not IL-17 is critical for the
development of severe interstitial lung disease in SKG mice,” The
Journal of Immunology, vol. 193, no. 2, pp. 849-859, 2014.

R. Noster, R. Riedel, M.-F. Mashreghi et al., “IL-17 and GM-CSF
expression are antagonistically regulated by human T helper
cells,” Science Translational Medicine, vol. 6, Article ID 241ra80,
2014.

M. J. McGeachy, “GM-CSF: the secret weapon in the T17
arsenal,” Nature Immunology, vol. 12, no. 6, pp. 521-522, 2011.
D. J. Cousins, T. H. Lee, and D. Z. Staynov, “Cytokine coex-
pression during human Thl/Th2 cell differentiation: direct
evidence for coordinated expression of Th2 cytokines,” Journal
of Immunology, vol. 169, no. 5, pp. 2498-2506, 2002.

T. R. Mosmann, H. Cherwinski, M. W. Bond, M. A. Giedlin,
and R. L. Coffman, “Two types of murine helper T cell clone.
L. Definition according to profiles of lymphokine activities and
secreted proteins,” The Journal of Immunology, vol. 136, no. 7, pp.
2348-2357,1986.

Y. Komiyama, S. Nakae, T. Matsuki et al., “IL-17 plays an impor-
tant role in the development of experimental autoimmune
encephalomyelitis,” Journal of Immunology, vol. 177, no. 1, pp.
566-573, 2006.

[69]

(72]

(75]

(76]

(81]

)
D

H. H. Hofstetter, S. M. Ibrahim, D. Koczan et al., “Therapeutic
efficacy of IL-17 neutralization in murine experimental autoim-
mune encephalomyelitis,” Cellular Immunology, vol. 237, no. 2,
pp. 123-130, 2005.

S. Nakae, A. Nambu, K. Sudo, and Y. Iwakura, “Suppression
of immune induction of collagen-induced arthritis in IL-17-
deficient mice;” Journal of Immunology, vol. 171, no. 11, pp. 6173-
6177,2003.

H. Kellner, “Targeting interleukin-17 in patients with active
rheumatoid arthritis: rationale and clinical potential,” Thera-
peutic Advances in Musculoskeletal Disease, vol. 5, no. 3, pp. 141-
152, 2013.

W. B. van den Berg and I. B. McInnes, “Th17 cells and IL-17
A-Focus on immunopathogenesis and immunotherapeutics,”
Seminars in Arthritis and Rheumatism, vol. 43, no. 2, pp. 158-
170, 2013.

M. Kleinewietfeld and D. A. Hafler, “The plasticity of human
Treg and Th17 cells and its role in autoimmunity;” Seminars in
Immunology, vol. 25, no. 4, pp. 305-312, 2013.

E. V. Acosta-Rodriguez, L. Rivino, J. Geginat et al., “Surface
phenotype and antigenic specificity of human interleukin 17-
producing T helper memory cells,” Nature Immunology, vol. 8,
no. 6, pp. 639-646, 2007.

K. Ghoreschi, A. Laurence, X.-P. Yang et al., “Generation of
pathogenic T17 cells in the absence of TGF-f signalling,
Nature, vol. 467, no. 7318, pp. 967-971, 2010.

L. Cosmi, R. Cimaz, L. Maggi et al., “Evidence of the transient
nature of the Th17 phenotype of CD4+CD161+ T cells in the
synovial fluid of patients with juvenile idiopathic arthritis,”
Arthritis and Rheumatism, vol. 63, no. 8, pp. 2504-2515, 2011.
A. Peters, Y. Lee, and V. K. Kuchroo, “The many faces of Th17
cells;” Current Opinion in Immunology, vol. 23, no. 6, pp. 702-
706, 2011.

E Annunziato, L. Cosmi, V. Santarlasci et al., “Phenotypic
and functional features of human Thi17 cells, The Journal of
Experimental Medicine, vol. 204, no. 8, pp. 1849-1861, 2007.

