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Background: Previous research has shown the heterogeneity of lung adenocarcinoma (LUAD) accounts
for the different effects and prognoses of the same treatment. Cuprotosis is a newly discovered form of
programmed cell death involved in the development of tumors. Therefore, it is important to study the long
non-coding RNAs (IncRNAs) that regulate cuprotosis to identify molecular subtypes and predict survival
of LUAD.

Methods: The expression profile, clinical, and mutation data of LUAD were downloaded from The Cancer
Genome Atlas (TCGA), and the “ConsensusClusterPlus” package was used to cluster LUADs based on
cuprotosis-related IncRNAs (CR-IncRNAs). The least absolute shrinkage and selection operator (LASSO)
and multivariate Cox regression were used to construct a prognostic model. CIBERSORT and single-
sample gene set enrichment analysis (ssGSEA) were used for assessing immune cells infiltration and immune
function. The tumor microenvironment (TME) score was calculated by ESTIMATE, and the tumor
mutational burden (TMB) and Tumor Immune Dysfunction and Exclusion (TIDE) were used to evaluate the
efficacy of immunotherapy.

Results: Firstly, 501 CR-IncRNAs were identified based on the co-expression relationship of 19 cuprotosis
genes. And univariate Cox further obtained 34 prognosis-related CR-IncRNAs. The unsupervised consensus
clustering divided LUAD samples into cluster A and cluster B, and showed cluster A had better prognosis,
more immune cells infiltration, stronger immune function, and a higher TME score. Subsequently, we used
Lasso Cox regression to construct a prognostic model, and univariate and multivariate Cox analyses showed
the risk score could be an independent prognostic indicator. Immune cells infiltration, immune function, and
TME score were increased markedly in the low-risk group, while TMB and TIDE suggested the efficacy of
immunotherapy might be increased in high-risk group.

Conclusions: Our research identified two new molecular subtypes and constructed a novel prognostic

model of LUAD which could provide new direction for its diagnosis, treatment, and prognosis.
Keywords: Lung adenocarcinoma (LUAD); cuprotosis; long non-coding RNA (IncRNA); prognosis; immune
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Introduction

Global morbidity and mortality from lung cancer (LC)
continue to grow (1), and lung adenocarcinoma (LUAD)
is its most common pathological subtype (2,3). Despite
the rapid advancement of molecular biology and precise
medicine, the 5-year overall survival (OS) of LUAD
remains low, at only 15% (4). A previous study has clarified
LUAD as a highly though heterogeneous and complex
cancer caused by multiple genes, multiple factors, and steps,
and that traditional histological classification has significant
limitations in guiding its clinical treatment and predicting
survival (5). In recent years, the identification of LUAD
molecular subtypes based on polymerase chain reaction
(PCR), next-generation sequencing (NGS), fluorescence
in situ hybridization (FISH) and other molecular biological
technologies has shifted the classification of LUAD from
morphology to molecular characteristics, which provides the
basis for individual therapy. For example, epidermal growth
factor receptor (EGFR), v-raf murine viral oncogene
homolog B1 (BRAF), and mesenchymal-epithelial transition
factor (MET) mutational, as well as anaplastic lymphoma
kinase (ALK) and ROS proto-oncogene 1, receptor tyrosine
kinase (ROS1) translocated LUADs, have corresponding
targeted inhibitors for clinical treatment (6). In addition,
more and more researches were devoted to further
developing novel molecular subtypes of LUAD. Zhang
et al. divided more than 1,000 LUADs into three subtypes
based on 14 ferroptosis genes, and clarified the differences
in prognosis, immune microenvironment, and enrichment
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pathways among them (7). Liu er al. separated LUADs into
three molecular subtypes based on pyroptosis genes, and
illustrated the differences of clinicopathological features,
prognosis, and immune cells infiltration of the subtypes (8).
However, as the clinical responses of these classifications is
not ideal, it is of great significance to further complement
LUAD molecular types from an additional perspective.
Copper is an essential micronutrient for all organisms
and plays important roles in cellular respiration, free radical
detoxification, enzymatic activity catalysis, and neuropeptide
processing (9-11). In living organisms, active intracellular
copper homeostasis maintains low copper concentrations
because its excess is detrimental (12-15). For instance, in
mouse hepatocytes, copper induces oxidative stress and
promotes apoptosis by activating the tumor necrosis factor
receptor-1 (TNF-R1) signaling pathway (16). Copper can
also disrupt calcium homeostasis and activate apoptosis and
autophagy related pathways to promote tumor cell death
(17,18) and induce apoptosis-like death of cancer cells by
inhibiting 19S proteasome associated deubiquitinase and/
or 20S proteasome activity (19). In view of this, copper has
attracted great attention and become a hot spot in the field
of tumor therapy (20). The copper chelator elesclomol
has been revealed to possess significant anticancer activity
in LC, melanoma, colorectal cancer, and sarcoma (21).
The copper ion complexes CuL.'Cl, and CuL’Cl, showed
high cytotoxic activity against many tumor cells and low
cytotoxic activity against normal cells and were regarded as
ideal choices for oncology treatment (17). However, recent
studies found copper-induced cell death was distinct from
other programmed cell death forms such as necroptosis,
apoptosis, and ferroptosis. Copper-induced cell death
refers to the programmed cell death induced by copper
ions through the accumulation of lipoacylated proteins and
the loss of iron-sulfur cluster proteins under condition of
mitochondrial stress. This new type of programmed cell
death is defined as “cuprotosis”. It is distinct from copper
toxicosis, in that cuprotosis can occur even when the
concentration of copper ions in the cell is appropriate (22).
Further tumor studies showed cuprotosis genes were
differentially expressed between cancer and normal tissues.
Cuprotosis genes play important roles in the proliferation
and metastasis of cancer cells by influencing many cancer
signaling pathways, including receptor tyrosine kinase
(RTK), epithelial-mesenchymal transition (EMT), and
cell cycle (23). Given the relationship between cuprotosis
and LUAD remains unclear, it is valuable to investigate
cuprotosis from the perspective of tumor typing and survival

