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Filamentous fungi possess the metabolic capacity to degrade environment organic
matter, much of which is the plant and algae material enriched with the cell wall
carbohydrates and polyphenol complexes that frequently can be assimilated by only
marine fungi. As the most renewable energy feedstock on the Earth, the plant or
algae polymeric substrates induce an expression of microbial extracellular enzymes that
catalyze their cleaving up to the component sugars. However, the question of what the
marine fungi contributes to the plant and algae material biotransformation processes
has yet to be highlighted sufficiently. In this review, we summarized the potential of
marine fungi alternatively to terrestrial fungi to produce the biotechnologically valuable
extracellular enzymes in response to the plant and macroalgae polymeric substrates as
sources of carbon for their bioconversion used for industries and bioremediation.

Keywords: filamentous fungi, marine-derived fungi, glycoside hydrolases, algae polysaccharides, plant
polysaccharide-degrading enzymes, lignocellulolytic enzymes

INTRODUCTION

Marine fungi are widely distributed microorganisms in the ocean, particularly associated with
sediment, seawater, marine habitants, submerged plants, and algae. Currently, culture-based
analyses and genomic sequencing have identified 1112 marine fungal species in 472 genera. The
Halosphaeriaceae is the largest family of marine fungi, while the genera Aspergillus, Penicillium,
and the yeast genus Candida are most widespread (Le Calvez et al., 2009; Jones et al., 2015; Kumar
et al., 2015; Richards et al., 2015). However, the sequence similarity-based approach continues to
reveal the fungal taxonomic classification that should adequately reflect their ecology and chemical
potential (Reich and Labes, 2017). The fungal life cycle and mediating interactions between the
fungus and host have led to the evolution of biochemical pathways for the synthesis of unusual
secondary metabolites that have found many potential applications in anticancer and antimicrobial
studies (Yarden, 2014; Hasan et al., 2015; Li et al., 2016; Deshmukh et al., 2017). Approximately
21, 19, and 16% of new bioactive metabolites obtained from the marine fungi come from those
associated with algae, sponges, and mangrove habitats, respectively (Rateb and Ebel, 2011). Some
of these biologically active compounds were products of previously unknown biosynthetic gene
clusters identified by sequencing the marine genomes (Kjer et al., 2010; Li et al., 2016; Rédou
et al., 2016). However, all existing data from the genome sequencing projects concerned to
glycoside hydrolases (GHs) and concomitant enzymes [auxiliary activities (AAs), carbohydrate
esterases (CEs)] indicate that marine fungi have developed the metabolic pathways rather related to
breakdown of terrestrial plants than algae or animal residues (Arfi et al., 2013; Kumar et al., 2015).
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Nevertheless, the comparison of the entire repertoires of plant
saprophyte metabolic pathways between marine and terrestrial
fungi revealed that the terrestrial fungus Neurospora crassa has
only about half as many protein families linked to sugar uptake
(159 vs. 328) compared to the marine fungus Scopulariopsis
brevicaulis, while both belong to the Fusarium/Nectria clade.
This fact suggests a broadened substrate specificity of the marine
fungal enzymes that may be conditioned by the adaptation of
once soil fungi to a marine life style in the medium with the
higher salt concentrations, depleted nutritional resources and/or
fungal-marine habitant relationships (Kumar et al., 2015).

Many proteins encoded by fungal genomes involved in the
plant degradation required rather transcriptomic, proteomic or
gene functional analyses. These analyses revealed the presence
many post-genomic or post-translational modifications during
the lignocellulose degradation process, particularly in the
presence of salt (Arfi et al., 2013; Panno et al., 2013; Cong
et al., 2017). The new multigene transcripts of lignolytic laccases
were found in the marine-derived basidiomycete Peniophora
sp. CBMAI 1063 cultivated in saline conditions (Otero et al.,
2017). The presence of salt modified the lignocellulolytic enzyme
composition of the salt-adapted mangrove fungus Pestalotiopsis
sp. NCi6, increasing the number of the secreted GHs that were
more diverse (nine vs. six families), and more enriched in
cellulolytic AA9 (formerly GH61) and xylanolytic GH43, GH10,
and GH30 than in conditions without salt (Arfi et al., 2013).

Thus, the possibility of the secondary colonization of fungi
from land to marine ecosystems cannot be excluded. Many
unknown fungal species, even at higher taxonomic levels in
the Chytridiomycota forming an ancient evolutionary lineage,
Ascomycota, and Basidiomycota found in the deep-sea water, and
the molecular clock estimates of their rRNA evolution suggested
the hypothesis that fungi initially diversified in the ocean before
they colonized the land (∼400 million years ago) (Le Calvez
et al., 2009; Manohar and Raghukumar, 2013). Moreover, there
is abundant evidence for multiple recolonizations of the ocean by
fungi (Spatafora et al., 1998; Richards et al., 2012). The genome
sequencing of the psychrotrophic strain Cadophora malorum
revealed deficient in cellulase genes, but its putative alginate lyase
could be acquired due to the adaptation to marine environment
(Rédou et al., 2016).

If anything, fungi are an important consumer of plant and
animal residues as well as chemical pollutions of the marine
environments (Harms et al., 2011; Richards et al., 2012). Many
extra- and intracellular enzymes of marine fungi such as GHs,
nucleases, proteases, and lipases involved in the degradation of
cell walls, DNA, proteins, and other organic matter have been
structurally or/and biochemically characterized and showed the
higher specific activity and effectiveness in comparison with those
from their terrestrial counterparts (Nielsen et al., 2007; Kamat
et al., 2008; Beena et al., 2011; Harms et al., 2011; Balabanova
et al., 2012; van Leeuwen et al., 2012). In addition, marine fungi
can produce enzymes with unique specificity toward the marine
polymeric substrates such as laminarins, fucoidans, ulvans,
carragenans, and agar (Bonugli-Santos et al., 2015; Wang et al.,
2016). In particular, the ability to decompose brown algae is the
most valuable. It has been found that brown algae evolutionary

distinguished from land plants and other algae by their cell wall
structure. They contain carbohydrates that are feature of plants
(cellulose), animals (fucose-containing sulfated polysaccharides)
and bacteria (alginates) (Keeling et al., 2009; Deniaud-Bouet et al.,
2017). Therefore, an idea of using marine fungi for the plant
and algae biotransformation has been successfully exploited for
the production of low-cost edible protein and highly valuable
biochemicals, as well as for wastewater treatments (Beena et al.,
2011; Harms et al., 2011; van Leeuwen et al., 2012).

Studying the carbohydrate-active enzymes (CAZymes),
particularly the main and concomitant polysaccharide-
depolymerizing enzymes in marine fungi, allow for the
elucidation of mechanisms of their action and advantages for
biotechnological use. The comparison of enzyme expression
profiles in the dependence on plant or algae polymeric substrates
in the growth medium can reveal the nutrition preferences and
CAZyme repertoire of the marine fungi. They are potential
producers of protein-rich digestible biomass from plant and
macroalgae, biotechnology relevant enzymes as well as are new
source of drugs and biotechnological discoveries.

CARBOHYDRATE-ACTIVE ENZYMES

For the efficient bioconversion of plant and algae material,
microorganisms or enzymes capable of degrading the indigestible
cell wall polysaccharide complexes are the most valuable for
biotechnology. Cellulose, hemicellulose, and pectin are the main
polysaccharides of plant cell walls that are strengthened by
an aromatic heteropolymer lignin preventing their enzymatic
digestion (Ochoa-Villarreal et al., 2012). Cellulose has a
linear structure of β-1,4-linked D-glucose residues. The long
chains forms microfibrils non-covalently linked together by
hemicelluloses. Hemicelluloses are distinguished by the main
sugar in the backbone chain: xylan (β-1,4-linked D-xylose),
mannan (β-1,4-linked D-mannose) and glucomannans (β-
1,3;1,4-D-glucans with mannose), or xyloglucan (β-1,4-D-
glucan with β-1,6-attached xylose). The backbone chains of
hemicelluloses have many branches as attached monomers of D-
galactose, D-xylose, L-arabinose, and D-glucuronic acid. Pectins
are differed by three main structures: homogalacturonan (linear
polymer), xylogalacturonan (branched by β-1,3-linked D-xylose),
and rhamnogalacturonan. Each plant has the different structure
and chemical composition of their cell wall layers that is
dependent on the species, tissue, and the growth phase (Ochoa-
Villarreal et al., 2012).