L. Maggi, V. Santarlasci, M. Capone et al., “CD16l is a marker
of all human IL-17-producing T-cell subsets and is induced by
RORC,” European Journal of Immunology, vol. 40, no. 8, pp.
2174-2181, 2010.

L. Cosmi, R. De Palma, V. Santarlasci et al., “Human interleukin
17-producing cells originate from a CD161" CD4" T cell precur-
sor,” Journal of Experimental Medicine, vol. 205, no. 8, pp. 1903-
1916, 2008.

C. Piper, A. M. Pesenacker, D. Bending et al., “Brief report: T
cell expression of granulocyte-macrophage colony-stimulating
factor in juvenile arthritis is contingent upon Thl7 plasticity;”
Arthritis & Rheumatology, vol. 66, no. 7, pp. 1955-1960, 2014.
H. Kebir, I. Ifergan, J. I. Alvarez et al., “Preferential recruitment
of interferon-y-expressing THI7 cells in multiple sclerosis,”
Annals of Neurology, vol. 66, no. 3, pp. 390-402, 2009.

K. Hirota, J. H. Duarte, M. Veldhoen et al.,, “Fate mapping
of IL-17-producing T cells in inflammatory responses,” Nature
Immunology, vol. 12, no. 3, pp. 255-263, 2011.

J. R. Lukens, M. J. Barr, D. D. Chaplin, H. Chi, and T.-D.
Kanneganti, “Inflammasome-derived IL-1f3 regulates the pro-
duction of GM-CSF by CD4" T cells and y8 T cells,” Journal of
Immunology, vol. 188, no. 7, pp. 3107-3115, 2012.

C. E. Zielinski, F. Mele, D. Aschenbrenner et al., “Pathogen-
induced human THI7 cells produce IFN-y or IL-10 and are
regulated by IL-153,” Nature, vol. 484, no. 7395, pp. 514-518, 2012.



10

(86]

(87]

(88]

(89]

[90]

(91]

[95]

[96]

(98]

(99]

R. I. Mazzucchelli, A. Riva, and S. K. Durum, “The human
IL-7 receptor gene: deletions, polymorphisms and mutations,”
Seminars in Immunology, vol. 24, no. 3, pp. 225-230, 2012.

S. M. Churchman and E. Ponchel, “Interleukin-7 in rheumatoid
arthritis,” Rheumatology, vol. 47, no. 6, pp. 753759, 2008.

H. Briihl, J. Cihak, M. Niedermeier et al., “Important role of
interleukin-3 in the early phase of collagen-induced arthritis,”
Arthritis & Rheumatism, vol. 60, no. 5, pp. 1352-1361, 2009.

C. Chavany, C. Vicario-Abejon, G. Miller, and M. Jendoubi,
“Transgenic mice for interleukin 3 develop motor neuron
degeneration associated with autoimmune reaction against
spinal cord motor neurons,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 95, no.
19, pp. 11354-11359, 1998.

R. Yamada, T. Tanaka, M. Unoki et al., “Association between
a single-nucleotide polymorphism in the promoter of the
human interleukin-3 gene and rheumatoid arthritis in Japanese
patients, and maximum-likelihood estimation of combinatorial
effect that two genetic loci have on susceptibility to the disease,”
American Journal of Human Genetics, vol. 68, no. 3, pp. 674-685,
2001.

Y. Nakamura, P. Christodoulopoulos, L. Cameron et al., “Upreg-
ulation of the transcription factor GATA-3 in upper airway
mucosa after in vivo and in vitro allergen challenge,” The Journal
of Allergy and Clinical Immunology, vol. 105, no. 6, part 1, pp.
1146-1152, 2000.

H. Park, Z. Li, X. O. Yang et al., “A distinct lineage of CD4 T
cells regulates tissue inflammation by producing interleukin 17
Nature Immunology, vol. 6, no. 11, pp. 11331141, 2005.

S.Haak, A. L. Croxford, K. Kreymborg et al., “IL-17A and IL-17F
do not contribute vitally to autoimmune neuro-inflammation
in mice;” The Journal of Clinical Investigation, vol. 119, no. 1, pp.
61-69, 2009.

