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Uveal melanoma is a highly aggressive tumor derived from the melanocytes of the eye. More than 90% of uveal
melanomas harbor activating mutations in the small G-proteins GNAQ/GNA11 and have constitutive activity
in the MAPK pathway [1]. In uveal melanoma, GNAQ/GNA11 activates phospholipase C β, which cleaves
phosphatidylinositol-4,5-biphosphate to diacyl glycerol and inositol triphosphate. Both of these products activate
protein kinase C, which in turn activates the MAPK pathway. Constitutive signaling in other signal transduction
cascades including the PI3K/AKT/mTOR, WNT/β-catenin and the YAP-signaling pathways have also been
reported.

Although approximately 4% of patients with uveal melanoma show signs of disseminated disease at diagnosis,
approximately 4%, half eventually succumb to metastases [2]. The major site for uveal melanoma metastasis is
the liver. For many uveal melanoma patients, development of metastases occurs many years after the successful
treatment of the primary tumor. Patients can be stratified into low versus high risk of metastasis development
(class 1 or class 2 uveal melanoma) on the basis of a 15-gene expression signature [3]. Class 1 tumors show greater
melanocyte differentiation. Class 1 tumors can be further subdivided into class 1a and 1b categories with a 5-year
metastasis risk of 2 and 21%, respectively [4]. Class 2 tumors typically lose melanocyte morphology and express
genes associated with the primitive neuroectoderm. A class 2 gene signature is associated with a 5-year risk of
metastasis equivalent to 70–80% [4].

One of the major genetic drivers of a class 2 phenotype is loss or inactivating mutations in the H2A ubiquitin
hydrolase BAP1 [5]. Knockdown of BAP1 in uveal melanoma cell lines causes dedifferentiation and the adoption of a
phenotype that confers metastatic behavior. BAP1 is the catalytic subunit of the poly comb repressive deubiquitinase
(PR-DUB) complex that deubiquitinates histone H2A, and thus plays a key role in histone modification [6]. Recent
work on the role of BAP1 in a Xenopus laevis development model has implicated it in the regulation of the
epigenetic switch required for lineage commitment [7]. In this model, BAP1 loss was associated with transcriptional
silencing and a failure of H3K27ac to accumulate at the promoters of key genes involved in lineage commitment
including Sox2, Foxd3 and Sox10 [7]. Acetylation of histone H3 at lysine 27 (H3K27) is found at active and poised
enhancer regions of genes. These data suggest that BAP1 loss leads to repression of lineage-specific gene expression,
dedifferentiating the uveal melanoma cells to a primitive, embryonic-like state that favors metastasis.

Once established in the liver, uveal melanomas respond very poorly to therapy options currently available,
including targeted therapies, immunotherapies and chemotherapies [8]. There has been some suggestion that the
relatively low mutational burden of uveal melanoma compared with cutaneous melanoma – resulting in a lower
expression of tumor neoantigens – may underlie the lack of efficacy seen in immunotherapy. To date, most work
in the targeted therapy arena has centered upon the inhibition of kinases downstream of GNAQ/GNA11. The
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major focus so far has been upon MEK, for which several US FDA-approved small molecule MEK inhibitors exist.
There is preclinical evidence that targeting MEK has some efficacy against uveal melanoma cells in vitro, leading to
the inhibition of cell growth, cell cycle arrest and the induction of apoptosis [9]. The response of uveal melanoma
cell lines to MEK inhibition fits with observations in other cancers, in which pathway inhibition leads to a rapid
rewiring of the signaling network, increased receptor tyrosine kinase signaling and recovery of MAPK and other
parallel signaling pathways. There is already some evidence that MEK inhibitor monotherapy leads to an increase
in signaling through the PI3K/AKT/mTOR pathway [10] and increased RAS protein expression mediated by the
RNA helicase DDX43 [11]. Other studies have proposed that host liver cells may also contribute to resistance, with
work suggesting that hepatic stellate cells drive the escape from targeted therapies such as MEK inhibitors (via
HGF secretion) and BRD inhibitors (via FGF-2 signaling) [12,13].

In the clinical setting, the most extensively explored MEK inhibitor for advanced uveal melanoma is selumetinib
(AZD6244). In a Phase II open-label clinical trial of advanced uveal melanoma, selumetinib treatment yielded
an improved progression-free survival compared with either dacarbazine or temozolomide [14]. Despite these
initially encouraging results, a subsequent Phase III double-blinded trial of selumetinib plus dacarbazine showed no
improvement in progression-free survival compared with dacarbazine alone [15]. At this time, it is clear that MEK
inhibitor monotherapy is ineffective as a systemic strategy for uveal melanoma, and that combination therapies are
needed.

