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Abstract
During septorhinoplasty, septal cartilage is frequently resected for various purposes but the

L-strut is preserved. Numerous materials are inserted into the nasal dorsum during dorsal

augmenation rhinoplasty without considering nasal structural safety. This study used a finite

element method (FEM) to redefine the septal L-strut, to prevent collapse as pressure

moved from the rhinion to the supratip breakpoint on the nasal dorsum and as the contact

percentage between the caudal L-strut and the maxillary crest changed. We designed a 1-

cm-wide L-strut model based on computed tomography data. At least 45% of the width of

the L-strut in the inferior portion of the caudal strut must be preserved during septoplasty to

stabilize the septum. In augmentation rhinoplasty, the caudal L-strut must either be pre-

served perfectly or reinforced to prevent collapse or distortion of the L-strut. The dorsal aug-

mentation material must be fixed in an augmentation pocket to prevent movement of graft

material toward the supratip breakpoint, which can disrupt the L-strut. We conducted a

numerical analysis using a FEM to predict tissue/organ behavior and to help clinicians

understand the reasons for target tissue/organ collapse and deformation.

Introduction
The prevalence of nasal surgery as a cosmetic treatment (including septorhinoplasty) is rising.
Septal cartilage is frequently resected to correct a deviated nasal septum, to straighten the nasal
dorsum, and to harvest augmentary material for septorhinoplasty. Preserving the L-shaped
septal cartilage, known as the cartilaginous L-strut, has long been considered an important ele-
ment during nasal surgery[1,2]. The septal L-strut is classically defined as a segment of the dor-
sal and caudal septal cartilage of at least 1 cm in width[3,4]. Moreover, dorsal augmentation to
correct a low-profile nose using silicone, Gore-tex, septal cartilage, costal cartilage, or auricular
cartilage is the most commonly performed nasal procedure in Asian populations. Numerous
materials and methods are used for augmentation rhinoplasty and septoplasty[5–8]. However,
evidence regarding septal safety after septal resection or dorsal augmentation rhinoplasty
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[1,2,9,10] is limited to the clinical outcomes of case series and individual physician’s opinions.
Therefore, it is important to examine the reasons for deformation or collapse of the L-strut.

The finite element method (FEM) has become more available with advances in computer
technology. The field of FEM has increased to include analyses of laryngeal voice, middle-ear
mechanics, and nasal mechanical structure[10–18]. However, few studies have used FEM tech-
nology to examine the nasal septum.

We previously presented preliminary data regarding the safety of the septal L-strut when
resecting the caudal segment of the L-strut to correct a caudal septal deviation[19,20]. The aim
of the present study was to elucidate the detailed distribution of stress in the L-strut after the
inferior portion of the L-strut caudal component, which is connected to the maxillary crest, is
resected during septoplasty, and to confirm possible collapse of the L-strut depending on the
dorsal L-strut graft position during augmentation rhinoplasty. This is the first report on the
safety of the septal L-strut after dorsal augmentation rhinoplasty. An L-strut model was
designed for a numerical analysis. The stress and displacement of the L-strut were evaluated
according to the location of an applied load on the dorsal L-strut; the area of contact between
the caudal L-strut and the maxillary bone was also considered.

Materials and Methods

The Finite Element Method
The FEM is a numerical method that is used to calculate and predict the stress, displacement,
and strain energy of a model, whereby the proper element generation (or mesh) for a desired
model can be decided and mechanical values can be calculated for each element according to a
governing equation. We used the static structure analysis method in Ansys Workbench 2.0
Framework (Taesung ver. 13.0, Korea) as our FEM tool.