Fungi have been found to produce a wide range of CAZymes
and degrade plant complex polymers into digestible and
assimilable products for other members of ecosystems.
The CAZymes have been well surveyed in the terrestrial
basidiomycetes and ascomycetes (van den Brink and de
Vries, 2011; Rytioja et al., 2014). The plant-degrading
CAZymes such as cellulases, hemicellulases, ligninases, and
pectinases, and the accessory debranching enzymes belong
to the following classes: GHs, glycosyl transferases (GTs),
polysaccharide lyases (PLs), CEs, and AAs that can be linked
to carbohydrate-binding modules CBMs (Guillén et al., 2010;
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van den Brink and de Vries, 2011; Rytioja et al., 2014). The
production of accessory depolymerizing enzymes synergistically
working with the backbone-degrading enzymes is regulated
mainly at the transcriptional level in filamentous fungi for more
deeply degradation of plant polysaccharide complexes (Aro
et al., 2005). Nearly 200 CAZyme families with more than 300
representatives have been identified in the predicted fungal
proteomes (Zhao et al., 2014). The plant facultative endophytic
fungi showed a highest number of CAZymes. It is known
that at least 35 GH, 3 CE and 6 PL families are involved in
plant polysaccharide degradation (van den Brink and de Vries,
2011). Recently, the lignin-degrading enzymes have been joined
to the families LPMO included a new CAZy class of AAs to
adopt a range of oxidative mechanisms related to lignocellulose
conversion (Levasseur et al., 2013). Comparative analyses of
AAs in 41 fungal genomes divided them on several groups and
subgroups in dependence on their phylogenetic origin and life
style (Hori et al., 2013). Fungi have been found to be the only
organisms in which there are all three LPMO families AA9,
AA10, and AA11, indicating the importance of the oxidative
enzymes promotive of lignocellulose utilization for their lifestyle
(Morgenstern et al., 2014).

The genomic or transcriptomic analyses may provide
information about the life style and metabolic repertoire
of marine fungi. Although the data on marine fungi with
the sequenced genomes are restricted, they carry sufficient
information about the common ancestral forms of life with
terrestrial fungi such as the capability of utilizing plant
polysaccharide complexes for their growth (Arfi et al., 2013;
Kumar et al., 2015). Moreover, the marine fungi gave a display
many additional genes encoding putative CAZymes and their
concomitant proteins as compared to the known terrestrial plant-
degrading counterparts (Aro et al., 2005; Arfi et al., 2013; Hori
et al., 2013; Levasseur et al., 2013; Rytioja et al., 2014; Zhao
et al., 2014; Kumar et al., 2015). The genome of the marine
strain S. brevicaulis LF580 isolated from the inner tissue of a
marine sponge has been found to contain the largest numbers
of CAZy genes (478), many of which are the putative genes
involved into plant polysaccharide degradation: 71 AAs, 34 CEs,
50 CBMs, 227 GHs, 81 GTs, and 15 PLs (Kumar et al., 2015). It
contains 21 hydrolases from the GH5, GH6, and GH7 families
against only eleven in Trichoderma reesei, which is widely used in
biotechnology. This suggests that the marine strain S. brevicaulis
LF580 may be able to degrade a larger variety of plant substrates
than some terrestrial lignocellulolytic fungi (Kumar et al., 2015).

However, the regulation of the expression of CAZyme genes
at the molecular level have been studied mostly in terrestrial
fungi. The genes encoding CAZymes in the presence of polymers
or their partially hydrolyzed molecules have been shown to be
repressed under the growth conditions on simple substrates such
as glucose, when the fungus does not need the production of the
polysaccharide-degrading enzymes for the nutrition (Aro et al.,
2005). In the same way, low molecular weight carbohydrates
produced during destruction of polymers could induce the
expression of other CAZyme genes (Coradetti et al., 2012; Hori
et al., 2013; Mukherjee et al., 2016). A number of genes encoding
cellulases and pectinases in N. crassa showed increased levels of

the transcripts under carbon starvation and during pretreatment
of the culture with cellulose or pectin (Benz et al., 2014).
The lignocellulolytic pathways of Myceliophthora thermophila
varied with different plant substrates, reflecting the plant cell-
wall polysaccharide structure and content (Kolbusz et al., 2014).
The genes encoding additional xylanolytic enzymes were up-
regulated in the presence of monocot straws, while the genes
encoding additional pectinolytic enzymes were up-regulated in
response to the presence of dicot alfalfa, canola, or flax in the
nutrition medium. Analyses of the RNA-Seq data under the
cultivation of Arthrinium malaysianum with the repressor of
glucose uptake 2-deoxy D-glucose (2-DG) revealed that 2691
transcripts were differentially expressed vs. control samples,
and 302 CAZyme genes was up-regulated in response to 2-DG
(Mukherjee et al., 2016).

Marine fungi also produced enzymatically active cellulases
and laccases, or some specific GHs related to the marine origin,
when agricultural plant or waste (cotton seed, sugarcane bagasse,
rice bran, waste paper, cellulose, sisal waste, molasses spent
wash, black liquor, etc.), or algal polysaccharides were added
into the growth medium (Raghukumar, 2008; D’Souza-Ticlo
et al., 2009; Ravindran et al., 2010; Rodriguez-Jasso et al., 2010;
Zhang and Kim, 2010; Chen et al., 2011; Faten and Abeer, 2013;
Bonugli-Santos et al., 2015; Hong et al., 2015; Wang et al., 2016;
Balabanova et al., 2018). The capability of metabolic utilization
of plant or macroalgae polysaccharides allows for an increase
in the production of fungal biomass enriched by mycelium
proteins and extracellular enzymes that can be used in animal
or fish feeding, or in the bioremediation of soils and water
(Supplementary Table 1). The unique properties of CAZymes
from the marine fungi are important for biotechnology because
of their ability to function at the high salinity and pH, low
water potential, high sodium ion concentrations, extremely low
or high temperature, oligotrophic nutrient conditions, and the
high hydrostatic pressure in comparison with the enzymes of
terrestrial fungi that are mostly cultivated at pH 4.5–6.0 and low
salinity (≤0.05%) (Raghukumar, 2008; Farinas et al., 2010; Pang
et al., 2011; Zilly et al., 2011; Arfi et al., 2013; Del-Cid et al., 2014;
Lee et al., 2015; Thirunavukkarasu et al., 2015; Dos Santos et al.,
2016; Trincone, 2018).

ENZYMES MODIFYING MACROALGAE
POLYSACCHARIDES

Macroalgae may contain plant-specific cellulose and xylan
as well as a range of unusual polymers for land organism
such as alginates, fucans/fucoidans, laminarins (brown algae),
agar/agarose, carrageenan (red algae), and ulvan (green algae),
many of which are sulfated and include monomers of fucose and
uronic acids. Thus, algal polysaccharides are more diverse that
require additional catalytic mechanisms or metabolic pathways
to their fermentation (Vera et al., 2011; Abdallah et al., 2016;
Garcia-Vaquero et al., 2017; Trincone, 2018).