7 Thorac Dis 2022;14(12):4828-4845 | https://dx.doi.org/10.21037/jtd-22-1534



4830

prediction.

Long non-coding RNAs (IncRNAs) refer to RNA
transcripts over 200 nucleotides that do not encode
proteins but play important roles in the regulation of gene
expression (24). LncRNAs are thought to play critical roles
in pathological or physiological processes such as cell cycle
progression, cell differentiation, metabolic diseases, and
viral infections (24), and in many tumors are also considered
as diagnostic and prognostic markers and therapeutic
targets (25). Numerous research has focused on molecular
typing and predicting survival using IncRNAs. For example,
in hepatocellular carcinoma, tumor typing based on
ferroptosis-related IncRNAs (FR-IncRNAs) provided better
predictions of prognosis and efficacy of immunotherapy
and targeted therapy (26). In head and neck squamous
cell carcinoma (HNSC), the signatures of FR-IncRNAs
could also predict patient outcomes (27), while in acute
myeloid leukemia, m°A-related IncRNAs could predict
the tumor microenvironment (TME) and survival (28). In
addition, IncRNAs also participate in tumor progression by
regulating cuprotosis genes. LncRNA LFARI regulates the
crocin-inhibited mouse hepatic stellate cell activation by
the MTF-1/GDNF pathway (29), and IncRNA MALAT'1
protects human osteoblasts from dexamethasone-induced
injury by activating the PPM1E-NFE2L2 signaling
pathway (30). Further, cuprotosis-related IncRNAs (CR-
IncRNAs) have been found to predict the prognosis and
immune microenvironmental characteristics of soft tissue
sarcoma (31). And in HNSC, a prognostic model based
on 8 CR-IncRNAs can be regarded as a prognostic factor
and marker of immunotherapy and drug sensitivity (32).
However, the roles of CR-IncRNAs in LUAD and their
relationship with the prognosis and immune cells infiltration
and efficacy of immunotherapy of LUAD patients remain
unclear.

In this study, we investigated the expression and
prognostic significance of 19 cuprotosis genes in LUAD
in The Cancer Genome Atlas (TCGA) database and
authenticated 501 CR-IncRNAs which were closely related
to them. Univariate Cox analysis identified 34 prognosis-
related CR-IncRINAs which were then used to molecularly
type LUAD and analyze the differences in prognosis,
clinical characteristics, pathway enrichment, immune cells
infiltration, and TME between the subtypes. In addition,
the 34 CR-IncRNAs were subjected to least absolute
shrinkage and selection operator (LASSO) regression to
reduce the fitting, and finally 10 IncRNAs were used to
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establish a Cox regression prognostic model. We then
analyzed the differences in clinical characteristics, pathway
enrichment, immune cells infiltration, TME, mutation,
and drug sensitivity between low and high-risk groups. Our
research elucidated the potential role of CR-IncRNAs in
molecular typing and prognosis of LUAD and provided new
ideas for its diagnosis and survival prediction. We present
the following article in accordance with the TRIPOD
reporting checklist (available at https://jtd.amegroups.com/
article/view/10.21037/jtd-22-1534/rc).

Methods
Download and process LUAD data from TCGA

We downloaded RNA expression profiling sequencing and
clinical information data of LUAD from the TCGA (https://
portal.gdc.cancer.gov/), which included 59 normal lung
samples and 535 LUAD samples (33). Normal lung samples
and LUAD samples without complete clinical information
were removed, and the remaining samples were used for
molecular typing and construction and validation of the
prognostic model. R (4.1.3) and Perl (Strawberry version)
software were used to process and analyze the data. The
study was conducted in accordance with the Declaration of
Helsinki (as revised in 2013).