J. L. McQualter, R. Darwiche, C. Ewing et al.,, “Granulocyte
macrophage colony-stimulating factor: a new putative ther-
apeutic target in multiple sclerosis,” Journal of Experimental
Medicine, vol. 194, no. 7, pp. 873-881, 2001.

E. D. Ponomareyv, L. P. Shriver, K. Maresz, ]. Pedras-Vasconcelos,
D. Verthelyi, and B. N. Dittel, “GM-CSF production by autore-
active T cells is required for the activation of microglial cells
and the onset of experimental autoimmune encephalomyelitis,”
Journal of Immunology, vol. 178, no. 1, pp. 39-48, 2007.

O. Perrella, P. B. Carrieri, R. de Mercato, and G. A. Buscaino,
“Markers of activated T lymphocytes and T cell receptor
gamma/delta+ in patients with multiple sclerosis,” European
Neurology, vol. 33, no. 2, pp. 152-155, 1993.

P. B. Carrieri, V. Provitera, T. de Rosa, G. Tartaglia, F. Gorga,
and O. Perrella, “Profile of cerebrospinal fluid and serum
cytokines in patients with relapsing-remitting multiple sclero-
sis: a correlation with clinical activity, Immunopharmacology
and Immunotoxicology, vol. 20, no. 3, pp. 373-382, 1998.

H. G. Fischer, A. K. Bielinsky, B. Nitzgen, W. Déubener,
and U. Hadding, “Functional dichotomy of mouse microglia
developed in vitro: differential effects of macrophage and
granulocyte/macrophage colony-stimulating factor on cytokine
secretion and antitoxoplasmic activity, Journal of Neuroim-
munology, vol. 45, no. 1-2, pp. 193-201, 1993.

H. Gonzilez, D. Elgueta, A. Montoya, and R. Pacheco, “Neu-
roimmune regulation of microglial activity involved in neu-
roinflammation and neurodegenerative diseases,” Journal of
Neuroimmunology, vol. 274, no. 1-2, pp. 1-13, 2014.

(100]

[101]

(102]

[103]

[104]

(105]

(106]

[107]

[108]

[109]

[110]

(111

(112]

[113]

[114]

Mediators of Inflammation

L. Qian, K. S. Tan, S.-J. Wei et al., “Microglia-mediated neuro-
toxicity is inhibited by morphine through an opioid receptor-
independent reduction of NADPH oxidase activity;” Journal of
Immunology, vol. 179, no. 2, pp. 1198-1209, 2007.

C. C. Ferrari, M. C. Pott Godoy, R. Tarelli, M. Chertoff, A. M.
Depino, and E. J. Pitossi, “Progressive neurodegeneration and
motor disabilities induced by chronic expression of IL-1beta in
the substantia nigra,” Neurobiology of Disease, vol. 24, no. 1, pp.
183-193, 2006.

R. Gordon, V. Anantharam, and A. G. Kanthasamy, “Proteolytic
activation of proapoptotic kinase protein kinase C§ by tumor
necrosis factor « death receptor signaling in dopaminergic
neurons during neuroinflammation,” Journal of Neuroinflam-
mation, vol. 9, article 82, 2012.

H. Gonzélez and R. Pacheco, “T-cell-mediated regulation of
neuroinflammation involved in neurodegenerative diseases;’
Journal of Neuroinflammation, vol. 11, no. 1, article 201, 2014.

L. L. King, T. L. Dickendesher, and B. M. Segal, “Circulating
Ly-6C+ myeloid precursors migrate to the CNS and play a
pathogenic role during autoimmune demyelinating disease,”
Blood, vol. 113, no. 14, pp. 3190-3197, 2009.

B. Aube, S. A. Levesque, A. Pare et al., “Neutrophils mediate
blood-spinal cord barrier disruption in demyelinating neuroin-
flammatory diseases,” The Journal of Immunology, vol. 193, no.
5, pp. 2438-2454, 2014.

M. Ahn, W. Yang, H. Kim, J.-K. Jin, C. Moon, and T. Shin,
“Immunohistochemical study of arginase-1 in the spinal cords
of Lewis rats with experimental autoimmune encephalomyeli-
tis,” Brain Research, vol. 1453, pp. 77-86, 2012.