Design of an L-strut model and determination of the mechanical
properties
The septal L-strut was designed as shown in Fig 1A. The width of the L-strut was assumed to
be 1 cm, similar to the classical L-strut concept. The regional angle of the septal L-strut was
designed based on CT data from 80 patients who underwent trans-sphenoidal skull-base
tumor operations at Seoul St. Mary’s Hospital, Seoul, Korea, between July 2008 and September
2011. Approval was obtained from the Institutional Review Board of the Catholic University of
Korea, and all patients gave written informed consent. The lengths of the dorsal and caudal

Fig 1. Design of the septal L-strut. A. Schematic diagram of the L-strut on the nasal septum in sagittal view.
B. Point 1 is the location of pressure application. Point 2 is the inner corner of the L-strut. Point 3 is the contact
region between the maxillary crest and the caudal septal L-strut.

doi:10.1371/journal.pone.0153056.g001
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L-strut segments were determined from intraoperative measurements of 55 patients in a previ-
ous study[21]. In addition, the thickness of the L-strut was determined using cadavers, as
described previously[19]. The mechanical properties are described in Table 1; the compressive
modulus and Poisson’s ratio were 410 kPa and 0.3, respectively, as the L-strut is septal cartilage
[2,22–24].

Boundary condition
An external load was applied to the L-strut in a vertical direction, as shown in Fig 2A. The load
value was 0.01 N, based on the daily load generated in the nose, as it was difficult to exactly
measure the daily load as an external force in the nose. The load was applied to a 2-mm-wide
dorsal segment of the L-strut at a distance of 2 mm from the rhinion to the supratip breakpoint
(i.e., superior point of the L-strut inner corner) under nine pressure location conditions, which
were similar to those used in the dorsal augmentation rhinoplasty that is frequently performed
in Asian populations (Fig 2A).

The L-strut is attached to the PPE and the maxillary crest, as shown Fig 1. Therefore, we
considered this the appropriate test condition, and set up the fixation condition shown in Fig
2B. The fixation condition was the bonding state. We then designed the contact percentage
between the L-strut and the maxillary bone, as shown in Fig 2B and 2C.

The L-strut attachment to the maxillary bone is preserved during rhinosurgery, and we
termed the contact part as 100% contact (Fig 2B). The 80%, 60%, 55%, 50%, 45%, 40%, and
20% contact percentages were based on 100% contact as the standard. Therefore, the boundary
conditions included nine load and eight contact conditions, and we conducted a structural
analysis of the L-strut under all boundary conditions to measure the L-strut stress and displace-
ment distributions.

Table 1. Engineering data.

Young’s modulus 4.1 × 105 (Pa)

Poisson’s ratio 0.3

doi:10.1371/journal.pone.0153056.t001

Fig 2. Assumptions for the L-strut condition. A. External pressure (0.01N) was applied to the dorsal L-
strut in a vertical direction from the rhinion (location 1) to the supratip breakpoint (location 9) at a 2-mm
distance. The load was exerted in the 2-mm-wide dorsal segment. The location 9 load condition is the region
of the superior point of the L-strut inner corner.B. Fixation area 1 is the bonding area with the perpendicular
plate of the ethmoid bone (PPE) in the dorsal L-strut. Fixation area 2 is the bonding area with the maxillary
crest. The contact percentage in fixation area 2 was assumed to range from 100% to 20%. The 100%
condition of fixation area 2 was when the intact 1-cm-wide caudal strut was in contact with the maxillary crest.
This simulation was based on partial resection of the caudal septal segment posterior of the anterior nasal
spine (ANS) during actual septorhinoplasty.C. The 20% condition of fixation area 2 was the 2-mm-wide
caudal strut in contact with the maxillary bone posterior to the ANS.

doi:10.1371/journal.pone.0153056.g002
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Results

Overall L-strut stress distribution
The L-strut model was based on computed tomography (CT) data from 80 patients at our hos-
pital. The same load (0.01 N) was applied to the L-strut. Fig 3 shows the stress distribution in
the L-strut model based on the location of the applied load and the percentage contact area
between the L-strut and the maxillary crest. The L-strut stress distribution is indicated by sev-
eral colors. Red and blue indicate the highest and lowest stress levels, respectively. Relatively
high stress occurred at point 1 (applied load position), point 2 (L-strut inner corner), and point
3 (contact between maxillary bone and L-strut), as shown in Figs 1B and 3. Green and sky-blue
(relatively high stress) appeared in the entire L-strut model, according to the load applied cau-
dally from the keystone area (Fig 3A). In particular, areas of high stress were generated at point
2 (inner corner) and point 3 (contact with maxillary bone) of the L-strut. Therefore, as the load
exerted on the nasal dorsum moved from the rhinion to the supratip breakpoint, the distribu-
tion of greatest stress on the L-strut changed from the perpendicular plate of the ethmoid bone
(PPE) to the inner corner of the L-strut and the inferior part of the caudal strut near the maxil-
lary bone. L-strut stress distribution values increased as the percentage contact area between
the L-strut and the maxillary bone decreased, regardless of load condition (Fig 3B). Under
these conditions, the stress on the pillar that is connected to the L-strut by the maxillary bone
was high. Therefore, the stress at L-strut point 3 increased gradually as the contact area
decreased.