Identification of CR-LncRNAs in LUAD

Initially, we obtained 19 cuprotosis genes (NLRP3, GLS,
DBT, ATP7A, MTF1, NFE2L2, SLC31A1, FDX1, DLD,
DLAT, LIAS, LIPT1, PDHB, GCSH, PDHA1, CDKN2A,
DLST, ATP7B, and LIPT?2) from previous literature for
our study (21,22,34,35). Then, we analyzed the expression
differences of 19 cuprotosis genes between normal lung
and LUAD samples. The correlation between cuprotosis
genes and OS of LUAD patients was then performed
using a Kaplan-Meier (K-M) curve. Subsequently, we used
the “biotype.pl” program to differentiate the expression
matrices of mRNAs and IncRNAs, and a Pearson
correlation coefficient was used to evaluate the expression
correlation between 19 cuprotosis genes and IncRNAs.
Under the condition IRI >0.4 and P<0.001, we identified
501 CR-IncRNAs (available at: https://cdn.amegroups.cn/
static/public/jtd-22-1534-1.xls). Univariate Cox was then
used to further identified 34 prognosis-related CR-IncRINAs
with the condition P<0.01.
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Unsupervised clustering of LUAD based on CR-IncRNAs

We applied an unsupervised clustering algorithm of the
“Consensus Cluster Plus” R package to cluster 474 LUAD
samples according to the expression levels of 34 prognosis-
related CR-IncRNAs. To ensure the stability of the
clustering, 100 iterations were carried out with a resampling
rate of 80%, and the clustering number was ascertained by
the cumulative distribution function (CDF) curve (36).

Construction and validation of the prognostic model

Firstly, 474 LUAD samples were randomly and equally
divided into a training set and testing set, and Lasso Cox
regression was performed on 34 prognosis-related CR-
IncRNAs in the training set (37). And we established a
prognostic model of LUAD based on 10 CR-IncRNAs.
The risk score for each sample was calculated based on
the expression level of each IncRNA and its corresponding

sum (each

regression coefficient. The risk score formula = e
IncRNA expression x corresponding regression c()cfﬁcient). LUAD patientS were
divided into low-risk and high-risk groups based on the
median risk score, and a K-M curve was used to analyze
the difference of OS in the two risk groups. A receiver
operating characteristic (ROC) curve was used to calculate
the reliability of the model. The risk score of the samples
in testing and entire sets was then calculated according to
the modeling formula. Similarly, patients were divided into
low and high-risk groups based on the median risk score of
the training set. K-M and ROC analyses in test and entire
sets were then performed to demonstrate the stability of the
model, and nomograms and calibration plots in the entire set
were used to test the model's accuracy in predicting survival.

Clinical characteristics and prognostic analysis of clusters
and risk groups

Associations of clustering and risk score with clinical
characteristics, age, sex, stage, tumor size (T), lymph node
metastasis (IN), and survival status were analyzed using
the chi-square test, and the results were depicted using
heatmaps by means of the “pheatmap” package. Further, the
relationship between risk scores and clinical characteristics
was also analyzed by Kruskal or Wilcoxon tests. The K-M
curve analysed the relationship between the OS of LUAD
patients and cuprotosis gene expression, clustering, and
risk score, and univariate and multivariate Cox assessed the
value of the risk score as a prognostic indicator for LUAD.
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Functional envichment analysis of clusters and risk groups

To clarify differences in biological function between
different clusters and risk groups, we performed the gene
set variation analysis (GSVA) (38) using the “c2.cp.kegg.
v6.2.-symbols gmt” set from the MSigDB database (http://
software.broadinstitute.org/gsea/msigdb/index.jsp), and
P<0.05 was considered to be differentially enriched. In
addition, the “limma” R package was used to select the
differential genes between the different risk groups of the
entire sample using 11ogFCI >1 and P<0.05 as the selected
condition. Differential genes were then subjected to Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGGQG) enrichment analysis.

TME landscape and immune checkpoint evaluation

We used the CIBERSORT algorithm to identify differences
in the abundance of infiltration of 28 immune cells in
different clusters and risk groups (39). Further, the Single-
Sample Gene Set Enrichment Analysis (ssGSEA) R package
was used to analyze immune cell infiltration and immune
function across different clusters and risk groups (40).
The StromalScore, ImmunScore, and EstimatedScore
were calculated separately for each LUAD patient using
the ESTIMATION algorithm, and the “ggpubr” package
visualized the differences (41).