Macroalgae polysaccharides are divided into storage
and structural depending on their chemical structure and
function (Jiao et al., 2011; Kim, 2011; Ermakova et al., 2015;
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Rodrigues et al., 2015; Synytsya et al., 2015; Abdallah et al., 2016;
Cunha and Grenha, 2016; Deniaud-Bouet et al., 2017; Raimundo
et al., 2017). Starch is the storage polysaccharide in the green
algae chloroplasts similarly to plants (Kim, 2011). The cell walls
of green seaweeds are formed by ulvans consisting of sulfated
rhamnose residues as the main units linked to uronic acids (Kim,
2011; Vera et al., 2011; Synytsya et al., 2015). They also contain
xylan, mannan, and cellulose (Table 1). Floridean starch granules
outside of plastids, and consisting mostly of a-D-glucose and
insoluble amylopectin, are the main storage polysaccharide in
the red seaweeds (Kim, 2011). The cell walls of marine red algae
have a complex texture due to the content of cellulose, xylan,
or mannan fibrils and matrix polysaccharides, including the
economically important sulfated galactans such as carrageenan
and agar used for the bioethanol production (Table 1 and
Figure 1). However, many of them need to be enzymatically
pretreated before their use (Synytsya et al., 2015; Abdallah
et al., 2016; Trincone, 2018). The main storage polysaccharide
in the brown seaweeds is laminarin formed by 1,3-β-glucans
with β-1,6-branching and different reducing endings with
mannitol or glucose residues (Table 1 and Figure 1). The
chemical composition and content of seaweed polysaccharides
changes depending on the seasons, age, species, and location
(Kim, 2011). The cell walls of brown seaweeds contain mainly
fucoidans from different amount of saccharide unites with
different degrees of sulfation (Vera et al., 2011; Ermakova
et al., 2015; Deniaud-Bouet et al., 2017; Garcia-Vaquero et al.,
2017; Trincone, 2018). These polysaccharides consist of α–
1,3-backbone or repeating disaccharide units of α–1,3- and
α–1,4-bound fucose residues branching at the C2 positions and
sulfated at the C4 and/or C2 positions. Additionally, fucoidans
may have the mannose, xylose, galactose, rhamnose and uronic
acid residues (Kim, 2011; Ermakova et al., 2015; Synytsya
et al., 2015). According to the chemical composition of the
branches, fucoidans can be divided into xylofucoglycuronans
and glycuronogalactofucans (Kim, 2011). Brown seaweeds
were reported to contain about 14% of extra carbohydrates
in the form of alginate associated with phenolic compounds
(Synytsya et al., 2015; Deniaud-Bouet et al., 2017; Raimundo
et al., 2017). Alginates are linear polymers composed by two
epimers, β-1,4-D-mannuronate (M) and α-1,4-L-guluronate (G)

(Synytsya et al., 2015; Deniaud-Bouet et al., 2017). Alginates and
fucoidans of brown macroalgae were also required additional
enzymatic treatment and saccharification during their conversion
into biofuels (Kim, 2011; Abdallah et al., 2016; Trincone, 2018).

The fungal enzymes degrading algal polysaccharides can
be categorized into the same protein families and classes
according to the CAZy classification as the plant-polysaccharide-
degrading enzymes (Figure 1 and Supplementary Table 2).
The β-1,3-linkage, which is abundant in marine substrates,
has been found to be degraded by enzymes belonging to the
GH families: GH3, GH5, GH16, GH17, GH26, GH55, GH64,
GH81, and GH131 (Figure 1 and Supplementary Table 2b).
Cleaving β-1,3-linkage by these GHs might occur in concert with
auxiliary domains for their action against recalcitrant substrates
(Guillén et al., 2010). In the cases of putative cleaving β-
1,3-glucans, the auxiliary domains CBM43 and CBM13 were
shown to associate with GH5 and GH17, respectively (Blackman
et al., 2014). Family 6 CBMs are appropriate receptors for
laminarin due to the presence of multiple distinct ligand
binding sites (van Bueren et al., 2005). An enzyme with
GH5 and GH26 catalytic domains that possessed beta-1,3-1,4-
endoglucanase activity contained CBM11 (Carvalho et al., 2004).
The degrading activities toward β-1,6-bonds remain poorly
known and are found in GH5, -13, -30 of marine origins,
and in a new GH131 family of fungal proteins (Supplementary
Table 2b). However, there are enzymes with unique structures
and specificities related to the substrates of marine origin
such as the recently determined fucoidanases of the GH107
family, α-agarases of the GH117 family, or ulvan lyases of PL24
and PL25 families predominantly occurred in marine bacteria
(Supplementary Table 2b and Figure 1). Unfortunately, marine
fungal enzymes specific toward to the algal polysaccharides have
yet to be structurally determined and classified (Supplementary
Table 1).

Thus, an alginate lyase from the Aspergillus oryzae associated
with brown seaweed was unique due to cleaving the β-1,4
glycosidic bond between polyM and polyG blocks of sodium
alginate resulted in a higher polyM/polyG ratio in comparison
with the acid hydrolysis (Singh et al., 2011). The marine isolates
Calcarisporium sp. KF525, S. brevicaulis LF580, and Tritirachium
sp. LF562 as well as isolates from other experiment, A. oryzae

TABLE 1 | The composition of polysaccharides of food macroalgae fibers.

Macroalgae Soluble fibers Insoluble fibers

Brown algae (Phaeophyta)
Fucus
Laminaria
Undaria
Himanthalia

Laminarins:β-(1,3)-and β-(1,6)-glucose (3:1), mannitol
Alginates:β-(1,4)-manuronic and α-(1,4)-guluronic acid
Fucans/fucoidans:α-L-fucose sulfate, mannuronic acid, xylose, galactose, glucose, mannose

Celluloseβ-(1,4)-glucose

Red algae (Rhodophyta)
Chondrus
Porphyra
Mastocarpus

Agarose: D-galactose acid and (3,6)-anhydro-D-galactose sulfate
Carrageenan:α-1,3-D-galactose acid and (1,4,3,6)-anhydro-L-galactose sulfate
Xylan:β-(1,4)-D-xylose
Mannan: Mannose

Celluloseβ-(1,4)-glucose

Green algae (Chlorophyta)
Ulva
Enteromorpha

Ulvans: sulfated rhamnose, xylose, uronic acids, glucose
Xylans: β-(1,4)-D-xylose, arabinose, glucose, galactose, uronic acids, mannose
Mannan: Mannose Sulfated galactans

Celluloseβ-(1,4)-glucose
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FIGURE 1 | Schematic representation of algae cell wall polysaccharides and corresponding polysaccharide-degrading enzymes. AA, monooxygenase; AFC,
α-fucosidase; AGA, agarase; AGU, gucuronidase; ALG, alginate lyase; BGL, β-1,4-glucosidase; BXL, β-1,4-xylosidase; CAR, carrageenase; CBHI, exo-β-glucanase
(reducing end); CBHIl, exo-β-glucanase cellobiohydrolase (non-reducing end); EG, endo-β-1,4-glucanase; GLU, β-1,4/1,3-glucanase; MAN, β-1,4-endomannanase;
MND- β-1,4-mannosidase; ULV, ulvanlyase; XEG, xyloglucan-β-1,4-endoglucanase; XLN, β-1,4/1,3-endoxylanase; XLS, β-1,4-xylosidase (reducing end); XYL,
β-1,3-xylosidase (van den Brink and de Vries, 2011; Pluvinage et al., 2013; Rytioja et al., 2014; Zhao et al., 2014; Zhu et al., 2016; Gao et al., 2017; Ulaganathan
et al., 2017). Algae polysaccharides content and structures were presented with the use of data reported by Synytsya et al. (2015). Enzyme abbreviations were
applied according the EC and CAZy classification. Algae polysaccharide-degrading enzymes were shortened according to the first letters of the enzymatic names.

and Dendryphiella salina, produced biomass from alginate (Moen
et al., 1995; Singh et al., 2011; Wang et al., 2016).