Stress analysis at L-strut points 1–3 according to the location of the
applied load
Fig 4A–4C shows the maximum stress values at L-strut points 1–3, respectively, according to
the location of the load and the contact percentage. The stress generated at point 1 remained
similar regardless of the load location and the contact percentage, as shown in Fig 4A. This
trend is also evident in Fig 3; the stress at point 1 was relatively constant. The stress at point 2
decreased gradually after increasing, according to changes in the load applied caudally from
the rhinion (Fig 4B): the maximum stress was under load locations 5 and 6, regardless of
changes in the contact percentage. As the location of the applied load moved from location 1

Fig 3. L-strut stress distribution. Red and blue indicate the highest and lowest stresses, respectively.
Relatively high stress occurred at point 1 (applied load), point 2 (L-strut inner corner), and point 3 (contact
between maxillary bone and the L-strut). Increased stress on the L-strut occurred as the location of the
applied load moved caudally (supratip breakpoint) and the contact percentage decreased. A. Stress
distribution according to the location of the applied load. As the applied load increased near the supratip
breakpoint, the stress value increased at point 2 and around point 2.B. The stress distribution according to
the contact percentage between the L-strut and the maxillary crest. Increased stress occurred in the caudal
segment between points 2 and 3 as the contact percentage decreased.

doi:10.1371/journal.pone.0153056.g003
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Fig 4. Maximum stress at each point in the L-strut. A. The stress was constant at point 1 (pressure
exertion region), regardless of the applied load location and the contact percentage with the maxillary crest.
B. Stress at point 2 decreased gradually after an initial increase, according to changes in the applied load
caudally from the rhinion. In particular, the maximum L-strut stress occurred at point 2 under the location 5
and 6 load conditions, regardless of changes in contact percentage. C. The stress at point 3 increased when
the location of the applied load was changed from the rhinion to the supratip breakpoint.

doi:10.1371/journal.pone.0153056.g004
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(rhinion) to location 9 (supratip breakpoint), the stress at point 3 increased, as shown in Fig
4C. The stress values increased slowly from location 1 to location 6, and then increased rapidly
under the location 7 and 8 load conditions, with similar values under the location 8 and 9 load
conditions. The stress distributions for the location 6 to 9 load conditions are shown in Fig 3.
The stress values at points 2 and 3 were determined by the location of the applied load and
found to be 2- and 2.5-fold higher, respectively, than the applied pressure (0.01 MPa) when the
load was subjected to the dorsum of the L-strut from the supratip breakpoint (superior point of
the L-strut inner corner) within a 6 mm cephalic length with 20% contact.

Maximum stress analysis at L-strut points 2 and 3
The effects of the load position and the contact area percentage on stress values at L-strut
points 2 and 3, and the maximum stress under each condition, are shown in Fig 5. Stress
increased gradually as the applied load neared the caudal position (Fig 5A). The largest stress
at points 2 and 3 occurred under the location 6 to 9 load conditions. L-strut stress was depen-
dent on the contact area percentage. Stress values increased steadily at the transition point,
while those for contact areas of 45–20% increased rapidly. Stress values, particularly under
location 6 to 9 load conditions, steadily increased as the contact percentage decreased from 80–
50% and increased rapidly as the contact percentage decreased further to 45–20%. Moreover,
the maximum stress values for L-strut points 2 and 3 were 2.5-fold larger than the applied load.
Therefore, the L-strut could collapse with contact percentages lower than 45–40%.