As most uveal melanoma metastases show loss of BAP1 function/expression there has been considerable interest
in uncovering novel therapeutic vulnerabilities conferred by the loss of BAP1. Although recent studies have proposed
a link between BAP1 loss and sensitivity to EZH2 inhibitors in some cancers, this does not seem to hold true
for uveal melanoma [16,17]. Instead, there is evidence that histone deacetylases (HDACs) are required to maintain
the phenotype conferred by BAP1 loss. In preclinical studies, gene expression analyses have demonstrated that
pan-HDAC inhibitors can shift the expression profile of class 2 uveal melanoma cell lines to that of class 1 [18].
Mechanistically, it seems that HDAC inhibition counteracts the effects of BAP1 loss by transcriptionally repressing
the polycomb repressive complex component BMI1, leading to decreased histone H2A ubiquitination [19]. Further
work showed that pan-HDAC inhibitors, such as valproic acid, induced the morphological differentiation of class
2 uveal melanoma cells, an effect accompanied by an inhibition of growth and survival in vitro and in in vivo
uveal melanoma xenograft models [18]. Multiple isoforms of HDACs exist, and it is not yet clear which HDAC or
combination of HDACs regulate the BAP1 loss phenotype. Some recent evidence from both X. laevis and human
uveal melanoma cell line models have demonstrated that the BAP1 loss phenotype can be rescued in part through
the silencing of HDAC4. Here, it was found that HDAC4 preferentially localized to the nucleus of BAP1 mutant
uveal melanoma cells, and that shRNA-mediated silencing of HDAC4 significantly decreased uveal melanoma cell
growth [7]. At this time, there are a number of clinical trials exploring the efficacy of the pan-HDAC inhibitors,
valproic acid and vorinostat, in patients with metastatic uveal melanoma inhibition in both the monotherapy and
combination therapy settings. The development of more specific HDAC inhibitors is still ongoing.

There has been some suggestion that MAPK inhibition in cancer cells may lead to a unique epigenetic state that
could present novel therapeutic vulnerabilities and open up the possibility of combined epigenetic–MEK inhibitor
combinations. Recent work from our group, which focused on BRAF-mutant melanoma, identified an increased
dependency on HDAC8 activity following MAPK pathway inhibition [20]. In this instance, HDAC8 conferred
BRAF inhibitor resistance through a mechanism involving the direct modulation of c-JUN acetylation, which led
in turn to enhanced c-JUN transcriptional activity and the increased expression of EGFR. As HDACs are required
to maintain the phenotype of aggressive uveal melanoma, we performed a multi-omics (proteomics and RNA
sequencing) analysis of primary and uveal melanoma cell lines treated with the MEK inhibitor trametinib [21].
It was noted that although the cell lines initially responded to trametinib these effects were quite weak, and
the cells rapidly evaded therapy. To understand more about the underlying mechanism, we interrogated our RNA
sequencing and affinity-based protein profiling data and found that MAPK inhibition led to adaptive AKT signaling
that was mediated through the receptor tyrosine kinases, ROR1/2 and IGF1R (Figure 1). Although follow-up
experiments demonstrated that co-inhibition of MEK and AKT improved the durability of the response, it did
not prevent resistance. We next turned our attention to the role of adaptive G-protein coupled receptor signaling
and identified MEK inhibition to be associated with increased expression of multiple G-protein coupled receptors.
Among these, the endothelin-B receptor was found to be upregulated upon MEK inhibition. Further mechanistic
studies demonstrated a role for an endothelin-B–endothelin-3 signaling loop that activated YAP and contributed
to therapeutic escape [21]. As dual inhibitors of YAP and AKT have yet to be identified, we performed a screen
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Figure 1. Scheme showing the likely mechanism of action of the MEK inhibitor–histone deacetylase inhibitor combination in uveal
melanoma. MEK inhibition leads to increased expression in many RTKs, such as IGF-1R, ROR1 and ROR2, triggering second messengers
through MAPK and PI3K/AKT pathways. Moreover, modulation of GPCRs (such as ETB signaling) regulates cytoskeleton remodeling and
actin polymerization through RAC1/ROCK/Rho GTPases and YAP/TAZ translocation to the nucleus. The MEKi + HDACi combination
suppresses the adaptive signals that follow MEKi monotherapy in part through inhibition of IGF1R-AKT and ETB-YAP signaling.
ETB: Endothelin-B; GPCR: G-protein coupled receptor; HDACi: Histone deacetylase inhibitor; MEKi: MEK inhibitor.

of approximately 280 FDA-approved drugs and identified the pan-HDAC inhibitor panobinostat as a suitable
combination partner for trametinib in in vitro growth assays. In this instance, pan-HDAC inhibitors were noted
to be more effective than specific HDAC inhibitors, including the HDAC1/2/3 inhibitor etinostat, the HDAC6
inhibitor tubastatin and the HDAC8 inhibitor PCI-03451. Intriguingly, panobinostat was found to suppress the
recovery of MAPK, as well as blocking the adaptive AKT and YAP signaling that followed trametinib treatment. This
impressive level of signaling inhibition translated into improved in vivo efficacy, with the trametinib–panobinostat
combination found to deliver durable responses in both subcutaneous xenograft and liver metastasis mouse models
of uveal melanoma [21]. There is growing evidence across multiple tumor types that the use of targeted therapies
such as BRAF and MEK inhibitors lead to epigenetic genetic changes that allow for therapeutic escape. Targeting
this epigenetic remodeling in conjunction with the inhibition of a major oncogenic driver could be an excellent
strategy to limit therapeutic escape. Our work demonstrates that uveal melanoma has unique vulnerabilities that
convey sensitivity to drugs that regulate the epigenome, opening up new areas for further research and drug
development. These findings in uveal melanoma mirrored our prior work in cutaneous melanoma and provided the
rationale for evaluating the MEK-HDAC inhibitor combination in patients with metastatic uveal melanoma. Our
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group is planning to open a clinical trial evaluating dual MEK-HDAC inhibition in patients with either advanced
BRAF-mutant cutaneous or uveal melanoma.
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