M. J. Carson, J. M. Doose, B. Melchior, C. D. Schmid, and
C. C. Ploix, “CNS immune privilege: hiding in plain sight;
Immunological Reviews, vol. 213, no. 1, pp. 48-65, 2006.

A. Schottelius, “The role of GM-CSF in multiple sclerosis,” Drug
Research (Stuttg), vol. 63, supplement 1, article S8, 2013.

A. L. Cornish, I. K. Campbell, B. S. McKenzie, S. Chatfield,
and I. P. Wicks, “G-CSF and GM-CSF as therapeutic targets in
rheumatoid arthritis,” Nature Reviews Rheumatology, vol. 5, no.
10, pp. 554-559, 2009.

D. Mulherin, O. Fitzgerald, and B. Bresnihan, “Synovial tissue
macrophage populations and articular damage in rheumatoid
arthritis,” Arthritis and Rheumatism, vol. 39, no. 1, pp. 115-124,
1996.

W. D. Xu, G. S. Firestein, R. Taetle, K. Kaushansky, and N.
J. Zvaifler, “Cytokines in chronic inflammatory arthritis. II
Granulocyte-macrophage colony-stimulating factor in rheuma-
toid synovial effusions,” The Journal of Clinical Investigation, vol.
83, no. 3, pp. 876-882, 1989.

C. Fiehn, M. Wermann, A. Pezzutto, M. Hufner, and B.
Heilig, “GM-CSF plasma concentrations in rheumatoid arthri-
tis, systemic lupus erythematosus and spondyloarthropathy,”
Zeitschrift fiir Rheumatologie, vol. 51, no. 3, pp. 121-126, 1992.

B. P. C. Hazenberg, M. A. van Leeuwen, M. H. van Rijswijk,
A. C. Stern, and E. Vellenga, “Correction of granulocytope-
nia in Felty’s syndrome by granulocyte-macrophage colony-
stimulating factor. Simultaneous induction of interleukin-6
release and flare-up of the arthritis,” Blood, vol. 74, no. 8, pp.
2769-2770, 1989.

M. Gattorno, P. Facchetti, F. Ghiotto et al., “Synovial fluid
T cell clones from oligoarticular juvenile arthritis patients
display a prevalent Th1/ThO-type pattern of cytokine secretion
irrespective of immunophenotype,” Clinical ¢ Experimental
Immunology, vol. 109, no. 1, pp. 4-11, 1997.



Mediators of Inflammation

[115] T. Leizer, J. Cebon, J. E. Layton, and J. A. Hamilton, “Cytokine

regulation of colony-stimulating factor production in cultured
human synovial fibroblasts: I. Induction of GM-CSF and G-CSF
production by interleukin-1 and tumor necrosis factor,” Blood,
vol. 76, no. 10, pp. 1989-1996, 1990.

I. K. Campbell, U. Novak, J. Cebon, J. E. Layton, and J. A. Hamil-
ton, “Human articular cartilage and chondrocytes produce
hemopoietic colony-stimulating factors in culture in response
to IL-1 The Journal of Immunology, vol. 147, no. 4, pp. 1238-
1246, 1991.

I. K. Campbell, M. J. Rich, R. J. Bischof, A. R. Dunn, D. Grail,
and J. A. Hamilton, “Protection from collagen-induced arthritis
in granulocyte-macrophage colony-stimulating factor-deficient
mice,” Journal of Immunology, vol. 161, no. 7, pp. 3639-3644,
1998.

A. D. Cook, E. L. Braine, I. K. Campbell, M. J. Rich, and J. A.
Hamilton, “Blockade of collagen-induced arthritis post-onset
by antibody to granulocyte-macrophage colony-stimulating
factor (GM-CSF): requirement for GM-CSF in the effector
phase of disease,” Arthritis Research, vol. 3, no. 5, pp. 293-298,
2001.