Only Calcarisporium sp. KF525 could additionally
produce biomass from the sulfated galactans, agar and
carrageenan (Supplementary Table 1). Among 18 marine-
derived morphospecies, Phoma sp., Aspergillus ochraceus, and
A. terreus, possessed also carrageenase activity (Solis et al., 2010).
However, all 144 studied fungal isolates (except Fusarium sp.)
grew with carrageenan as the sole carbon source, 10 of which
produced the largest mycelial biomass. Several CAZymes from
the families GH11, -82, and GH50, -86, -117, -118 found in
bacteria are known to contain activities related to carrageenase
and agarase, respectively (Figure 1 and Supplementary Table 2b).
Carrageenases and agarases have not yet been explored in marine
fungi, but these enzymes can belong to the multifunctional

family GH16, whose genes are widely distributed in fungal
genomes (Zhao et al., 2014; Kumar et al., 2015; Mai et al., 2016)
(Supplementary Table 2b).

Some marine fungal strains grew on the ulvan-containing
material, indicating that they may be a source for novel ulvan
lyases and GHs as it was found in marine bacteria producing the
enzymes of new families PL24-25 and GH105 (Solis et al., 2010;
Collén et al., 2014; Gnavi et al., 2017; Ulaganathan et al., 2017).
The fungal endo-β-1,4-glucuronan polysaccharide lyase isolated
from T. reesei was applied to the glucuronan depolymerization of
the green seaweed Ulva lactuca for the production of bioactive
glucuronic acid oligosaccharides (Redouan et al., 2009). The
enzyme crystal structure was determined at 1.8 Å resolution as
the first three-dimensional structure of the PL20 family (Konno
et al., 2009).
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Cultivating the marine fungi on the different plant and algal
substrates induced also the production of proteases, amylases,
glucanases, xylanase, pectinases, and lipases (Nadu et al., 2011;
De Souza et al., 2015; Wang et al., 2016; Balabanova et al., 2018).
The utilization of laminarin, starch, and xylan by Calcarisporium
sp. KF525, Tritirachium sp. LF562, Bartalinia robillardoides
LF550, Penicillium pinophilum LF458, S. brevicaulis LF580,
and Pestalotiopsis sp. KF079 at a similar rate as glucose
demonstrated the efficiency with which their amylases and
glucanases were expressed (Wang et al., 2016) (Supplementary
Table 1). Among the extracellular enzymes of 90 marine fungal
strains degrading polysaccharides, amylases and β-1,3-glucanases
were most widespread, particularly in the genera Fusarium,
Geomyces, and Echinobotrium, whereas the enzymes cleaving
CM-cellulose, agar, and fucoidan were rare (Burtseva et al.,
2003). Although the marine fungi Isaria felina (accepted name
Beauveria felina) and S. brevicaulis grew well on the submerged
rice bran without the addition of salts, they exhibited mainly the
β-1,3-glucanase and polymannuronate lyase activities reached for
7 days to 600 U/mg and 280 U/mg, respectively (Balabanova
et al., 2018). However, their enzymatic profile included about
25–37 U/mg activities of agarase, alginate lyase, carragenase and
fucoidanase during the first 4 days of cultivation dropped almost
to zero at the following 7 days, probably, due to the growth
on the plant substrate (Balabanova et al., 2018). Twenty-four
GH3, 13 GH5, 11 GH13, 12 GH16, 4 GH17, 5 GH55 that
can relate to β-1,3;1,6-glucanase activity have been found in
the marine S. brevicaulis LF580 grown at the highest rate on
laminarin as the sole source of carbon (Supplementary Tables 1,
2). β-1,3-Glucanases are the most biochemically studied enzymes
in the marine fungi because β-1,3-glucans are polyfunctional
important components of the fungal cell wall as well as of
many plants and algae (Burtseva et al., 2003; Sova et al.,
2013; Raimundo et al., 2017). The fungus Chaetomium indicum
associated with Fucus evanescens collected near the Kuril Islands,
and Trichoderma aureviride sampled from bottom sediments
of South China Sea had similar extracellular laminarinases
classified as exo-1,3-β-D-glucan-glucanohydrolases (EC 3.2.1.58):
the temperature optimums (40–45◦C), molecular masses (54–
56 kDa), Km (0.1–0.3 mg mL−1) (Burtseva et al., 2003).
However, temperature stability of laminarinase of C. indicum was
significantly higher than the enzyme from T. aureveride. Many
endo-β-1,3-glucanases and glucan-binding proteins of marine
origin have been found to belong to GH16 (Sova et al., 2013).
Remarkably, only fungi possessed β-1,3-glucanases with exo-type
action. However, their belonging to any GH family has yet to be
determined (Sova et al., 2013).

The microbial producers of fucoidanases are rare and the
enzyme properties are poor studied despite the biotechnology
potential of fucoidans (Ermakova et al., 2015; Trincone, 2018).
Although fucoidans constitute up to 25–30% of the seaweed dry
weight dependent on the species and season, no more than 20
fucoidanases of the microbial producers have been characterized
(Rodriguez-Jasso et al., 2010; Ermakova et al., 2015; Trincone,
2018). It has been shown that while fucose was well consumed
by several fungal species, their growth on fucoidan did not allow
the biomass production, indicating the absence of fucoidanases

in these marine fungi (Wang et al., 2016). In addition, the
absence of simple methods for quantitative determination of the
fucoidanase activity and the use of structurally uncharacterized
fucans hamper exploring fucoidanases and finding the new
enzymes (Ermakova et al., 2015). The enzymes distinguishing by
structures and consequently by the substrate specificities could
be involved in the transformation of fucoidans with unknown
diverse structures.

Probably for the same reason, the sequenced marine strain
Scopulariopsis brevicaulis LF580 growing on alginate or ulvans
as the sole carbon source does not have any known families of
algae polysaccharide-degrading enzymes such as alginate lyases
(PL7,-15,-17) or ulvan lyases (PL24,-25) (Supplementary Tables 1,
2a,b). At the same time, marine fungi associated with macroalgae
may be depleted in some enzymatic activities due to their
mutualistic living in microbial communities enriched in the
bacteria degrading the algae polysaccharides (Pluvinage et al.,
2013; Nedashkovskaya et al., 2014, 2018; Kusaykin et al., 2016;
Zhu et al., 2016; Gao et al., 2017; Raghukumar, 2017). Thus, only
two thermostable (50–60◦C) fucoidanases from marine fungi
Dendryphiella arenaria TM94 and Fusarium sp. LD8 have been
studied to date (Ermakova et al., 2015). However, brown algae
have the highest diversity of fungal endophytes such as facultative
marine Aspergillus, Cladosporium, and Penicillium, and obligate
marine Halosigmoidea marina and Acremonium fuci, whose
population may increase in dead algae (Raghukumar, 2017).
Bacteria have been suggested to play a more important role in
the submerged macroalgae degradation than fungi (Raghukumar,
2017).

AMYLOLYTIC ENZYMES

In fungi, three types of amylolytic enzymes are produced:
α-amylase (EC 3.2.1.1), glucoamylase (EC 3.2.1.3) and
α-glucosidase (EC 3.2.1.20) belonging to the GH13, GH15
and GH31 families (Chen et al., 2012). Amylases classified
as α-1,4- and 1,6-glucanases randomly hydrolyze starch, a
storage polysaccharide, to give diverse products such as dextrins
and smaller polymers. Polyextremophilic characteristics of
α-amylases from marine fungi are often of interest due to
their frequent use (25% of total enzyme market) in food,
pharmaceutical, and detergent industries (Ali et al., 2014).

An α-amylase from hyper halophile Engyodontium album
TISTR 3645 purified up to the specific activity 132.17 U mg−1

was able to work at a high salinity 30% and temperatures 70–
80◦C that made it a useful candidate for bioremediation as
well as various industries where a higher salt concentration,
surfactants, and detergents inhibit enzymatic conversions (Ali
et al., 2014). A. oryzae and Penicillium sp. isolated from marine
sediments collected in the east coast of India showed the high
levels of amylase activity (220–250 U mg−1), whose biomass was
grown by solid state fermentation (SSF) with the use of spoiled
banana fruit with starch supplementation at 35–40◦C and pH 6.5
(Sathya and Ushadevy, 2013). The fungus Penicillium sp. NIOM-
02 showed an increase of amylase activity at cultivation on wheat
and corn flour by submerged fermentation (SmF) (246 U mg−1)
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and by SSF (18 U mg−1) in comparison with the activity on
sugar cane bagasse (Dhale and Vijay-Raj, 2009). Remarkably, the
addition of higher quantities of corn flour or corn steep liquor
(≥30 g L−1) as the substrate repressed the amylase production
during SmF. Moreover, an acidic condition did not stimulate the
fungus metabolite production, inducing only stress-dependent
sporulation, probably, due to the marine origin of the strain,
where pH is slightly alkaline (Dhale and Vijay-Raj, 2009).

