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Background: Previous research has shown the heterogeneity of lung adenocarcinoma (LUAD) accounts 
for the different effects and prognoses of the same treatment. Cuprotosis is a newly discovered form of 
programmed cell death involved in the development of tumors. Therefore, it is important to study the long 
non-coding RNAs (lncRNAs) that regulate cuprotosis to identify molecular subtypes and predict survival  
of LUAD.
Methods: The expression profile, clinical, and mutation data of LUAD were downloaded from The Cancer 
Genome Atlas (TCGA), and the “ConsensusClusterPlus” package was used to cluster LUADs based on 
cuprotosis-related lncRNAs (CR-lncRNAs). The least absolute shrinkage and selection operator (LASSO) 
and multivariate Cox regression were used to construct a prognostic model. CIBERSORT and single-
sample gene set enrichment analysis (ssGSEA) were used for assessing immune cells infiltration and immune 
function. The tumor microenvironment (TME) score was calculated by ESTIMATE, and the tumor 
mutational burden (TMB) and Tumor Immune Dysfunction and Exclusion (TIDE) were used to evaluate the 
efficacy of immunotherapy. 
Results: Firstly, 501 CR-lncRNAs were identified based on the co-expression relationship of 19 cuprotosis 
genes. And univariate Cox further obtained 34 prognosis-related CR-lncRNAs. The unsupervised consensus 
clustering divided LUAD samples into cluster A and cluster B, and showed cluster A had better prognosis, 
more immune cells infiltration, stronger immune function, and a higher TME score. Subsequently, we used 
Lasso Cox regression to construct a prognostic model, and univariate and multivariate Cox analyses showed 
the risk score could be an independent prognostic indicator. Immune cells infiltration, immune function, and 
TME score were increased markedly in the low-risk group, while TMB and TIDE suggested the efficacy of 
immunotherapy might be increased in high-risk group. 
Conclusions: Our research identified two new molecular subtypes and constructed a novel prognostic 
model of LUAD which could provide new direction for its diagnosis, treatment, and prognosis.
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Introduction

Global morbidity and mortality from lung cancer (LC) 
continue to grow (1), and lung adenocarcinoma (LUAD) 
is its most common pathological subtype (2,3). Despite 
the rapid advancement of molecular biology and precise 
medicine, the 5-year overall survival (OS) of LUAD 
remains low, at only 15% (4). A previous study has clarified 
LUAD as a highly though heterogeneous and complex 
cancer caused by multiple genes, multiple factors, and steps, 
and that traditional histological classification has significant 
limitations in guiding its clinical treatment and predicting 
survival (5). In recent years, the identification of LUAD 
molecular subtypes based on polymerase chain reaction 
(PCR), next-generation sequencing (NGS), fluorescence  
in situ hybridization (FISH) and other molecular biological 
technologies has shifted the classification of LUAD from 
morphology to molecular characteristics, which provides the 
basis for individual therapy. For example, epidermal growth 
factor receptor (EGFR), v-raf murine viral oncogene 
homolog B1 (BRAF), and mesenchymal-epithelial transition 
factor (MET) mutational, as well as anaplastic lymphoma 
kinase (ALK) and ROS proto-oncogene 1, receptor tyrosine 
kinase (ROS1) translocated LUADs, have corresponding 
targeted inhibitors for clinical treatment (6). In addition, 
more and more researches were devoted to further 
developing novel molecular subtypes of LUAD. Zhang  
et al. divided more than 1,000 LUADs into three subtypes 
based on 14 ferroptosis genes, and clarified the differences 
in prognosis, immune microenvironment, and enrichment 

pathways among them (7). Liu et al. separated LUADs into 
three molecular subtypes based on pyroptosis genes, and 
illustrated the differences of clinicopathological features, 
prognosis, and immune cells infiltration of the subtypes (8). 
However, as the clinical responses of these classifications is 
not ideal, it is of great significance to further complement 
LUAD molecular types from an additional perspective.