I. K. Campbell, A. Bendele, D. A. Smith, and J. A. Hamil-
ton, “Granulocyte-macrophage colony stimulating factor exac-
erbates collagen induced arthritis in mice,” Annals of the
Rheumatic Diseases, vol. 56, no. 6, pp. 364-368, 1997.

M. Hashimoto, K. Hirota, H. Yoshitomi et al., “Complement
drives Th17 cell differentiation and triggers autoimmune arthri-
tis,” The Journal of Experimental Medicine, vol. 207, no. 6, pp.
1135-1143, 2010.

G. R. Burmester, M. E. Weinblatt, I. B. McInnes et al., “Efficacy
and safety of mavrilimumab in subjects with rheumatoid
arthritis,” Annals of the Rheumatic Diseases, vol. 72, no. 9, pp.
1445-1452, 2013.

E Behrens, P. P. Tak, M. Ostergaard et al., “MOR103, a human
monoclonal antibody to granulocyte-macrophage colony-
stimulating factor, in the treatment of patients with moderate
rheumatoid arthritis: results of a phase Ib/Ila randomised,
double-blind, placebo-controlled, dose-escalation trial,” Annals
of the Rheumatic Diseases, 2014.

J. E Seymour and J. J. Presneill, “Pulmonary alveolar proteinosis:
progress in the first 44 years,” American Journal of Respiratory
and Critical Care Medicine, vol. 166, no. 2, pp. 215-235, 2002.

B. C. Trapnell, J. A. Whitsett, and K. Nakata, “Pulmonary
alveolar proteinosis,” The New England Journal of Medicine, vol.
349, no. 26, pp. 2527-2539, 2003.

B. Carey and B. C. Trapnell, “The molecular basis of pulmonary
alveolar proteinosis,” Clinical Immunology, vol. 135, no. 2, pp.
223-235, 2010.

G. Dranoff, A. D. Crawford, M. Sadelain et al., “Involvement
of granulocyte-macrophage colony-stimulating factor in pul-

monary homeostasis,” Science, vol. 264, no. 5159, pp. 713-716,
1994.

B. C. Trapnell and J. A. Whitsett, “GM-CSF regulates pulmonary
surfactant homeostasis and alveolar macrophage-mediated
innate host defense,” Annual Review of Physiology, vol. 64, pp.
775-802, 2002.

M. Luisetti, G. Rodi, C. Perotti et al., “Plasmapheresis for treat-
ment of pulmonary alveolar proteinosis,” European Respiratory
Journal, vol. 33, no. 5, pp. 1220-1222, 2009.

1

[129] R. Tazawa, B. C. Trapnell, Y. Inoue et al., “Inhaled granulo-
cyte/macrophage-colony stimulating factor as therapy for pul-
monary alveolar proteinosis,” American Journal of Respiratory
and Critical Care Medicine, vol. 181, no. 12, pp. 1345-1354, 2010.

[130] S. B. Venkateshiah, T. D. Yan, T. L. Bonfield et al., “An
open-label trial of granulocyte macrophage colony stimulating
factor therapy for moderate symptomatic pulmonary alveolar
proteinosis,” Chest, vol. 130, no. 1, pp. 227-237, 2006.

[131] M.S. Kavuru, A. Malur, I. Marshall et al., “An open-label trial of
rituximab therapy in pulmonary alveolar proteinosis,” European
Respiratory Journal, vol. 38, no. 6, pp. 1361-1367, 2011.

[132] A.Malur, M. S. Kavuru, I. Marshall et al., “Rituximab therapy in
pulmonary alveolar proteinosis improves alveolar macrophage
lipid homeostasis,” Respiratory Research, vol. 13, article 46, 2012.

(133] T. J. Gross and G. W. Hunninghake, “Idiopathic pulmonary
fibrosis,” The New England Journal of Medicine, vol. 345, no. 7,
pp. 517-525, 2001.

[134] T. E. King Jr., A. Pardo, and M. Selman, “Idiopathic pulmonary
fibrosis,” The Lancet, vol. 378, no. 9807, pp. 1949-1961, 2011.