CELLULOLYTIC ENZYMES

It is known that the enzymatic breakdown of cellulose in fungi
is achieved by GHs from the families 5, 6, 7, 12, and 45
distinguished by the mode of enzymatic action and the substrate
specificity: cellulose 1,4-β-cellobiohydrolyses (reducing end) (EC
3.2.1.176; CBH I; GH7); β-1,4-endoglucanases (EC 3.2.1.4; EG;
GH 5,6,7,12,45), exo-β-glucanases or cellobiohydrolases (non-
reducing end) (EC 3.2.1.91; CBHII; GH 6,7), β-glucosidases
(EC 3.2.1.21; BGL; GH 1,3), and the auxiliary enzymes (AA)
(Supplementary Table 2). Endoglucanases catalyze the cleavage
of accessible intramolecular β-1,4-glucosidic linkages in cellulose
randomly and production of the new chain ends (Payne
et al., 2015). Exoglucanases processively hydrolyze cellulose
chains at the ends up to soluble cellobiose or glucose, and
then β-glucosidases cleave cellobiose to glucose, eliminating
cellobiose-dependent inhibition. Oxidative enzymes are in 12
AA families, of which 8 AAs act during lignin degradation
and 4 AAs act on polysaccharides (LPMOs) with an endo-
type mechanism of action in crystalline regions of the chains
(Payne et al., 2015). The present microbial cellulase production
technologies including genetic optimization of the strains have
reached an industrial level of research (Ochoa-Villarreal et al.,
2012; Rytioja et al., 2014; Payne et al., 2015; Kuhad et al., 2016).
The cellulase complex of fungal species of genera Trichoderma
and Aspergillus are believed to be the most equipped for plant
material degradation and therefore their genetic-engineering
strains, particularly T. reesei, and the genes encoding highly
active cellulases, have been intensively used for the improvement
of industrial processes (Payne et al., 2015; Kuhad et al., 2016;
Druzhinina and Kubicek, 2017).

Although cellulose is a major component of the terrestrial
plant material, many marine fungi also possess cellulase activity
and are able to grow well on pure cellulose as well as on plant
wastes (Ravindran et al., 2010; Solis et al., 2010; Borines et al.,
2011; Nadu et al., 2011; Faten and Abeer, 2013; Sathya and
Ushadevy, 2013; Ali et al., 2014; Alsheikh-Hussain et al., 2014;
Bonugli-Santos et al., 2015; Hong et al., 2015; Balabanova et al.,
2018). About 3.5–4.6% and 11.5–16.1% of cellulose fiber were
chemically determined in non-food macroalgae Ascophyllum
nodosum and Sargassum sp., which were used for bioethanol
production (Kraan, 2012). The cellulose and hemicellulose
content of the seaweeds has been surveyed to be 2–10%
and 9% dry weight, respectively. Cellulose was one of the
most preferred carbon source for nine fungal strains among
18 marine-derived species (144 strains) in the study of Solis
et al. (2010). However, none of six marine strains reported

by Wang et al. (2016), Calcarisporium sp., Tritirachium sp.,
Bartalinia robillardoides, Penicillium pinophilum, Scopulariopsis
brevicaulis, and Pestalotiopsis sp., grew well on cellulose or CMC
as the sole carbon source indicating only weak production of
cellulases or endoglucanases. The initial cellulase activity of the
marine strains B. felina and S. brevicaulis grown on the rice
floury bran reached to 27 and 45 U/mg, respectively (Balabanova
et al., 2018). However, the value increased approximately
threefold after the week of cultivation in only S. brevicaulis. An
effective cellulase production has been reported by the marine
fungus Cladosporium sphaerospermum isolated from deteriorated
seaweed Ulva through SSF and its potential in the saccharification
of the green seaweed U. fasciata for bioethanol production
(Trivedi et al., 2015). Cellulase-producing marine fungi among
181 samples isolated from the continental slope sediments of the
Arabian Sea belonged mainly to genera Cephalosporium (36.5%),
Pleospora (22.5%), Humicola (20.5%), and Penicillium (18.55%)
(Smitha et al., 2014). Thus, not all marine strains of fungi are
producers of active cellulolytic enzymes; probably, due to their
specialization to the more frequently occurred substrates in the
marine environment than cellulose. Facultative marine strains
related to the plant cell wall degradation are more likely to be
cellulolytic (Supplementary Table 1).

However, the use of cellulose in the growth medium as
the sole carbon source can provide an increase of cellulolytic
enzymes synthesis in fungi (Hong et al., 2015; Lee et al.,
2015). An endophyte Arthrinium malaysianum closely related
to A. arundinis, A. saccharicola from marine brown algae
Sargassum sp. has the innate ability to produce extracellular
lignocellulose-degrading enzymes (Hong et al., 2015; Mukherjee
et al., 2016). The higher levels of the expression of extracellular
endoglucanase (EG), β-glucosidase (BGL), β-xylosidase (BXL),
filter paper activity (FPase) under the 2-deoxy D-glucose (2-
DG) treatment were exploited for evidence of the enzyme
genes up-regulation (Mukherjee et al., 2016). The exogenous
addition of 2-DG to fungal cells in a growth media caused
the glucose starvation-like response. The results showed that
16 β-glucosidases of the GH1, and 6 glucan β-1,3-glucosidases
of the GH5 family involved in cell wall biogenesis/degradation
was significantly up-regulated. Moreover, in vitro addition of the
non-metabolized glucose analog 2-DG in the medium containing
cellobiose resulted in a further increase of the β-glucosidase and
endoglucanase activities. The presence of numerous cellulose-
and xylan-degrading enzymes of the GH5, GH3, GH16, GH43
families allow considering the strains of Arthrinium spp. as
an important candidates for biofuel production (Mukherjee
et al., 2016). The enzymes assay including the determination
of filter paper units (FPU) related to saccharification yield;
EG activity attacking the non-crystalline cellulose, and BGL
activity promoting the cellulase inducers expression, revealed the
highest values of the cellulolytic activity in the marine fungus
A. saccharicola (Supplementary Table 1).

The activities of marine fungi cultured in non-marine media
were comparable to the reported values of the terrestrial
wood-decaying fungi (Hong et al., 2015). In a previous study,
the total cellulase activities for several strains isolated from
a coastal marine sponge Haliclona simulans were similar to
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the activities for the cellulase-overproducing mutant Hypocrea
jecorina QM9414 (T. reesei) on all types of saline and non-saline
media (Baker et al., 2010; Hong et al., 2015) (Supplementary
Table 1). The marine-derived strains Basidiomycete MEG2,
Pezizomycetes CMCA22 and GPG3 showed an increased the
EG activity at low temperatures with the addition of sophorose
precursor, cellobiose (Alsheikh-Hussain et al., 2014).