Copper is an essential micronutrient for all organisms 
and plays important roles in cellular respiration, free radical 
detoxification, enzymatic activity catalysis, and neuropeptide 
processing (9-11). In living organisms, active intracellular 
copper homeostasis maintains low copper concentrations 
because its excess is detrimental (12-15). For instance, in 
mouse hepatocytes, copper induces oxidative stress and 
promotes apoptosis by activating the tumor necrosis factor 
receptor-1 (TNF-R1) signaling pathway (16). Copper can 
also disrupt calcium homeostasis and activate apoptosis and 
autophagy related pathways to promote tumor cell death 
(17,18) and induce apoptosis-like death of cancer cells by 
inhibiting 19S proteasome associated deubiquitinase and/
or 20S proteasome activity (19). In view of this, copper has 
attracted great attention and become a hot spot in the field 
of tumor therapy (20). The copper chelator elesclomol 
has been revealed to possess significant anticancer activity 
in LC, melanoma, colorectal cancer, and sarcoma (21). 
The copper ion complexes CuL1Cl2 and CuL2Cl2 showed 
high cytotoxic activity against many tumor cells and low 
cytotoxic activity against normal cells and were regarded as 
ideal choices for oncology treatment (17). However, recent 
studies found copper-induced cell death was distinct from 
other programmed cell death forms such as necroptosis, 
apoptosis, and ferroptosis. Copper-induced cell death 
refers to the programmed cell death induced by copper 
ions through the accumulation of lipoacylated proteins and 
the loss of iron-sulfur cluster proteins under condition of 
mitochondrial stress. This new type of programmed cell 
death is defined as “cuprotosis”. It is distinct from copper 
toxicosis, in that cuprotosis can occur even when the 
concentration of copper ions in the cell is appropriate (22).  
Further tumor studies showed cuprotosis genes were 
differentially expressed between cancer and normal tissues. 
Cuprotosis genes play important roles in the proliferation 
and metastasis of cancer cells by influencing many cancer 
signaling pathways, including receptor tyrosine kinase 
(RTK), epithelial-mesenchymal transition (EMT), and 
cell cycle (23). Given the relationship between cuprotosis 
and LUAD remains unclear, it is valuable to investigate 
cuprotosis from the perspective of tumor typing and survival 
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prediction.
Long non-coding RNAs (lncRNAs) refer to RNA 

transcripts over 200 nucleotides that do not encode 
proteins but play important roles in the regulation of gene 
expression (24). LncRNAs are thought to play critical roles 
in pathological or physiological processes such as cell cycle 
progression, cell differentiation, metabolic diseases, and 
viral infections (24), and in many tumors are also considered 
as diagnostic and prognostic markers and therapeutic 
targets (25). Numerous research has focused on molecular 
typing and predicting survival using lncRNAs. For example, 
in hepatocellular carcinoma, tumor typing based on 
ferroptosis-related lncRNAs (FR-lncRNAs) provided better 
predictions of prognosis and efficacy of immunotherapy 
and targeted therapy (26). In head and neck squamous 
cell carcinoma (HNSC), the signatures of FR-lncRNAs 
could also predict patient outcomes (27), while in acute 
myeloid leukemia, m6A-related lncRNAs could predict 
the tumor microenvironment (TME) and survival (28). In 
addition, lncRNAs also participate in tumor progression by 
regulating cuprotosis genes. LncRNA LFAR1 regulates the 
crocin-inhibited mouse hepatic stellate cell activation by 
the MTF-1/GDNF pathway (29), and lncRNA MALAT1 
protects human osteoblasts from dexamethasone-induced 
injury by activating the PPM1E-NFE2L2 signaling  
pathway (30). Further, cuprotosis-related lncRNAs (CR-
lncRNAs) have been found to predict the prognosis and 
immune microenvironmental characteristics of soft tissue 
sarcoma (31). And in HNSC, a prognostic model based 
on 8 CR-lncRNAs can be regarded as a prognostic factor 
and marker of immunotherapy and drug sensitivity (32). 
However, the roles of CR-lncRNAs in LUAD and their 
relationship with the prognosis and immune cells infiltration 
and efficacy of immunotherapy of LUAD patients remain 
unclear.