[135] L. M. Crosby and C. M. Waters, “Epithelial repair mechanisms
in the lung,” American Journal of Physiology—Lung Cellular and
Molecular Physiology, vol. 298, no. 6, pp. L715-L731, 2010.

[136] J. G. N. Garcia, N. Parhami, D. Killam, P. L. Garcia, and B. A.
Keogh, “Bronchoalveolar lavage fluid evaluation in rheumatoid
arthritis,” The American Review of Respiratory Disease, vol. 133,
no. 3, pp. 450-454, 1986.

[137] J. G. N. Garcia, H. L. James, S. Zinkgraf, M. B. Perlman, and B.
A. Keogh, “Lower respiratory tract abnormalities in rheumatoid
interstitial lung disease. Potential role of neutrophils in lung
injury;” American Review of Respiratory Disease, vol. 136, no. 4,
pp. 811-817, 1987,

[138] E. S. White, M. H. Lazar, and V. J. Thannickal, “Pathogenetic
mechanisms in usual interstitial pneumonia/idiopathic pul-
monary fibrosis,” Journal of Pathology, vol. 201, no. 3, pp. 343
354, 2003.

[139] Y. Shimizu, H. Kuwabara, A. Ono et al,, “Intracellular Th1/Th2
balance of pulmonary CD4" T cells in patients with active
interstitial pneumonia evaluated by serum KL-6,” Immunophar-
macology and Immunotoxicology, vol. 28, no. 2, pp. 295-304,
2006.

[140

P. Pignatti, G. Brunetti, D. Moretto et al., “Role of the chemokine
receptors CXCR3 and CCR4 in human pulmonary fibrosis,” The
American Journal of Respiratory and Critical Care Medicine, vol.
173, no. 3, pp. 310-317, 2006.

J. Knobloch, H. Peters, D. Jungck, K. Miiller, J. Strauch,
and A. Koch, “ITNFa-induced GM-CSF release from human
airway smooth muscle cells depends on activation of an ET-1
autoregulatory positive feedback mechanism,” Thorax, vol. 64,
no. 12, pp. 1044-1052, 2009.

[142] H. Taniguchi, S. Katoh, J. Kadota et al., “Interleukin 5 and
granulocyte-macrophage colony-stimulating factor levels in
bronchoalveolar lavage fluid in interstitial lung disease,” Euro-
pean Respiratory Journal, vol. 16, no. 5, pp. 959-964, 2000.

[143] C. Walker, W. Bauer, R. K. Braun et al., “Activated T cells and
cytokines in bronchoalveolar lavages from patients with various
lung diseases associated with eosinophilia,” American Journal of
Respiratory and Critical Care Medicine, vol. 150, no. 4, pp. 1038-
1048, 1994.

(141



12

(144]

(145]

[146]

(147

(148

[149]

[150]

(151

[152]

[153]

[154]

[155]

[156]

[157]

[158]

Z. Xing, T. Braciak, Y. Ohkawara et al., “Gene transfer for
cytokine functional studies in the lung: the multifunctional role
of GM-CSF in pulmonary inflammation,” Journal of Leukocyte
Biology, vol. 59, no. 4, pp. 481-488,1996.

Z.Xing, Y. Ohkawara, M. Jordana, E. L. Graham, and J. Gauldie,
“Transfer of granulocyte-macrophage colony-stimulating fac-
tor gene to rat lung induces eosinophilia, monocytosis, and
fibrotic reactions,” The Journal of Clinical Investigation, vol. 97,
no. 4, pp. 1102-1110, 1996.

G. R. Johnson, T. J. Gonda, D. Metcalf, I. K. Kariharan,
and S. Cory, “A lethal myeloproliferative syndrome in mice
transplanted with bone marrow cells infected with a retrovirus
expressing granulocyte-macrophage colony stimulating factor,”
The EMBO Journal, vol. 8, no. 2, pp. 441-448, 1989.

S. Worgall, R. Singh, P. L. Leopold et al., “Selective expansion
of alveolar macrophages in vivo by adenovirus-mediated trans-
fer of the murine granulocyte-macrophage colony-stimulating
factor cDNA,” Blood, vol. 93, no. 2, pp. 655-666, 1999.