Displacement analysis at L-strut point 2
Displacement was recorded as the difference at point 2 (L-strut inner corner) between before
and after the load was applied at point 1, as shown in Fig 6. Displacement was measured at
point 2 in the Z-axis direction (Fig 2A). The displacement values at point 2 rose steadily
according to the caudal load condition; maximum displacement occurred under the location 8
and 9 load conditions (Fig 7B). The rate of increase was consistent under the location 1 to 5
load conditions and rose rapidly under the location 6–9 conditions. Moreover, displacement
increased as the contact percentage decreased; displacement with 45–20% contact rose rapidly,
as shown in Fig 7B. Maximum displacement occurred with 20% contact. Therefore, the L-strut
at point 2 with 45–20% areas of contact was deformed and could collapse at contact percent-
ages lower than 45% under the location 6–9 load conditions.

Stress and displacement analysis under the 100% contact condition
The 100% contact values were extracted from the results in Fig 7 to simulate an actual dorsal
augmentation situation. Fig 8A shows the stress distribution results at L-strut points 2 and 3,
according to the location of the applied load, under 100% contact. The stress values at point 3
were maximal under the location 8 and 9 load conditions. Stress values at point 2 were higher
than those at point 3, and the highest values at point 2 were seen under the location 7 load con-
dition. The displacement distribution at point 2 was also represented in the 100% contact con-
dition, as shown in Fig 8B. As the applied load moved from location 1 to location 9 (from the
rhinion caudally), the displacement values increased, and the maximum values were seen
under the location 8 and 9 (supratip breakpoint) load conditions.

Discussion
We used a FEM simulation to validate the relationship between deformation or possible col-
lapse of the L-strut and the contact percentage/location of an applied load. Complications,
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Fig 5. Maximum stress values between stress applied at points 2 and 3 according to the location of
the applied load and the contact percentage with the maxillary bone. A. Three-dimensional graph.B.
Two-dimensional graph. Stress values increased gradually as the applied load moved closer to the caudal
position. The larger stress values at points 2 and 3 occurred under the location 6–9 load conditions. Stress on
the L-strut was dependent on the contact percentage. Stress increased steadily at the later transition point
and increased rapidly with contact percentages of 45–20%. Stress values, particularly those under the
location 6–9 load conditions, increased rapidly in the 45–20% contact range. Moreover, the maximal L-strut
stress values at points 2 and 3 were 2.5-fold larger than that of the applied load.

doi:10.1371/journal.pone.0153056.g005

Fig 6. An explanation of displacement at point 2 (L-strut inner corner). The difference in the point 2
location was measured in the Z-axis direction before and after a load was applied to the dorsal L-strut.

doi:10.1371/journal.pone.0153056.g006
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such as saddle nose, can occur after septal surgery; however, there has been no report regarding
the reasons behind the occurrence of complications, except for anecdotal evidence that relies
on individual surgeons’ experience. A 1-cm-wide L-strut is vital for safety and stability during
moderate resection of the septal cartilage. Our FEM results indicate that L-strut stress and dis-
placement distributions depending on contact percentage and load conditions can cause severe
deformation or collapse of the L-strut.

The stress distribution of the entire L-strut area changed according to the location of the
applied load and the percentage contact between the L-strut and the maxillary bone. Greater
stresses on the L-strut occurred as the applied load moved toward the caudal position (supratip
breakpoint) (Fig 3A) and the contact percentage decreased (Fig 3B). Maximum stress on the L-
strut was always generated at points 2 and 3, regardless of the applied load position or the con-
tact percentage. As the applied load neared the supratip breakpoint, the stress value increased
around point 2. Larger stress values occurred in the caudal segment between points 2 and 3,

Fig 7. Displacement at point 2. A. Displacement values at point 2 rose steadily under the caudal load
condition; maximum displacement occurred under the location 8 and 9 load conditions. B. Displacement
increased as contact percentage decreased, showing rapid displacement in the 45–20% contact range.

doi:10.1371/journal.pone.0153056.g007
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depending on the decrease in the contact percentage. Moreover, L-strut stress values depended
more on a decrease in the contact percentage than on a change in the applied load position.