In this study, we investigated the expression and 
prognostic significance of 19 cuprotosis genes in LUAD 
in The Cancer Genome Atlas (TCGA) database and 
authenticated 501 CR-lncRNAs which were closely related 
to them. Univariate Cox analysis identified 34 prognosis-
related CR-lncRNAs which were then used to molecularly 
type LUAD and analyze the differences in prognosis, 
clinical characteristics, pathway enrichment, immune cells 
infiltration, and TME between the subtypes. In addition, 
the 34 CR-lncRNAs were subjected to least absolute 
shrinkage and selection operator (LASSO) regression to 
reduce the fitting, and finally 10 lncRNAs were used to 

establish a Cox regression prognostic model. We then 
analyzed the differences in clinical characteristics, pathway 
enrichment, immune cells infiltration, TME, mutation, 
and drug sensitivity between low and high-risk groups. Our 
research elucidated the potential role of CR-lncRNAs in 
molecular typing and prognosis of LUAD and provided new 
ideas for its diagnosis and survival prediction. We present 
the following article in accordance with the TRIPOD 
reporting checklist (available at https://jtd.amegroups.com/
article/view/10.21037/jtd-22-1534/rc).

Methods

Download and process LUAD data from TCGA

We downloaded RNA expression profiling sequencing and 
clinical information data of LUAD from the TCGA (https://
portal.gdc.cancer.gov/), which included 59 normal lung 
samples and 535 LUAD samples (33). Normal lung samples 
and LUAD samples without complete clinical information 
were removed, and the remaining samples were used for 
molecular typing and construction and validation of the 
prognostic model. R (4.1.3) and Perl (Strawberry version) 
software were used to process and analyze the data. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Identification of CR-LncRNAs in LUAD

Initially, we obtained 19 cuprotosis genes (NLRP3, GLS, 
DBT, ATP7A, MTF1, NFE2L2, SLC31A1, FDX1, DLD, 
DLAT, LIAS, LIPT1, PDHB, GCSH, PDHA1, CDKN2A, 
DLST, ATP7B, and LIPT2) from previous literature for 
our study (21,22,34,35). Then, we analyzed the expression 
differences of 19 cuprotosis genes between normal lung 
and LUAD samples. The correlation between cuprotosis 
genes and OS of LUAD patients was then performed 
using a Kaplan-Meier (K-M) curve. Subsequently, we used 
the “biotype.pl” program to differentiate the expression 
matrices of mRNAs and lncRNAs, and a Pearson 
correlation coefficient was used to evaluate the expression 
correlation between 19 cuprotosis genes and lncRNAs. 
Under the condition |R| >0.4 and P<0.001, we identified 
501 CR-lncRNAs (available at: https://cdn.amegroups.cn/
static/public/jtd-22-1534-1.xls). Univariate Cox was then 
used to further identified 34 prognosis-related CR-lncRNAs 
with the condition P<0.01.

https://jtd.amegroups.com/article/view/10.21037/jtd-22-1534/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-1534/rc
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://cdn.amegroups.cn/static/public/jtd-22-1534-1.xls
https://cdn.amegroups.cn/static/public/jtd-22-1534-1.xls
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Unsupervised clustering of LUAD based on CR-lncRNAs

We applied an unsupervised clustering algorithm of the 
“Consensus Cluster Plus” R package to cluster 474 LUAD 
samples according to the expression levels of 34 prognosis-
related CR-lncRNAs. To ensure the stability of the 
clustering, 100 iterations were carried out with a resampling 
rate of 80%, and the clustering number was ascertained by 
the cumulative distribution function (CDF) curve (36). 

Construction and validation of the prognostic model

Firstly, 474 LUAD samples were randomly and equally 
divided into a training set and testing set, and Lasso Cox 
regression was performed on 34 prognosis-related CR-
lncRNAs in the training set (37). And we established a 
prognostic model of LUAD based on 10 CR-lncRNAs. 
The risk score for each sample was calculated based on 
the expression level of each lncRNA and its corresponding 
regression coefficient. The risk score formula = esum (each 

lncRNA expression × corresponding regression coefficient). LUAD patients were 
divided into low-risk and high-risk groups based on the 
median risk score, and a K-M curve was used to analyze 
the difference of OS in the two risk groups. A receiver 
operating characteristic (ROC) curve was used to calculate 
the reliability of the model. The risk score of the samples 
in testing and entire sets was then calculated according to 
the modeling formula. Similarly, patients were divided into 
low and high-risk groups based on the median risk score of 
the training set. K-M and ROC analyses in test and entire 
sets were then performed to demonstrate the stability of the 
model, and nomograms and calibration plots in the entire set 
were used to test the model's accuracy in predicting survival.