The majority of 18 marine-derived ascomycetes and
zygomycetes also showed the EG and BGL activities
independently on salinity (Lee et al., 2015). Only the cellulolytic
activity of Penicillium chrysogenum increased with a salinity
0.5 M at pH 7–8 that corresponds to the values of the ocean.
Arthrinium phaeospermum and Fusarium equiseti grew with
the highest rate in saline conditions, indicating the intrinsic
halo-tolerance due to the long-time adaptation to a marine life
style (Lee et al., 2015). However, mangrove fungus Pestalotiopsis
sp. NCi6 capable of utilizing complex lignocellulosic substrates
in the presence of high concentrations of salt was distinguished
by lignocellulolytic profiles of the secretomes in non-saline and
saline conditions (Arfi et al., 2013) (Supplementary Table 2).
Although the Pestalotiopsis sp. NCi6 transcriptome was more
enriched in lignin breakdown enzymes, the proteomic and
transcriptomic analyses suggested that the adaptation of
mangrove fungi to salt expressed in an increase in the number
of cellulolytic enzymes, enhancing cellulose and hemicellulose
hydrolysis at increasing the salinity up to 3% (Arfi et al., 2013).

Considering the importance of cellulases with the alkaline pH-
optimums in craft pulping industries, screening of the marine-
derived endophytes and wood litter fungi has been carried out
in the mangrove ecosystem of the Goa coast using agro-wastes
(Ravindran et al., 2010). Among 54 strains, Aspergillus sp. and
Chaetomium sp. isolated from wood litter showed a higher
level of exoglucanase (FPase), EG and BGL activities at pH 9.7
grown on cottonseed as the carbon source. The other fungal
strains demonstrated average, weak or no activity of the enzymes.
Cellulolytic activity was also high in the marine fungus Helicascus
kanaloanus associated with the Indian mangrove driftwood
samples (Nadu et al., 2011).

Although the strain S. brevicaulis LF580 was isolated from the
inner tissue of the marine sponge, it was fully equipped with
putative enzymes involved in cellulose degradation similarly to
other ascomycetes able to modify or deconstruct plant material
(Supplementary Tables 1, 2). The plant polysaccharide-degrading
enzymes were also predominant in Pestalotiopsis sp. NCi6 in
comparison with the amount of putative algae polysaccharide-
degrading enzymes (Supplementary Table 2).

HEMICELLULOSE-DEGRADING
ENZYMES

Hemicellulose polymers consist of pentoses (xylose and
arabinose), hexoses (mostly mannose), and a number
of sugars and acids. Consequently, several enzymes are
needed to completely degrade these polysaccharides. The
hemicellulases include endo/exo xylanases, endo/exo-
β-glucanases, β-mannanases, arabinofuranosidases, and feruloyl

esterases, acting on specific glyco-units and glycosidic bonds
toward different hemicelluloses (Supplementary Table 2). Xylan
is the major component of hemicellulose in the plant cell wall.
Various forms of xylanases exist in nature, which belong to the
GH families 1, 3, 10, 11, 30, 39, 43, 51 with the predominance
of GHs 10, 11 and 30 in fungi. β-Xylosidases are grouped
into the GH families 3, 8, 30, 39, 43, 52, 54, 116, 120, but the
known GHs of fungal origin are limited to families 3 and 43
(Ochoa-Villarreal et al., 2012; Rytioja et al., 2014; Kirikyali
and Connerton, 2015; Berlemont, 2017; Thomas et al., 2017).
Xylanases are used concurrently with cellulases and pectinases
for clarifying juices, the liquefaction of vegetables and fruits
as well as in the pretreatment of forage crops to improve the
digestibility of ruminant feeds and to facilitate composting (Nadu
et al., 2011; Goddard-Borger et al., 2012).

Xylans of different chemical structures forming a backbone
with β-1,3-xylopyranosyl linkages are only found in marine
macroalgae (Goddard-Borger et al., 2012; Synytsya et al., 2015)
(Figure 1). In some macroalgae, where cellulose is absent
(Chlorophyceae and Rhodophyta), xylan forms a highly crystalline
fiber-like material. The main polysaccharide in Acetabularia,
Codium, and the Halicoryne genera, and in some red algae such
as Porphyra umbilicales is β-1,4-mannan, which is a structural
and reserve component of green algae (siphonaceous) (Goddard-
Borger et al., 2012; Synytsya et al., 2015) (Figure 1).

Since some seagrasses and macroalgae showed up to 40% xylan
(in red/green algae and higher plants) or fuco-glucuronoxylans
(in brown algae) of the polysaccharide content, it was suggested
the marine bacteria and fungi associated with them could evolve
the efficient mechanisms for xylan degradation at the genetic
and/or molecular levels (Kraan, 2012; Del-Cid et al., 2014;
Dos Santos et al., 2016). However, the global significance of
mycobionts of seagrasses, particularly associated with the roots
of aquatic plants, is not well understood (Kohout et al., 2012;
Vohník et al., 2016).

Filamentous fungi were found to be one of the best degraders
due to their great capability of secreting a wide range of xylan-
degrading enzymes that have great biotechnological potential
in the paper, pulp, feed, and food industries as well as in the
generation of liquid fuels and chemicals from lignocellulose (Lio
and Wang, 2012; Dos Santos et al., 2016; Berlemont, 2017).

Algal endophytes Trichoderma harzianum and a marine-
derived fungus Aspergillus cf. tubingensis LAMAI 31 have
been found to be effective sources of the highly active salt-
inducible xylanases, utilizing xylan as well as agro-industrial
residues such as sugar cane bagasse, wheat bran, and rice straw
(Thirunavukkarasu et al., 2015; Dos Santos et al., 2016).

Among 493 marine-derived fungi studied by Dos Santos
et al. (2016), 112 isolates were able to degrade xylan. Notably,
the largest number of fungi able to produce xylanase with an
enzymatic activity from 0.25 to 49.41 U mL−1 was recovered
from marine sponges.

Cladosporium sp. associated with Antarctic marine sponges
showed the higher xylanolytic activity at low temperatures
when grown on beechwood or birchwood xylan and wheat
bran, than on wheat straw and oat bran (Del-Cid et al., 2014)
(Supplementary Table 1).
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The cold-active xylanases from psychrotrophic marine fungi
were successfully cloned and expressed in Escherichia coli and
Pichia pastoris. The xylanase gene product with a sequence
corresponding to the GH 10 family of the cold-adaptive
P. chrysogenum FS010 isolated from deep-sea sediments of
Yellow Sea was synthesized with the use of an expression vector
pGEX-4T-1 (Hou et al., 2006). The higher xylanase activity was
registered at the enzymatic production of reducing-sugar ends
from birchwood xylan, oat spelts xylan, and wheat arabinoxylan
(Supplementary Table 1).

Mangrove fungi producing thermostable and active xylanases
in the presence of residual sulfated lignin are highly desirable in
the enzymatic treatment of wood pulp after alkaline extraction.
The cellulase-free filtrate of Aspergillus niger isolated from the
detritus of decaying mangrove leaves grown on oat spelts xylan or
sugarcane bagasse containing 580 U L−1 of xylanase could bleach
sugarcane bagasse pulp for 60-min at 55◦C (Raghukumar et al.,
2004a). The fungal filtrate also showed moderate activities of
xylosidase (0.26 U mL−1) and arabinofuranosidase that could act
synergistically with xylanase at attacking xylan. After purification
of the A. niger xylanase, its activity reached the value 2457 U
mg−1 protein, which was comparable with the terrestrial analog
(Supplementary Table 1).

Low hemicellulase activities in the marine-derived fungi from
brown algae [≤0.02 U of β-xylosidase (BXL) activity per mL of
crude fungal extract] were suggested to be due to the low content
of hemicellulose in brown algae (Borines et al., 2011; Hong et al.,
2015) (Supplementary Table 1).

The high levels of mannanase activity comparable to the
cellulase and xylanase activities were determined in all 11 marine
fungal strains studied by Arfi et al. (2013) except for two isolates
that showed overall low mannanase activity or low activity in the
non-saline medium due to an adaptation of certain enzymes to
various levels of salinity (Supplementary Table 1). An effective
role of mannanases is in the bleaching process to reduce the
environmentally harmful chemicals in pulp and paper industry
(Arfi et al., 2013).