We assumed that all mechanical properties of the cartilage were in the elastic region rather
than in the plastic region[2,9,10,12,20]. If the mechanical properties of the cartilage in the plas-
tic region had also been considered, the FEM results would portray actual clinical behavior
more accurately. However, the possibility of L-strut collapse was predictable based on the FEM
results.

In a previous study, we reported that the contact percentage between the L-strut and the
maxillary bone is an important factor in collapse of the L-strut; a high possibility of collapse
was observed with contact percentages of less than 40%[19]. We concentrated on the effect of
contact percentage and subdivided it into 60–40% contact conditions in 5% increments. Larger
stress values occurred in the caudal L-strut between points 2 and 3 as the contact percentage

Fig 8. Results for 100% contact between the caudal L-strut and the maxillary crest. A. Stress at points 2
and 3 based on the applied load location. Maximum stress occurred at point 3 under the location 8 and 9
loading conditions; stress values at point 2 were higher than those at point 3, with the highest values seen
under the location 7 loading condition. B. Displacement at point 2 according to the applied load location. As
the applied load location changed from location 1 to location 9 (from the rhinion caudally), displacement
increased, and maximum values were seen under the location 8 and 9 load conditions (supratip breakpoint).

doi:10.1371/journal.pone.0153056.g008
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decreased from 45 to 20%. Therefore, the possibility of L-strut collapse in the 45–20% contact
range was very high, in accordance with the results of our previous study. Compared with the
applied stress (0.01 MPa), the stress values at points 2 and 3 were larger, with a rapid increase
in the 45–20% contact range, as shown in Fig 4C. The possibility of collapse started to increase
at a contact percentage of 45%. Although the position of the transition point changed accord-
ing to the load location, most transition points among the load conditions were in the 60–40%
contact range. The stress values for all load conditions increased at around 50% contact, and
stress values increased steeply below 45% contact. Displacement also rose depending on the
contact percentage, with the displacement rate increasing with 50–40% contact. Therefore,
high deformation energy existed at L-strut point 2, where the stress and displacement values
were high. This indicates a high possibility of L-strut collapse in the 45–20% contact range.

Moreover, the degree of change in displacement values at point 2 was relatively small under
the location 1–4 load conditions, even with a decrease in the contact percentage. However, dis-
placement values under the location 5–9 load conditions rose according to the contact percent-
age decrease and increased rapidly with 45–20% contact (Fig 7B). Therefore, the stress
(between the L-strut and maxillary bone) and displacement values (at point 2) were 2.5- and
2-fold larger, respectively, than the standard load applied under the 20% contact condition.
This result indicates that the contact percentage between the L-strut and maxillary bone affects
L-strut collapse. The contact percentage between the caudal L-strut and the maxillary crest
should be preserved at> 45% at point 3 to prevent collapse of the L-strut.

The L-strut stress and displacement distributions changed depending on the location of the
load on the nasal dorsum and the contact percentage with the maxillary crest. These changes
should be considered as a possible factor in L-strut collapse. Deformation of the L-strut
increased as the contact percentage between the caudal L-strut and the maxillary crest
decreased. With an L-strut width of 1 cm, the ability of the L-strut to maintain its shape
decreased when contact with the maxillary bone was 45%, suggesting that the L-strut would
inevitably collapse with a contact percentage of less than 45%.

Distortion of the septal cartilage increased when the pressure point changed in the caudal
direction of the nasal dorsum. When the applied load was closest to the supratip breakpoint,
the stress values at points 2 and 3 increased and the displacement at point 2 increased, as
shown in Figs 5B and 7B. The stress values at points 2 and 3 were larger than the applied load
under the location 7–9 load conditions (Fig 5B). If the load was applied to the dorsal segment
of the L-strut from the supratip breakpoint (superior point of the L-strut inner corner) to
within 6 mm cephalically, a 2.5-fold greater stress occurred in the caudal segment of the L-strut
around the maxillary bone and the displacement value at point 2 also increased.