Clinical characteristics and prognostic analysis of clusters 
and risk groups

Associations of clustering and risk score with clinical 
characteristics, age, sex, stage, tumor size (T), lymph node 
metastasis (N), and survival status were analyzed using 
the chi-square test, and the results were depicted using 
heatmaps by means of the “pheatmap” package. Further, the 
relationship between risk scores and clinical characteristics 
was also analyzed by Kruskal or Wilcoxon tests. The K-M 
curve analysed the relationship between the OS of LUAD 
patients and cuprotosis gene expression, clustering, and 
risk score, and univariate and multivariate Cox assessed the 
value of the risk score as a prognostic indicator for LUAD.

Functional enrichment analysis of clusters and risk groups 

To clarify differences in biological function between 
different clusters and risk groups, we performed the gene 
set variation analysis (GSVA) (38) using the “c2.cp.kegg.
v6.2.-symbols gmt” set from the MSigDB database (http://
software.broadinstitute.org/gsea/msigdb/index.jsp), and 
P<0.05 was considered to be differentially enriched. In 
addition, the “limma” R package was used to select the 
differential genes between the different risk groups of the 
entire sample using |logFC| >1 and P<0.05 as the selected 
condition. Differential genes were then subjected to Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis.

TME landscape and immune checkpoint evaluation

We used the CIBERSORT algorithm to identify differences 
in the abundance of infiltration of 28 immune cells in 
different clusters and risk groups (39). Further, the Single-
Sample Gene Set Enrichment Analysis (ssGSEA) R package 
was used to analyze immune cell infiltration and immune 
function across different clusters and risk groups (40). 
The StromalScore, ImmunScore, and EstimatedScore 
were calculated separately for each LUAD patient using 
the ESTIMATION algorithm, and the “ggpubr” package 
visualized the differences (41). 

Mutation, immunotherapy, and drug sensitivity analysis

The mutation data of LUAD was downloaded from 
TCGA. We analysed somatic mutations in different risk 
groups by the package “maftools” and assessed the tumor 
mutational burden (TMB) score in the low and high-risk 
groups. Tumor Immune Dysfunction and Exclusion (TIDE) 
analysis was performed to estimate the response of immune 
checkpoint blockade (ICB) therapy (42). In addition, the 
“pRRophetic” package was used to analyze the relationship 
between the semi-inhibitory concentration (IC50) and risk 
score of some chemotherapeutic drugs. 

Statistical analysis

Kruskal and Wilcoxon tests were used for multigroups and 
two groups, respectively. Pearson correlation coefficient was 
used for analysing the correlation, and the survival curve was 
drawn by K-M analysis. Univariate and multivariate Cox 
were used to calculate 95% confidence intervals (CI) and 

http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
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hazard ratios (HR). R (4.1.3) software was used for statistical 
analysis and P<0.05 was considered statistically significant. 

Results

Expression and prognosis analyses of cuprotosis genes in 
LUAD

We investigated the expression of 19 cuprotosis genes in 
normal lung and LUAD tissues, and compared with normal 
lung tissues, NLRP3 (P<0.001), MTF1 (P<0.001), NFE2L2 
(P<0.001), SLC31A1 (P=0.008), and FDX1 (P<0.001) were 

less expressed in tumor tissues. In addition, DLD (P=0.019), 
DLAT (P<0.001), LIAS (P<0.001), PDHB (P=0.008), 
GCSH (P<0.001), PDHA1 (P<0.001), CDKN2A (P<0.001), 
LIPT1 (P=0.003), ATP7B (P=0.029), and LIPT2 (P=0.032) 
were more expressed in tumor tissues, while there was 
no differences in GLS (P=0.054), DBT (P=0.202), ATP7A 
(P=0.657), and DLST (P=0.466) expression between normal 
lung and LUAD tissues (Figure 1A). We also analyzed 
the correlation among the expression of 19 cuprotosis 
genes (Figure 1B), and the association between cuprotosis 
genes expression and the OS of LUAD patients. K-M 