Mutation, immunotherapy, and drug sensitivity analysis

The mutation data of LUAD was downloaded from
TCGA. We analysed somatic mutations in different risk
groups by the package “maftools” and assessed the tumor
mutational burden (TMB) score in the low and high-risk
groups. Tumor Immune Dysfunction and Exclusion (TIDE)
analysis was performed to estimate the response of immune
checkpoint blockade (ICB) therapy (42). In addition, the
“pRRophetic” package was used to analyze the relationship
between the semi-inhibitory concentration (IC50) and risk
score of some chemotherapeutic drugs.

Statistical analysis

Kruskal and Wilcoxon tests were used for multigroups and
two groups, respectively. Pearson correlation coefficient was
used for analysing the correlation, and the survival curve was
drawn by K-M analysis. Univariate and multivariate Cox
were used to calculate 95% confidence intervals (CI) and
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Figure 1 Expression and prognosis analysis of cuprotosis genes in LUAD. (A) Expression of 19 cuprotosis genes in normal lung and LUAD

tissues. (B) Correlation of the 19 cuprotosis genes expression in LUAD. (C-N) K-M survival analysis of cuprotosis genes. *, P<0.05; **,

P<0.01; ***, P<0.001. LUAD, lung adenocarcinoma.

hazard ratios (HR). R (4.1.3) software was used for statistical
analysis and P<0.05 was considered statistically significant.

Results

Expression and prognosis analyses of cuprotosis genes in
LUAD

We investigated the expression of 19 cuprotosis genes in
normal lung and LUAD tissues, and compared with normal
lung tissues, NLRP3 (P<0.001), MTF1 (P<0.001), NFE2L2
(P<0.001), SLC31A41 (P=0.008), and FDXI (P<0.001) were

© Journal of Thoracic Disease. All rights reserved.

less expressed in tumor tissues. In addition, DLD (P=0.019),
DLAT (P<0.001), LIAS (P<0.001), PDHB (P=0.008),
GCSH (P<0.001), PDHAI (P<0.001), CDKN2A4 (P<0.001),
LIPTI (P=0.003), ATP7B (P=0.029), and LIPT2 (P=0.032)
were more expressed in tumor tissues, while there was
no differences in GLS (P=0.054), DBT (P=0.202), ATP7A
(P=0.657), and DLST (P=0.466) expression between normal
lung and LUAD tissues (Figure 14). We also analyzed
the correlation among the expression of 19 cuprotosis
genes (Figure 1B), and the association between cuprotosis
genes expression and the OS of LUAD patients. K-M
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Figure 2 Identification of CR-LncRNAs and prognosis-related CR-LncRNAs in LUAD. (A) Identification of CR-LncRNAs in LUAD. (B)
Prognosis-related CR-LncRNAs identified by univariate Cox analysis. (C) Expression of 34 prognostic CR-IncRINAs in LUAD and normal
lung tissues. (D) Correlation among the expression of 34 CR-IncRNAs. *, P<0.05; **, P<0.01; ***, P<0.001. CI, confidence interval; CR-
IncRNA, cuprotosis-related long non-coding RNA; LUAD, lung adenocarcinoma.

curves indicated the expression of NLRP3 (P=0.004), GLS
(P=0.007), DBT (P=0.009), MTF1 (P=0.009), and SLC31A1
(P=0.005) were positively correlated with OS, while the
expression of FDX1 (P=0.027), DLD (P=0.041), DLAT
(P=0.021), LIPTI (P=0.002), PDHA1 (P=0.005), CDKN2A4
(P<0.001), and DLST (P=0.038) were negatively related to
OS (Figure 1C-IN). No correlation was seen between the
expression of ATP7A (P=0.247), NFE2L2 (P=0.151), LIAS
(P=0.184), PDHB (P=0.203), GCSH (P=0.059), ATP7B
(P=0.175), LIPT2 (P=0.071), and OS (Figure SIA-S1G).

Identification of CR-LncRNAs in LUAD

The expression matrices of IncRINAs were extracted from

© Journal of Thoracic Disease. All rights reserved.

TCGA LUAD data, and according to the expression
level of the previous 19 cuprotosis genes, we screened
out 501 CR-IncRNAs of LUAD using the Pearson
Correlation Coefficient test (Figure 2A4) (available at:
https://cdn.amegroups.cn/static/public/jtd-22-1534-1.xls).
Subsequently, 34 prognosis-related CR-IncRNAs were
identified by univariate Cox analysis (Figure 2B). Figure 2C
shows the differential expression of these IncRNAs in
normal lung tissues and LUAD tissues, while correlation of
their expression is displayed in Figure 2D.