PECTINOLYTIC ENZYMES

Pectin a heteropolysaccharide composed of α-1,4-linked
galacturonate chains with a high percentage of methyl
esterification is found in the middle lamella of the plant
cell wall and important for controlling growth, wall porosity,
and regulation of the ionic environment in plant cells (Eder
and Lütz-Meindl, 2008). There are at least nine families of the
pectin-specific enzymes, including GH28, GH53, and GH93,
polysaccharide lyases of PL1, PL3, PL4, and PL11, and CEs
of CE8 and CE13. Enzymes of GH28 are important for the
degradation of pectin backbones by fungi (van den Brink and
de Vries, 2011). Pectinases such as polygalacturonase (PG) and
pectate lyase (PL) are the first enzymes to be secreted by fungal
pathogens when they attack plant cell walls (Niturea et al., 2008).
The facultative fungal endophyte Fusarium moniliforme isolated
from decaying leaves of mangrove plants in the saline detritus-
rich mud of a mangrove estuary on the west coast of India was

a highly pectinolytic producer (Niturea et al., 2008). The fungus
was also able to grow without salt and produced maximum
biomass and pectinolytic enzymes (PG I, PL) in a liquid medium
(Supplementary Table 1). The salt concentration up to 0.4
M NaCl slightly decreased their production, suggesting that
although it had been isolated from a halophytic environment,
it was not an obligate fungus (Niturea et al., 2008). However,
the pectin-depolymerase activities were often not found in some
marine fungi, possibly due to the structure-function features
of the enzymes, or the absence of their up-regulation in the
presence of plant-derived substrates used in experiments. A high
occurrence of polygalacturonase producers (30%) among the
deep-sea yeast collected from the mud of Sagami Bay (1100–
1400 m) capable of degrading plant pectin was inexplicable
(Minegishi et al., 2006). Yeasts lost almost all of their pectinases
as they adopted to consume simple sugars (Chang et al., 2015).
The authors related the capability of utilizing plant pectin
non-preferable for yeast to highly reversible metabolic pathways
of the deep-sea habitants living in the conditions of nutrient
depletion for their growth (Minegishi et al., 2006).

Pectic polysaccharides and the genes for their synthesis
have only been identified in the land plants and in the allied
streptophyte algae (Chang et al., 2015). Among 103 fungal
genomes examined, 21 lacked any PL genes (Zhao et al., 2014).
Phylogenetic analyses of fungi indicated that the earliest fungi
had copies of GH28 genes, which further duplicated during the
evolution of the common ancestor of Chytridiomycota and the
terrestrial fungi to be able to consume nutrients from pectin-
containing streptophyte plants (Chang et al., 2015). The fungal
pectinolytic enzymes that degrade multiple pectic molecules
have been suggested to be good indicators of the association
between fungi and the land plant lineage (Chang et al., 2015).
The pectin-like structures in macroalgae may be different from
those of the higher plants through the higher galacturonic and
glucuronic acid content as well as an uncommon glucuronic
acid-galactose disaccharide (Eder and Lütz-Meindl, 2008, 2010).
These structural variations led to the differences in the antibody
binding of pectic epitopes in algae and higher plants. A different
polysaccharide structure as well as cell wall properties and
functions of the unicellular green algae could explain a reduced
activity in its pectin methylesterases (PME) in comparison to
the higher plants (Eder and Lütz-Meindl, 2008, 2010). Therefore,
marine fungi can also possess pectinolytic enzymes with unusual
structure and specificity distinguished by the affinity to the algal
pectin-like polysaccharides.

LIGNIN- AND TANNIN-DEGRADING
ENZYMES

Ligninolytic enzymes play a crucial role in carbon recycling. One
of the most important use of these enzymes is in bioremediation
to degrade or neutralize pollutants in the environment or
to decolorize dyes in industries (Raghukumar, 2008; Sette
and Santos, 2013). Taking into account that environmental
pollution is largely related to the saline conditions, the use
of the lignin-degrading enzymes from the marine-derived
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fungi can be considered strategic (Zilly et al., 2011; Sette
and Santos, 2013; Bovio et al., 2017; Barnes et al., 2018).
Lignocellulolytic fungi are classified according to the step of
the plant degradation: soft-rot, brown-rot, and white-rot fungi
(Hori et al., 2013; Levasseur et al., 2014). A recognized model
system for the study of the enzyme machinery involved in the
complete degradation of lignocellulosic material is the white-
rot fungus Pycnoporus cinnabarinus, whose genome contains a
versatile ligninocellulolytic enzymatic spectrum (Levasseur et al.,
2014). Among the enzymes involved in lignin degradation,
P. cinnabarinus is known to produce a high-redox-potential
laccase of the AA1 family up to 1 g per liter (Levasseur et al.,
2014). In addition, white-rot fungi have up to 12 members of
ligninolytic peroxidases from the AA2 family, distinguishing
them from brown-rot fungi, which contain no AA2 members
(Floudas et al., 2012; Hori et al., 2013; Levasseur et al., 2013).

The potential of many lignin-degrading marine fungi lies
in their laccases that have been applied for bioconversion of
agriculture plants and their wastes in valuable products such
as feed supplementations or pharmaceuticals; for biobleaching
of paper pulp, dye bleaching in textile industries, wastewater
treatment, removing of phenolic compounds in beverages, and
biofuel production (Raghukumar et al., 2004b; Raghukumar,
2008; D’Souza-Ticlo et al., 2009; Chen et al., 2011; Feng et al.,
2013; Sette and Santos, 2013; Bonugli-Santos et al., 2015). Laccase
a multicopper oxidase (benzenediol:oxygen oxidoreductases, EC
1.10.3.2) reduces oxygen to water and simultaneously carries out
one-electron oxidation of aromatic, mainly phenolic compounds
because of their low redox potentials from 0.5 to 1.0 V to allow for
electron abstraction by the Cu1 (Giardina et al., 2010; Desai and
Nityanand, 2011). However, some low-molecular intermediate
substrates (redox mediators) allow laccases indirectly oxidize
large molecules with a high redox potential, including non-
phenolic lignin. In the oxidative method for the industrial
decolorization or delignification with the use of laccase or the
laccase/mediator system, the redox potential difference between
the enzyme and the substrate is a relevant indicator of its
biodegradability (Giardina et al., 2010; Desai and Nityanand,
2011). Lignin peroxidase (LiP) (E.C:1.11.1.14) and manganese-
dependent peroxidase (MnP) (EC 1.11.1.13) and laccase (Lac)
(EC1.10.3.2) are the other major lignin-degrading enzymes with
great potential for industrial applications (Bonugli-Santos et al.,
2010, 2015; Panno et al., 2013). LiP is a heme protein with a
high oxidation potential to be able to oxidize phenolic and non-
phenolic substrates. MnP is a glycoprotein dependent on H2O2
and Mn2+ and oxidizes aromatic phenols and dyes (Bonugli-
Santos et al., 2010).

Lignin-degrading marine fungi have been mostly identified
in mangroves and seagrasses (Raghukumar, 2008; Arfi et al.,
2013; Panno et al., 2013; Sette and Santos, 2013; Bonugli-
Santos et al., 2015). Although mangrove fungi are adapted to
high salinity, seawater can influence their growth and enzyme
production, suggesting a mechanism of regulation at the mRNA
level under hypersaline conditions. The marine strains of the
white soft-rot fungi Pestalotiopsis sp. NCi6 and Phlebia sp. MG-
60 have been found to synthesize new transcripts of lignolytic
enzymes (isozymes) in secretomes produced in saline conditions

(Kamei et al., 2008; Arfi et al., 2013). The laccase activity
was completely inhibited, and the number and diversity of
ligninolytic enzymes decreased in Pestalotiopsis sp. NCi6 in
the presence of salt, but simultaneously with an increase of
xylanase and cellulase activities (Arfi et al., 2013) (Supplementary
Table 2). The expression of two additional isozymes of the
lignolytic manganese peroxidases (MnP) in Phlebia sp. MG-
60 was stimulated in nitrogen-limited medium containing 3%
(wt/vol) sea salts that increased the total MnP activity compared
to the activity in a non-saline medium (Kamei et al., 2008).