Figure 1 Expression and prognosis analysis of cuprotosis genes in LUAD. (A) Expression of 19 cuprotosis genes in normal lung and LUAD 
tissues. (B) Correlation of the 19 cuprotosis genes expression in LUAD. (C-N) K-M survival analysis of cuprotosis genes. *, P<0.05; **, 
P<0.01; ***, P<0.001. LUAD, lung adenocarcinoma.
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curves indicated the expression of NLRP3 (P=0.004), GLS 
(P=0.007), DBT (P=0.009), MTF1 (P=0.009), and SLC31A1 
(P=0.005) were positively correlated with OS, while the 
expression of FDX1 (P=0.027), DLD (P=0.041), DLAT 
(P=0.021), LIPT1 (P=0.002), PDHA1 (P=0.005), CDKN2A 
(P<0.001), and DLST (P=0.038) were negatively related to 
OS (Figure 1C-1N). No correlation was seen between the 
expression of ATP7A (P=0.247), NFE2L2 (P=0.151), LIAS 
(P=0.184), PDHB (P=0.203), GCSH (P=0.059), ATP7B 
(P=0.175), LIPT2 (P=0.071), and OS (Figure S1A-S1G). 

Identification of CR-LncRNAs in LUAD

The expression matrices of lncRNAs were extracted from 

TCGA LUAD data, and according to the expression 
level of the previous 19 cuprotosis genes, we screened 
out 501 CR-lncRNAs of LUAD using the Pearson 
Correlation Coefficient test (Figure 2A) (available at: 
https://cdn.amegroups.cn/static/public/jtd-22-1534-1.xls). 
Subsequently, 34 prognosis-related CR-lncRNAs were 
identified by univariate Cox analysis (Figure 2B). Figure 2C  
shows the differential expression of these lncRNAs in 
normal lung tissues and LUAD tissues, while correlation of 
their expression is displayed in Figure 2D.

Consensus clustering of LUAD based on CR-lncRNAs

To understand the role of CR-lncRNAs in LUAD, we 

Figure 2 Identification of CR-LncRNAs and prognosis-related CR-LncRNAs in LUAD. (A) Identification of CR-LncRNAs in LUAD. (B) 
Prognosis-related CR-LncRNAs identified by univariate Cox analysis. (C) Expression of 34 prognostic CR-lncRNAs in LUAD and normal 
lung tissues. (D) Correlation among the expression of 34 CR-lncRNAs. *, P<0.05; **, P<0.01; ***, P<0.001. CI, confidence interval; CR-
lncRNA, cuprotosis-related long non-coding RNA; LUAD, lung adenocarcinoma.
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Figure 3 Consensus clustering based on CR-lncRNAs, clinical characteristics, and differential GSVA analysis of clusters. (A) Consensus 
clustering for k=2. (B) Consensus clustering CDF for k=2–9. (C) CDF curve of consensus clustering. (D) PCA between cluster A and cluster 
B. (E) t-SNE analysis of cluster A and B. (F) K-M survival analysis of clusters. (G) Correlation analysis of clusters and clinical characteristics. 
(H) Differential GSVA enrichment between clusters. *, P<0.05; **, P<0.01; ***, P<0.001. CR-lncRNA, cuprotosis-related long non-coding 
RNA; GSVA, gene set variation analysis; CDF, cumulative distribution function; PCA, principal component analysis; t-SNE, t-distributed 
stochastic neighbor embedding; TCGA, The Cancer Genome Atlas.

performed unsupervised consensus clustering analysis on 
474 LUAD patients. After repeated 100 iterations it was 
found that the stability of consensus cluster was the highest 
when divided into a cluster A and cluster B (Figure 3A-3C).  
Both principal component (PCA) and t-distributed 
stochast ic  neighbor embedding (t-SNE) analyses 
showed identifiable dimensions between cluster A and B  
(Figure 3D-3E), while the K-M curve showed the OS of 
cluster A was better than that of cluster B (Figure 3F). 
Differential analysis of clinical characteristics illustrated 

gender, stage, T, N, and survival status were significantly 
different in clusters, while there was no difference of 
age between cluster A and cluster B (Figure 3G). GSVA 
functional enrichment showed that compared with cluster 
A, cluster B was more significantly enriched in the pentose 
phosphate pathway, glycolysis gluconeogenesis, fructose 
and mannose metabolism, amino sugar and nucleotide sugar 
metabolism, phenylalanine metabolism, citrate cycle TCA 
cycle, and other sugars and amino acids metabolism-related 
pathways (Figure 3H). 
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Immune cell infiltration and TME evaluation of clusters