Consensus clustering of LUAD based on CR-IncRNAs
To understand the role of CR-IncRNAs in LUAD, we

7 Thorac Dis 2022;14(12):4828-4845 | https://dx.doi.org/10.21037/jtd-22-1534
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B. (E) t-SNE analysis of cluster A and B. (F) K-M survival analysis of clusters. (G) Correlation analysis of clusters and clinical characteristics.
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performed unsupervised consensus clustering analysis on
474 LUAD patients. After repeated 100 iterations it was
found that the stability of consensus cluster was the highest
when divided into a cluster A and cluster B (Figure 34-3C).
Both principal component (PCA) and t-distributed
stochastic neighbor embedding (t-SNE) analyses
showed identifiable dimensions between cluster A and B
(Figure 3D-3E), while the K-M curve showed the OS of
cluster A was better than that of cluster B (Figure 3F).
Differential analysis of clinical characteristics illustrated

© Journal of Thoracic Disease. All rights reserved.

gender, stage, T, N, and survival status were significantly
different in clusters, while there was no difference of
age between cluster A and cluster B (Figure 3G). GSVA
functional enrichment showed that compared with cluster
A, cluster B was more significantly enriched in the pentose
phosphate pathway, glycolysis gluconeogenesis, fructose
and mannose metabolism, amino sugar and nucleotide sugar
metabolism, phenylalanine metabolism, citrate cycle TCA
cycle, and other sugars and amino acids metabolism-related

pathways (Figure 3H).
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Figure 4 Immune cells infiltration and TME evaluation of clusters. (A) CIBERSORT analyzed the differences of 28 immune cells

infiltration between clusters. (B) SSGSEA analyzed the differences

of 16 immune cells infiltration between clusters. (C) SsSGSEA analyzed

the differences of immune function between clusters. (D) ESTIMATE analyzed the differences of TME scores between clusters. ns, no

significance; *, P<0.05; **, P<0.01; ***, P<0.001. MDSC, myeloid-derived suppressor cell; ssGSEA, singlesample gene set enrichment

analysis; TME, tumor microenvironment.

Immune cell infiltration and TME evaluation of clusters

Functional enrichment analysis showed cluster B was
significantly enriched in the energy and amino acid
metabolism related pathways. As previous research
has clarified energy and amino acid metabolisms affect
immune cell infiltration by changing the TME (43),
we analyzed the differences of immune cells infiltration
and TME between clusters A and B. The CIBERSORT
analysis showed activated B cells, eosinophils, immature B
cells, immature dendritic cells, mast cells, myeloid-derived
suppressor cells (MDSCs), memory B cells, natural killer

© Journal of Thoracic Disease. All rights reserved.

cells, plasmacytoid dendritic cells, and T follicular helper
cells infiltrated more in cluster A and CD56 dim natural
killer cells and neutrophils infiltrated more in cluster B
(Figure 44). The ssGSEA analysis showed B cells, iDC
cells, mast cells, T helper cells, and TILs infiltrated
more in cluster A (Figure 4B), while the immune function
analysis of ssGSEA revealed cluster A had higher HLA and
type II IFN response activities (Figure 4C). In addition,
the TME score was calculated using the ESTIMATE
algorithm, and the StromalScore, ImmuneScore, and
ESTIMATEScore of cluster A were all higher than cluster
B (Figure 4D).
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Lasso model. (B) Lasso coefficient profiles of the 10 CR-IncRNAs. (C) K-M survival analysis of high and low-risk groups in the training set.
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modeling CR-IncRNAs in high and low-risk groups. CR-IncRNA, cuprotosis-related long non-coding RNA; LUAD, lung adenocarcinoma;

ROC, receiver operating characteristic curve; AUC, area under the curve.

Construction of CR-IncRNAs prognostic model in LUAD

To better elucidate the association of CR-IncRNAs with
survival in LUAD patients, we constructed a CR-IncRNAs
prognostic model. First, 474 LUADs were divided into
training and testing sets randomly and equally. After further
screening by Lasso regression in the training set of 34
prognosis-related CR-IncRNAs, the Cox regression model
was constructed with 10 CR-IncRNAs of 4C026356.1,
AC099568.2, LINC01138, CRNDE, AC026369.3,
AL049836.1, AC021028.1, U91328.1, AC123595.1, and
AC243960.1 (Figure 5A,5B). K-M survival analysis showed
the OS of the high-risk group was significantly worse
than the low-risk group (P=4.885e-6) (Figure 5C), while
Figure 5D shows the high-risk group had higher risk score,
and the survival rate of high-risk patients was poor. The
ROC curve clarified the values of area under the curve
(AUC) of the model in 1, 3, and 5 years were 0.825, 0.824
and 0.854, respectively (Figure SE). We also analyzed the
expression differences of the 10 CR-IncRNAs between

© Journal of Thoracic Disease. All rights reserved.

risk groups. Figure SF shows AC026356.1, LINC01138,
AL049836.1, and AC021028.1 were highly expressed in the
high-risk group, and 4C099568.2, CRNDE, AC026369.3,
U91328.1, AC123595.1, and AC243960.1 were highly

expressed in low-risk group.