The most represented genera Penicillium, Cladosporium, and
Acremonium associated with seagrass, Posidonia oceanica, were
rich in the strains able to produce ligninolytic enzymes and
tannases useful at degrading and detoxifying lignocellulose
residues in the presence of high salt concentrations (Panno
et al., 2013). The expression of oxidative enzymes was monitored
through decoloration of the dyes Remazol Brilliant Blue (RBBR)
for laccases and Amaranth Red (AmR) for peroxidases with
the redox potential similar to the natural substrates of these
enzymes (Desai and Nityanand, 2011; Panno et al., 2013; Bonugli-
Santos et al., 2015). The ascomycetes Cladosporium cucumerinum
MUT 4296, Pleosporales sp. MUT 4399, and white-rot fungus
Schizophyllum commune (KC339233) showed the high levels
of laccase and peroxidase activities (degradation > 75%, DP),
respectively (Panno et al., 2013). Approximately 50% of 88
the tested strains were able to decolorize the dyes extensively
(DP > 50%) at concentrations 15 and 30 g/l of salts. Only two
strains Beauveria bassiana MUT 4288 and Myrothecium roridum
MUT 4326 decolorized the dyes exclusively in the absence of
salt, indicating their non-marine origin (Panno et al., 2013).
The true marine fungi are active in such extreme conditions
as the presence of high salt concentrations that trigger or
increase the expression of specific enzymes. Thus, the lignicolous
marine fungus Havispora longyearbyenensis from Arctic water
significantly reduced even the growth without salinity at 4◦C
(Pang et al., 2011). The halotolerant enzymes from marine fungi
may be of great interest in industries where NaCl inhibits their
terrestrial counterparts from basidiomycetes, for example in
textile wastewaters (Zilly et al., 2011).

Remarkably, there are rather less data about marine
ligninolytic basidiomycetes. Three strains Marasmiellus sp.
CBMAI 1602, Peniophora sp. CBMAI 1063, and Tinctoporellus
sp. CBMAI 1601 were isolated from the marine sponges of the
north coast of Brazil (Menezes et al., 2010; Otero et al., 2017). An
intensely brown spent wash of molasses (MSW) was decolorized
by 60–73% by a marine white-rot basidiomycete, Flavodon
flavus, immobilized on a polyurethane foam, which could be
effectively used for a minimum three cycles (Raghukumar et al.,
2004b). Aside from decolorization, the fungus removed 68%
of the toxicity of MSW containing benzo(a)pyrene, polycyclic
aromatic hydrocarbon (PAH), therefore in the estuarine fish,
Oreochromis mossambicus, it was showed no liver damage in
contrast to the fish after contact with untreated MSW by the
fungus (Raghukumar et al., 2004b).

Tannins are the second most represented group of plant
phenolic compounds linked to the cell wall polysaccharides after
lignin (Chamorro et al., 2012). The polyphenolic compounds
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involved in a defensive function have been found to be extremely
abundant in the seagrass, P. oceanica, mainly in rhizomes and
leaves (Panno et al., 2013). Many of the fungal isolates associated
with the seagrass belonged to Ascomycota and were able to
produce tannases. Twenty-nine of them showed more than 50%
of the tannase activity in the saline conditions that could make the
plant eatable to most of the fauna present in the sea (Panno et al.,
2013). The acidophilic tannase produced by marine Aspergillus
awamori BTMFW032 showed an industrial potential for the
synthesis of antioxidant propyl gallate by transesterification, tea
cream solubilization, and the simultaneous production of tannase
and gallic acid (Beena et al., 2011). The medium optimization
indicated that productivity of both acidophilic tannase and
gallic acid could be enhanced to about 15-fold under SmF.
The process of simultaneous production of acidophilic tannase
as an extracellular enzyme along with gallic acid by a marine
fungus and their application were reported for the first time. The
unique properties of the enzyme rather related to its structure
distinguished from the reported terrestrial analogs (Beena et al.,
2011).

Thus, the marine laccases, peroxidases, and tannases could
be of great interest in both biotechnology and ecology in
the cases where a high concentration of salts are required,
particularly in the extremely cold environments (Kamei et al.,
2008; Raghukumar, 2008; Pang et al., 2011; Bonugli-Santos
et al., 2010; Menezes et al., 2010; Feng et al., 2013; Sette and
Santos, 2013). Different fungi producing lignolytic enzymes
were isolated from polluted marine environments and screened
for their possible use in bioremediation (Xue et al., 2015;
Deshmukh et al., 2016; Bovio et al., 2017; Barnes et al.,
2018). It has been suggested that the marine Ascomycota are
major candidate for the decomposition of polyphenol-containing
material in seawater and salt marshes, whereas this role in
terrestrial environment predominantly belongs to Basidiomycota
(Lyons et al., 2003; Panno et al., 2013; Gnavi et al., 2017).
One third of the ascomycetes from seawater and sediment
sampled in a Mediterranean site continuously contaminated
with oil spills was able to grow in the presence of crude
oil as the sole carbon source (Bovio et al., 2017). Aspergillus
terreus MUT 271, T. harzianum MUT 290 and Penicillium
citreonigrum MUT 267 showed a high decolorization percentage
(DP≥ 68%) of 2,6-dichlorophenol indophenol (DCPIP) with the
highest decrease of hydrocarbon compounds (up to 40%) for
A. terreus MUT 271 (Bovio et al., 2017). The redox indicator
DCPIP (redox potential +0.217 V) is used for the rapid
and simple colorimetric determination of the different types
of oil biodegradation profiles for the hydrocarbon-degrading
microorganisms based on the decoloration of reduced molecules
of the substrate (Bidoia et al., 2010). The oxidation tests
with the use of DCPIP allowed selecting the fungi degrading
three main fractions of oil in the Reconcavo and Campos
Basins: saturated hydrocarbons, aromatic, and non-hydrocarbon
compounds (Lima et al., 2017). The isolates of A. niger,
Penicillium documbens and Cochliobolus lunatus collected from
Pensacola beach (Gulf of Mexico) had the ability to degrade
crude oil in the presence of redox indicator, decreasing the
hydrocarbon weight approximately by up to 10 % during

7 days (Al-Nasrawi, 2012). Mangrove fungus Penicillium citrinum
#NIOSN-M126 reduced the total crude oil content by 77% and
the individual n-alkane fraction by more than 95% (Barnes et al.,
2018).

Recently, the full-length or partial sequences of the multigene
laccases from the marine-derived fungi with bioremediation
potential have appeared in GenBank (Supplementary Table 3).
Remarkably, the laccases of the marine strains Nigrospora sp.
CBMAI 1328 and Arthopyrenia sp. CBMAI 1330 have structural
features that groups them phylogenetically into the proteins
from ascomycetes derived from the marine environments
(Passarini et al., 2015). Discovery of the genes involved in the
delignification pathways in marine fungi can help to understand
their mechanisms to exploit their potential as efficient biomarkers
for bioremediation.

CONCLUSION

The polysaccharide- and polyphenol-degrading enzymes in
marine-derived fungi are often more multitudinous and
effective than their terrestrial counterparts, indicating the great
contribution of marine fungi to the biotransformation processes
of algae and plant material in the ocean parts of the Earth. Many
discoveries are expected in the coming years from this yet poorly
explored group of microorganisms, particularly about their
enzymes specific toward the marine substrates. The alteration of
CAZymes in marine fungi caused by the adaptation to marine
environment allows them to effectively growth on the algal as
well as plant polymeric substrates, including industrial wastes,
to produce the mycelium biomass enriched in the proteins and
enzymes. Therefore, the gene sequences encoding CAZymes of
marine fungi should be explored on their functionality to use
in the genetic modification and metabolic improvement of the
biotechnological strains, particularly for their cultivation at the
high salt concentrations or other extreme conditions in industry
or bioremediation of soils and water.
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