Functional enrichment analysis showed cluster B was 
significantly enriched in the energy and amino acid 
metabolism related pathways. As previous research 
has clarified energy and amino acid metabolisms affect 
immune cell infiltration by changing the TME (43), 
we analyzed the differences of immune cells infiltration 
and TME between clusters A and B. The CIBERSORT 
analysis showed activated B cells, eosinophils, immature B 
cells, immature dendritic cells, mast cells, myeloid-derived 
suppressor cells (MDSCs), memory B cells, natural killer 

cells, plasmacytoid dendritic cells, and T follicular helper 
cells infiltrated more in cluster A and CD56 dim natural 
killer cells and neutrophils infiltrated more in cluster B 
(Figure 4A). The ssGSEA analysis showed B cells, iDC 
cells, mast cells, T helper cells, and TILs infiltrated 
more in cluster A (Figure 4B), while the immune function 
analysis of ssGSEA revealed cluster A had higher HLA and 
type II IFN response activities (Figure 4C). In addition, 
the TME score was calculated using the ESTIMATE 
algorithm, and the StromalScore, ImmuneScore, and 
ESTIMATEScore of cluster A were all higher than cluster 
B (Figure 4D). 

Figure 4 Immune cells infiltration and TME evaluation of clusters. (A) CIBERSORT analyzed the differences of 28 immune cells 
infiltration between clusters. (B) SsGSEA analyzed the differences of 16 immune cells infiltration between clusters. (C) SsGSEA analyzed 
the differences of immune function between clusters. (D) ESTIMATE analyzed the differences of TME scores between clusters. ns, no 
significance; *, P<0.05; **, P<0.01; ***, P<0.001. MDSC, myeloid-derived suppressor cell; ssGSEA, singlesample gene set enrichment 
analysis; TME, tumor microenvironment.
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Figure 5 Construction of CR-lncRNAs prognostic model in LUAD. (A) Tenfold cross-validation for tuning parameter selection in the 
Lasso model. (B) Lasso coefficient profiles of the 10 CR-lncRNAs. (C) K-M survival analysis of high and low-risk groups in the training set. 
(D) Risk score and survival status distributions for high and low-risk groups. (E) 1-, 3-, and 5-year ROC curve analysis. (F) Expression of 10 
modeling CR-lncRNAs in high and low-risk groups. CR-lncRNA, cuprotosis-related long non-coding RNA; LUAD, lung adenocarcinoma; 
ROC, receiver operating characteristic curve; AUC, area under the curve.

Construction of CR-lncRNAs prognostic model in LUAD

To better elucidate the association of CR-lncRNAs with 
survival in LUAD patients, we constructed a CR-lncRNAs 
prognostic model. First, 474 LUADs were divided into 
training and testing sets randomly and equally. After further 
screening by Lasso regression in the training set of 34 
prognosis-related CR-lncRNAs, the Cox regression model 
was constructed with 10 CR-lncRNAs of AC026356.1, 
AC099568.2 ,  LINC01138 ,  CRNDE ,  AC026369.3 , 
AL049836.1, AC021028.1, U91328.1, AC123595.1, and 
AC243960.1 (Figure 5A,5B). K-M survival analysis showed 
the OS of the high-risk group was significantly worse 
than the low-risk group (P=4.885e-6) (Figure 5C), while  
Figure 5D shows the high-risk group had higher risk score, 
and the survival rate of high-risk patients was poor. The 
ROC curve clarified the values of area under the curve 
(AUC) of the model in 1, 3, and 5 years were 0.825, 0.824 
and 0.854, respectively (Figure 5E). We also analyzed the 
expression differences of the 10 CR-lncRNAs between 

risk groups. Figure 5F shows AC026356.1, LINC01138, 
AL049836.1, and AC021028.1 were highly expressed in the 
high-risk group, and AC099568.2, CRNDE, AC026369.3, 
U91328.1, AC123595.1, and AC243960.1 were highly 
expressed in low-risk group. 