Fig 8 shows the L-strut stress and displacement distributions at points 2 and 3 with 100%
contact, which preserved the caudal portion of the L-strut. As the results in Fig 8 indicate, if
load was applied to the dorsal L-strut in the lower half including the supratip breakpoint the
stress and displacement values increased, leading to collapse or transformation of the strut. As
these results show, excess augmentation in the lower portions of the nasal dorsum is not desir-
able; the augmentation material should be distributed widely over the rhinion. In addition,
these results indicate that the dorsal augmentation graft must be fixed in an augmentation
material pocket on the nasal dorsum to prevent downward displacement of the graft material
due to gravity and excess pressure on the supratip breakpoint.

The follow-up period for dorsal augmentation rhinoplasty is generally short, and aesthetic
results tend to focus on comparing before and after images. Our results emphasize the impor-
tance of long-term maintenance of the nasal dorsal line following a dorsal implant; thus, long-
term follow-up is needed after surgery. In a previous study, we found that grafts are occasion-
ally displaced after dorsal augmentation rhinoplasty. These outcomes may be attributed to
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disruption of the L-strut. Moreover, many studies have reported results using numerous aug-
mentation materials and methods, but relatively few have described septal cartilage design
when comparing dorsal augmentation results[5–8]. Accordingly, we suggest that a description
of the septal cartilage design should be required when comparing the safety and cosmetic
results of dorsal augmentation methods.

The caudal segment of the L-strut must either be preserved perfectly or reinforced with
other cartilage during dorsal augmentation. This study is the first step towards provision of
patient-customized surgery using FEM. Further scientific development may enable measure-
ments of individual nasal anatomy, which would allow us to predict outcomes in individual
patients before surgery. A preoperative FEM simulation may facilitate determination of septal
cartilage design and appropriate augmentation material height to provide safe support and
good aesthetic results.

FEM software is effective in terms of cost and time because it simulates the mechanical
behavior of target tissues and organs. The L-strut model used in this study was prepared with
linearly elastic mechanical properties, as we assumed the isotropic properties. We also con-
firmed L-strut stress and displacement distribution behaviors in one direction and the load in
the elastic region. The cartilage of the virtual L-strut had anisotropic, viscoelastic, elastic, and
plastic mechanical properties, similar to an actual L-strut. The FEM results would be closer to
actual clinical behavior if the mechanical properties of the cartilage, such as the viscoelastic and
plastic modulus values, could be identified,. In addition, we conducted the L-strut simulation
under a unidirectional load; however, the in vivo L-strut is loaded in multiple directions. If a
multi-axis load is applied to the L-strut, buckling, deflection, and torsion will occur. Additional
studies are needed that include the actual pressure force applied in accordance with the aug-
mentation material (e.g., silicone, Gore-tex, etc.) and the use of realistic septal cartilage config-
urations. Stress distributions, torsion rates, and moment gradients of the L-strut need to be
included in L-strut behavior analyses, using multi-axis loads to simulate actual clinical
outcomes.

This study was conducted to analyze the septal L-strut without considering any other factors
that could influence strut support. Dorsally and caudally, the cartilaginous septum is intercon-
nected with the upper lateral cartilages and lower lateral cartilages, respectively[4]. Thus, to
model more realistically the mechanical behavior of the L-strut using FEM, additional studies
incorporating boundary conditions from this surrounding environment in the nasal septum
are needed.

Conclusions
When septoplasty is performed, the inferior portion of the caudal strut must be preserved
at> 45% of L-strut width to stabilize the septum. Second, during dorsal augmentation rhino-
plasty, because the greatest stress occurs in the inferior caudal L-strut, the strut must either be
preserved perfectly or reinforced with other cartilage for safety. Third, the dorsal augmentation
material must be fixed in an augmentation pocket to prevent movement of the graft material
toward the supratip breakpoint, because downward movement of the graft distorts, disrupts,
and may collapse the L-strut. Finally, the FEM is useful for predicting surgical results before
surgery and enables patient-customized treatment.

Supporting Information
S1 Table. The regional angle data of the septal L-strut from PNS CT of 80 patients.
(XLSX)
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