Validation of the CR-IncRNAs prognostic model of LUAD

To test the reliability and stability of the model, we
performed validation in the testing and entire set. In the
testing set, the K-M analysis indicated worse prognosis
in the high-risk group (P<0.001) (Figure 6A), and the
high-risk group had higher risk score and lower survival
rate (Figure 6B). The AUC of the ROC curve for 1, 3,
and 5 years were 0.711, 0.652 and 0.654, respectively
(Figure 6C). Likewise, in the entire set, the risk score in the
high-risk group was higher and the survival rate in the high-
risk group was worse (Figure 6D,6E). The 1-, 3-, and 5-year
AUC for the entire group were 0.765, 0.737 and 0.768,
respectively (Figure 6F). In addition, in the entire set, the

7 Thorac Dis 2022;14(12):4828-4845 | https://dx.doi.org/10.21037/jtd-22-1534
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ROC curve demonstrated the risk score (AUC: 0.765) had
the highest accuracy in predicting patient survival compared
to age (AUC: 0.550), gender (AUC: 0.592), stage (AUC:
0.712), T (AUC: 0.649), and N (AUC: 0.626) (Figure 6G).
Univariate Cox analysis showed stage (HR: 1.658, P<0.001),
T (HR: 1.523, P<0.001), N (HR: 2.720, P<0.001), and
risk score (HR: 1.114, P<0.001) were prognostic factors
in patients with LUAD (Figure 6H). Multivariate Cox
analysis showed that stage (HR: 1.362, P<0.007), N (HR:
1.731, P=0.01), and risk score (HR: 1.128, P<0.001)
could be considered as independent prognostic indicators
(Figure 61). To more accurately predict patient survival, we
created a nomogram including risk score and other clinical
characteristics (Figure 67) and visualized the performance
of the nomogram with calibration plots at 1, 2, and 3 years
(Figure 6K). The alluvial diagram shows the distribution for
each individual patient in clusters and risk groups (Figure 6L).

Clinical characteristics and functional envichment analyses

PCA and t-SNE analyses showed that the high-risk group
and low-risk group in the entire set were well differentiated
(Figure 7A4,7B). The Chi-square test displayed the risk score
was related to gender (P<0.05), stage (P<0.001), T (P<0.001),
N (P<0.001), and survival status(P<0.001), and not related
to age (P>0.05) (Figure 7C). The Kruskal test indicated
the level of risk score was positively correlated with stage
(P=0.0013) and T (P=0.025) (Figure 7D,7E), and among NO,
N1, and N2, the risk score was positively connected with N
(P<0.001). The low number of N3 patients might explain
the lack of statistical significance in the four-group analysis
(P=0.98) (Figure 7F). The Wilcox test showed patients with
a death status had a higher risk score (P<0.001) (Figure 7G).
Subsequently, to understand the differences in functional
enrichment of risk groups, we identified differential genes
between them and performed enrichment analysis, and
according to LogFC >1 and false discovery rate (FDR)
<0.05, 320 differential genes were screened (Figure 7H).
KEGG analysis showed the differential genes were enriched
in focal adhesion, ECM-receptor interaction, protein
digestion and absorption, the PI3K-Akt signaling pathway,
and the nitrogen metabolism pathway (Figure 7I). GO
analysis showed they were observably enriched in ubiquitin
protein ligase binding, protein kinase complex, response
to lipopolysaccharide, response to ketone, response to
reactive oxygen species, cellular response to oxidative stress,
response to decreased oxygen levels, response to steroid
hormone ¢, and other pathways (Figure 77). In addition,
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differential GSVA enrichment showed the high-risk group
was more enriched in the pentose phosphate pathway,
ubiquitin mediated proteolysis, cell cycle, base excision
repair, spliceosome, nucleotide excision repair, mismatch
repair, and other pathways, while the low-risk group was
more enriched in asthma, fatty acid metabolism, alpha
linolenic acid metabolism, and arachidonic acid metabolism

pathways (Figure 7K).

Analyses of immune cell infiltration and TME in risk
groups

CIBERSORT analysis showed that compared with the
high-risk group, activated B cells, activated CD8 T cells,
activated dendritic cells, central memory CD4 T cells,
central memory CD4 T cells, eosinophils, immature B
cells, immature dendritic cells, immature dendritic cells,
mast cells, MDSCs, monocytes, natural killer cells, and T
follicular helper cells were infiltrated more in the low-risk
group, and activated CD4 T cells and type 2 T helper cells
were infiltrated more in the high-risk group (Figure 84).
The ssGSEA showed aDCs, B cells, DCs, iDCs, mast
cells, neutrophils, pDCs, T helper cells, Tth, and TIL
cells infiltrated more in the low-risk group (Figure §B), and
immune function analysis showed the function of HLA, T
cell co-inhibition, T cell co-stimulation, and type II IFN
response were suppressed in the high-risk group compared
with the low-risk group. The high-risk group had stronger
MHC class I function (Figure §C), while ImmuneScore
(P<0.001) and ESTIMATEScore (P<0.01) were lower in the
high-risk group (Figure 8D).