Validation of the CR-lncRNAs prognostic model of LUAD

To test the reliability and stability of the model, we 
performed validation in the testing and entire set. In the 
testing set, the K-M analysis indicated worse prognosis 
in the high-risk group (P<0.001) (Figure 6A), and the 
high-risk group had higher risk score and lower survival 
rate (Figure 6B). The AUC of the ROC curve for 1, 3, 
and 5 years were 0.711, 0.652 and 0.654, respectively  
(Figure 6C). Likewise, in the entire set, the risk score in the 
high-risk group was higher and the survival rate in the high-
risk group was worse (Figure 6D,6E). The 1-, 3-, and 5-year 
AUC for the entire group were 0.765, 0.737 and 0.768, 
respectively (Figure 6F). In addition, in the entire set, the 
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Figure 6 Validation of the CR-lncRNA prognostic model. (A) K-M survival analysis of high and low-risk groups in the testing set. (B) Risk 
score and survival status distributions for high and low-risk groups in the testing set. (C) 1-, 3-, and 5-year ROC curve analysis in the testing 
set. (D) K-M survival analysis of high and low-risk groups in the entire set. (E) Risk score and survival status distributions for high and low-
risk groups in the entire set. (F) 1-, 3-, and 5-year ROC curve analysis in the entire set. (G) ROC analysis of multiple indicators in the entire 
set. (H) Univariate COX analysis in the entire set. (I) Multivariate COX analysis in the entire group. (J) Nomogram for predicting survival 
in patients with LUAD. (K) Calibration curves for the nomogram. (L) Alluvial diagram for the distribution change of LUAD patients.  
CR-lncRNA, cuprotosis-related long non-coding RNA; LUAD, lung adenocarcinoma; ROC, receiver operating characteristic curve; AUC, 
area under the curve. 
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ROC curve demonstrated the risk score (AUC: 0.765) had 
the highest accuracy in predicting patient survival compared 
to age (AUC: 0.550), gender (AUC: 0.592), stage (AUC: 
0.712), T (AUC: 0.649), and N (AUC: 0.626) (Figure 6G).  
Univariate Cox analysis showed stage (HR: 1.658, P<0.001), 
T (HR: 1.523, P<0.001), N (HR: 2.720, P<0.001), and 
risk score (HR: 1.114, P<0.001) were prognostic factors 
in patients with LUAD (Figure 6H). Multivariate Cox 
analysis showed that stage (HR: 1.362, P<0.007), N (HR: 
1.731, P=0.01), and risk score (HR: 1.128, P<0.001) 
could be considered as independent prognostic indicators 
(Figure 6I). To more accurately predict patient survival, we 
created a nomogram including risk score and other clinical 
characteristics (Figure 6J) and visualized the performance 
of the nomogram with calibration plots at 1, 2, and 3 years 
(Figure 6K). The alluvial diagram shows the distribution for 
each individual patient in clusters and risk groups (Figure 6L).

Clinical characteristics and functional enrichment analyses 

PCA and t-SNE analyses showed that the high-risk group 
and low-risk group in the entire set were well differentiated 
(Figure 7A,7B). The Chi-square test displayed the risk score 
was related to gender (P<0.05), stage (P<0.001), T (P<0.001), 
N (P<0.001), and survival status(P<0.001), and not related 
to age (P>0.05) (Figure 7C). The Kruskal test indicated 
the level of risk score was positively correlated with stage 
(P=0.0013) and T (P=0.025) (Figure 7D,7E), and among N0, 
N1, and N2, the risk score was positively connected with N 
(P<0.001). The low number of N3 patients might explain 
the lack of statistical significance in the four-group analysis 
(P=0.98) (Figure 7F). The Wilcox test showed patients with 
a death status had a higher risk score (P<0.001) (Figure 7G). 
Subsequently, to understand the differences in functional 
enrichment of risk groups, we identified differential genes 
between them and performed enrichment analysis, and 
according to LogFC >1 and false discovery rate (FDR) 
<0.05, 320 differential genes were screened (Figure 7H). 
KEGG analysis showed the differential genes were enriched 
in focal adhesion, ECM-receptor interaction, protein 
digestion and absorption, the PI3K-Akt signaling pathway, 
and the nitrogen metabolism pathway (Figure 7I). GO 
analysis showed they were observably enriched in ubiquitin 
protein ligase binding, protein kinase complex, response 
to lipopolysaccharide, response to ketone, response to 
reactive oxygen species, cellular response to oxidative stress, 
response to decreased oxygen levels, response to steroid 
hormone c, and other pathways (Figure 7J). In addition, 