R. Vij and M. E. Strek, “Diagnosis and treatment of connective
tissue disease-associated interstitial lung disease,” Chest, vol.
143, no. 3, pp. 814-824, 2013.

A. de Lauretis, S. Veeraraghavan, and E. Renzoni, “Review
series: aspects of interstitial lung disease: connective tissue
disease-associated interstitial lung disease: how does it differ
from IPF? How should the clinical approach differ?” Chronic
Respiratory Disease, vol. 8, no. 1, pp. 53-82, 2011.

N. Sakaguchi, T. Takahashi, H. Hata et al., “Altered thymic T-
cell selection due to a mutation of the ZAP-70 gene causes
autoimmune arthritis in mice,” Nature, vol. 426, no. 6965, pp.
454-460, 2003.

R. C. Keith, J. L. Powers, E. F. Redente et al., “A novel model of
rheumatoid arthritis-associated interstitial lung disease in SKG
mice,” Experimental Lung Research, vol. 38, no. 2, pp. 55-66,
2012.

B. Khor, A. Gardet, and R. J. Xavier, “Genetics and pathogenesis
of inflammatory bowel disease,” Nature, vol. 474, no. 7351, pp.
307-317, 2011.

J. K. Yamamoto-Furusho and J. R. Korzenik, “Crohn’s disease:
innate immunodeficiency?” World Journal of Gastroenterology,
vol. 12, no. 42, pp. 6751-6755, 2006.

J. R. Korzenik, “Is Crohn’s disease due to defective immunity?”
Gut, vol. 56, no. 1, pp. 2-5, 2007.

E. Bernasconi, L. Favre, M. H. Maillard et al., “Granulocyte-
macrophage colony-stimulating factor elicits bone marrow-
derived cells that promote efficient colonic mucosal healing,”
Inflammatory Bowel Diseases, vol. 16, no. 3, pp. 428-441, 2010.

J. Débritz, “Granulocyte macrophage colony-stimulating factor
and the intestinal innate immune cell homeostasis in Crohn’s
disease,” American Journal of Physiology—Gastrointestinal and
Liver Physiology, vol. 306, no. 6, pp. G455-G465, 2014.

R. Gennari, J. W. Alexander, L. Gianotti, T. Eaves-Pyles, and
S. Hartmann, “Granulocyte macrophage colony-stimulating
factor improves survival in two models of gut-derived sepsis
by improving gut barrier function and modulating bacterial
clearance,” Annals of Surgery, vol. 220, no. 1, pp. 68-76, 1994.

X. Han, K. Uchida, I. Jurickova et al., “Granulocyte-macrophage
colony-stimulating factor autoantibodies in murine ileitis and
progressive ileal Crohn’s disease,” Gastroenterology, vol. 136, no.
4, pp. €1261-e1263, 2009.

(159]

[160]

[161]

(162]

[163]

(164

(165]

[166]

[167]

[168

[169]

[170]

(171]

[172]

Mediators of Inflammation

Y. Xu, N. H. Hunt, and S. Bao, “The role of granulocyte
macrophage-colony-stimulating factor in acute intestinal in-
flammation,” Cell Research, vol. 18, no. 12, pp. 1220-1229, 2008.

L. Egea, Y. Hirata, and M. F. Kagnoff, “GM-CSF: a role in
immune and inflammatory reactions in the intestine,” Expert
Review of Gastroenterology and Hepatology, vol. 4, no. 6, pp.
723-731, 2010.

S. K. Sainathan, E. M. Hanna, Q. Gong et al, “Granulo-
cyte macrophage colony-stimulating factor ameliorates DSS-
induced experimental colitis,” Inflammatory Bowel Diseases, vol.
14, no. 1, pp. 88-99, 2008.

M. Biondo, Z. Nasa, A. Marshall, B. H. Toh, and E Alderuc-
cio, “Local transgenic expression of granulocyte macrophage-
colony stimulating factor initiates autoimmunity,” Journal of
Immunology, vol. 166, no. 3, pp. 2090-2099, 2001.