Mutation, immunotherapy and chemotberapy sensitivity
analyses

Somatic mutation frequency is relevant to tumor immune
cell infiltration. Therefore, we analyzed the changes of
frequency of somatic mutations in the two risk groups
using the “maftools” package. We found the overall
somatic mutation rate in the high-risk group (93.33%) was
higher compared to the low-risk group (87.32%). Among
the top 10 genes with the highest mutation rates, TP53,
TTN, CSMD3, RYR2, LRP1B, ZFHX4, USH2A, KRAS,
and XIRP2 had a higher mutation rate in the high-risk
group, and only the MUCI6 gene had a higher mutation
rate in the low-risk group (Figure 94,9B). In addition,
research has shown tumors with high mutational burden
are more immunogenic and generate more neoantigens,
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Figure 7 Clinical characteristics and functional enrichment analyses of risk groups. (A) PCA between low-risk and high-risk group. (B)
t-SNE analysis of risk groups. (C) Correlation analysis of clinical characteristics between high and low-risk groups. (D) Correlation analysis
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Figure 8 Analyses of immune cell infiltration and TME in risk groups. (A) Analysis of 28 types of immune cell infiltration using
CIBERSORT. (B) Analysis of 16 types of immune cell infiltration using ssGSEA. (C) Analysis of immune function using ssGSEA. (D)
ESTIMATE analysis of differences of TME scores between risk groups. ns, no significance; *, P<0.05; **, P<0.01; ***, P<0.001. TME, tumor

microenvironment; ssGSEA, singlesample gene set enrichment analysis; MDSC, myeloid-derived suppressor cell.

and TMB is considered as a potential predictive marker of
an immune checkpoint blockade (ICB) response (44,45).
In our research, we found the TMB score was significantly
increased in the high-risk group compared to the low-risk
group (P=0.0069) (Figure 9C) and was positively associated
with longer OS (Figure 9D). In addition, patients with
a higher TMB in both groups had a better prognosis
(Figure 9E), while the high-risk group had lower TIDE
scores than the low-risk group (P<0.001) (Figure 9F).
Furthermore, we assessed the association of risk score
with the sensitivity of common drugs for LUAD and
found it was inversely associated with the sensitivity
to docetaxel (R=-0.18, P=8.4e-05), cisplatin (R=-0.4,
P<2.2e-16), paclitaxel (R=-0.3, P=2.3e-11), gemcitabine

© Journal of Thoracic Disease. All rights reserved.

(R=-0.25, P=4.8e-08), vinorelbine (R=-0.23, P=2.4e-07),
axitinib (R=-0.28, P=2.9¢-10), and saracatinib (R=-0.22,
P=1.8e-006), and positively connected with erlotinib (R=0.23,
P=2.4e-07) (Figure 9G-9N).

Discussion

LUAD is a dominant cause of cancer death worldwide (1).
Due to the high heterogeneity of the disease, given the
same treatment regimen, patients may have different clinical
outcomes (46,47). For example, programmed cell death
protein 1 (PD1), cytotoxic T lymphocyte-associated antigen
4 (CTLA4), and EGFR inhibitors significantly prolong the
survival of some patients with advanced LUAD, but offer
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Tumor Immune Dysfunction and Exclusion.

no benefit in others (48-50). Therefore, it is important to
authenticate new LUAD subtypes for providing precise
treatment and prognosis prediction for patients.

A previous study has shown copper participates in many
biological processes such as tumorigenesis, development,
angiogenesis, and epithelial-mesenchymal transition (51).

© Journal of Thoracic Disease. All rights reserved.

While dysregulation of copper homeostasis can lead to
mitochondrial dysfunction and promote cell death through
the Fenton reaction or elevated ROS levels, copper can also
bind proteasome subunits to promote cell death by inducing
protein ubiquitinating (20). Therefore, some copper
ionophores including bis (thiosemicarbazide) ligands,
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dithiocarbamates, and flavonoids have been identified as
anticancer agents (52). However, the latest research showed
cuprotosis is a novel type of cell death caused by copper-
induced aggregation of mitochondrial proteins (53). Given
the function of cuprotosis genes and their regulators in
LUAD remains unclear, it is significant to explore the role
of the cuprotosis genes and CR-IncRINAs in the molecular
typing and prognosis of the disease.

In our research, we first investigated the expression and
prognosis of 19 cuprotosis genes in LUAD. Subsequently,
we divided 474 LUAD cases into cluster A and cluster B
with an unsupervised consensus clustering method based on
34 CR-IncRNAs, and K-M analysis showed cluster B had
worse OS compared to cluster A. To understand the reasons
for the difference in prognosis, we analyzed the TME of
the two clusters, and found StromalScore, ImmuneScore,
and ESTIMATEScore were all significantly elevated in
cluster A. Previous study reported longer OS was generally
accompanied by higher stromal and immune scores (54),
which was consistent with our results. Immune cells play
critical roles in the TME, and immune infiltration is closely
related to patient survival (55). Our results showed activated
B cells, eosinophils, immature B cells, immature dendritic
cells, mast cells, MDSC, memory B cells, natural killer
cells, plasmacytoid dendritic cells, and T follicular helper
cells infiltrated more in cluster A, and CD56dim natural
killer cells and neutrophils infiltrated more in cluster B.
Different immune cells play tumor-promoting or tumor-
suppressing roles in different ways. For instance, B cells can
inhibit tumor progression via secreting immunoglobulins,
promoting T cell responses, and directly killing cancer
cells (56), and tumor-infiltrating eosinophils synthesize
granulin to kill cancer cells or inhibit tumor progression by
remodeling the TME (57). Dendritic cells can promote T
cell immunity and immunotherapy responses by presenting
endogenous or exogenous antigens to T cells to enhance
memory T cell responses (58), while MCs inhibit cancer
cell proliferation and induce death by releasing various
cytokines such as IL-1, IL-6, MCP-4, TNF-a, IFN-y, and
TGF-P (59). T follicular helper cells enhanced the function
of CD8" T and inhibited tumor proliferation in vivo (60),
and MDSCs promoted tumor progression by producing
ROS, NO, Argl, and suppressor cytokines for anti-tumor
immunity (61). Neutrophils have become an important
part of the TME, and TAN can promote tumor recurrence
and metastasis by driving angiogenesis, extracellular matrix
remodeling, and immunosuppression (62). NK cells exert
antitumor effects indirectly through direct cytolytic activity
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and production of cytokines such as IFN-y (63). Therefore,
we speculate that the better prognosis of cluster A patients
may be caused by more immune cell infiltration. Although
cluster B had more NK cell infiltration, we speculate this
could not reverse its immunosuppressive microenvironment.

To better elucidate the relationship between CR-
IncRNAs and the prognosis of LUAD, we constructed a
Lasso COX regression model based on 10 CR-IncRNAs.
The OS of the high-risk patients was significantly lower
compared to the low-risk patients, and the internal multiple
validation analysis demonstrated the model had high
accuracy. Subsequently, we found immune cell infiltration
and immune function were significantly suppressed in the
high-risk group, which could partly explain the poorer
prognosis of that group. We then analyzed somatic
mutations and TMB to further understand the reason for
the difference in immune cell infiltration between the high
and low-risk groups. Interestingly, the waterfall plot showed
the high-risk group had a higher mutation frequency and
TMB score, suggesting immunosuppression was more
severe in the high-risk group compared with the low-risk
group.

Previous study identified TMB as a potentially important
biomarker of the immunotherapy response and that it
positively correlated with anti-PD-1 and anti-PD-L1
responses (64). Therefore, we conjectured the efficacy of
ICB therapy in the high-risk group was better. In addition,
research has shown patients with higher TIDE scores
were more likely to escape from antitumor immunity and
that they had had lower response rates to ICB therapy.
Compared with TMB, TIDE is more accurate in predicting
survival outcomes of ICB-treated cancer patients (42). In
our study, patients in the high-risk group had lower TIDE
scores, which further supported the enhanced effect of ICB
treatment in the high-risk group. Therefore, we believe
the CR-IncRNA model could be available as a credible
biomarker for immunotherapy of LUAD patients. In
addition, drug sensitivity analysis also provided a theoretical
basis for the selection of chemotherapy drugs.

Conclusions

In conclusion, our research identified two molecular
subtypes and constructed a prognostic model of LUAD
based on CR-IncRNAs. We elucidated the differences in
clinical characteristics, prognosis, immune cells infiltration,
TME, and functional enrichment between subtypes and risk
groups, and investigated the differences of immunotherapy

7 Thorac Dis 2022;14(12):4828-4845 | https://dx.doi.org/10.21037/jtd-22-1534



Journal of Thoracic Disease, Vol 14, No 12 December 2022

and chemotherapeutic drugs sensitivity between the risk
groups. Our study provides new ideas for the molecular
classification of LUAD and the prediction of patient
survival. However, our research is based on the analysis
of bioinformatics data, and in the future, experimental
research is required to validate the results.
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