D. Spight, B. Trapnell, B. Zhao, P. Berclaz, and T. P.
Shanley, “Granulocyte-macrophage-colony-stimulating factor-
dependent peritoneal macrophage responses determine sur-
vival in experimentally induced peritonitis and sepsis in mice,”
Shock, vol. 30, no. 4, pp. 434-442, 2008.

S. Sainathan, K. Bishnupuri, C. Houchen, S. Anant, and B.
K. Dieckgraefe, Gm-Csf Increases Resistance to Apoptotic Cell
Death and Enhances Crypt StemCell Survival in a Radiation-
Induced Intestinal Injury Model, American Gastroenterological
Association, Washington, DC, USA, 2005.

B. K. Dieckgraefe and J. R. Korzenik, “Treatment of active
Crohn’s disease with recombinant human granulocyte-
macrophage colony-stimulating factor,” The Lancet, vol. 360,
no. 9344, pp. 1478-1480, 2002.

J. R. Korzenik, B. K. Dieckgraefe, J. F. Valentine, D. F. Hausman,
and M. J. Gilbert, “Sargramostim for active Crohn’s disease,” The
New England Journal of Medicine, vol. 352, no. 21, pp. 2193-2201,
2005.

J. E Valentine, R. N. Fedorak, B. Feagan et al., “Steroid-sparing
properties of sargramostim in patients with corticosteroid-
dependent Crohn’s disease: a randomised, double-blind,
placebo-controlled, phase 2 study,” Gut, vol. 58, no. 10, pp.
1354-1362, 2009.

L. Roth, J. K. MacDonald, J. W. D. McDonald, and N. Chande,
“Sargramostim (GM-CSF) for induction of remission in crohn’s
disease: a cochrane inflammatory bowel disease and functional
bowel disorders systematic review of randomized trials,” Inflam-
matory Bowel Diseases, vol. 18, no. 7, pp. 1333-1339, 2012.

E. C. Cates, R. Fattouh, J. Wattie et al., “Intranasal exposure of
mice to house dust mite elicits allergic airway inflammation via
a GM-CSF-mediated mechanism,” The Journal of Immunology,
vol. 173, no. 10, pp. 6384-6392, 2004.

M. A. M. Willart, K. Deswarte, P. Pouliot et al., “Interleukin-
la controls allergic sensitization to inhaled house dust mite
via the epithelial release of GM-CSF and IL-33,” The Journal of
Experimental Medicine, vol. 209, no. 8, pp. 1505-1517, 2012.

K. T. Nouri-Aria, K. Masuyama, M. R. Jacobson et al., “Granulo-
cyte/macrophage-colony stimulating factor in allergen-induced
rhinitis: cellular localization, relation to tissue eosinophilia and
influence of topical corticosteroid,” International Archives of
Allergy and Immunology, vol. 117, no. 4, pp. 248-254, 1998.

N. Yamashita, H. Tashimo, H. Ishida et al., “Attenuation of
airway hyperresponsiveness in a murine asthma model by
neutralization of granulocyte-macrophage colony-stimulating



Mediators of Inflammation

(173]

[174]

factor (GM-CSF),” Cellular Immunology, vol. 219, no. 2, pp. 92—
97, 2002.

R. Vlahos, S. Bozinovski, J. A. Hamilton, and G. P. Anderson,
“Therapeutic potential of treating chronic obstructive pul-
monary disease (COPD) by neutralising granulocyte macro-
phage-colony stimulating factor (GM-CSF),” Pharmacology and
Yhempeutics, vol. 112, no. 1, pp. 106-115, 2006.

G.-R. Burmester, E. Feist, M. A. Sleeman, B. Wang, B. White,
and E Magrini, “Mavrilimumab, a human monoclonal anti-
body targeting GM-CSF receptor-«, in subjects with rheuma-
toid arthritis: a randomised, double-blind, placebo-controlled,
phase [, first-in-human study;” Annals of the Rheumatic Diseases,
vol. 70, no. 9, pp. 1542-1549, 2011.

13