differential GSVA enrichment showed the high-risk group 
was more enriched in the pentose phosphate pathway, 
ubiquitin mediated proteolysis, cell cycle, base excision 
repair, spliceosome, nucleotide excision repair, mismatch 
repair, and other pathways, while the low-risk group was 
more enriched in asthma, fatty acid metabolism, alpha 
linolenic acid metabolism, and arachidonic acid metabolism 
pathways (Figure 7K).

Analyses of immune cell infiltration and TME in risk 
groups

 CIBERSORT analysis showed that compared with the 
high-risk group, activated B cells, activated CD8 T cells, 
activated dendritic cells, central memory CD4 T cells, 
central memory CD4 T cells, eosinophils, immature B 
cells, immature dendritic cells, immature dendritic cells, 
mast cells, MDSCs, monocytes, natural killer cells, and T 
follicular helper cells were infiltrated more in the low-risk 
group, and activated CD4 T cells and type 2 T helper cells 
were infiltrated more in the high-risk group (Figure 8A).  
The ssGSEA showed aDCs, B cells, DCs, iDCs, mast 
cells, neutrophils, pDCs, T helper cells, Tfh, and TIL 
cells infiltrated more in the low-risk group (Figure 8B), and 
immune function analysis showed the function of HLA, T 
cell co-inhibition, T cell co-stimulation, and type II IFN 
response were suppressed in the high-risk group compared 
with the low-risk group. The high-risk group had stronger 
MHC class I function (Figure 8C), while ImmuneScore 
(P<0.001) and ESTIMATEScore (P<0.01) were lower in the 
high-risk group (Figure 8D). 

Mutation, immunotherapy and chemotherapy sensitivity 
analyses

Somatic mutation frequency is relevant to tumor immune 
cell infiltration. Therefore, we analyzed the changes of 
frequency of somatic mutations in the two risk groups 
using the “maftools” package. We found the overall 
somatic mutation rate in the high-risk group (93.33%) was 
higher compared to the low-risk group (87.32%). Among 
the top 10 genes with the highest mutation rates, TP53, 
TTN, CSMD3, RYR2, LRP1B, ZFHX4, USH2A, KRAS, 
and XIRP2 had a higher mutation rate in the high-risk 
group, and only the MUC16 gene had a higher mutation 
rate in the low-risk group (Figure 9A,9B). In addition, 
research has shown tumors with high mutational burden 
are more immunogenic and generate more neoantigens, 
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Figure 7 Clinical characteristics and functional enrichment analyses of risk groups. (A) PCA between low-risk and high-risk group. (B) 
t-SNE analysis of risk groups. (C) Correlation analysis of clinical characteristics between high and low-risk groups. (D) Correlation analysis 
of risk score and stage. (E) Correlation analysis of risk score and T. (F) Correlation analysis of risk score and N. (G) Correlation analysis of 
risk score and status. (H) Identification of differential genes between risk groups. (I) KEGG enrichment analysis of differential genes. (J) GO 
enrichment analysis of differential genes. (K) Differential GSVA enrichment analysis of risk groups. *, P<0.05; ***, P<0.001. PCA, principal 
component analysis; t-SNE, t-distributed stochastic neighbor embedding; GSVA, gene set variation analysis; FDR, false discovery rate; GO, 
Gene Ontology; BP, biological process; MF, molecular function; CC, cellular component.
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Figure 8 Analyses of immune cell infiltration and TME in risk groups. (A) Analysis of 28 types of immune cell infiltration using 
CIBERSORT. (B) Analysis of 16 types of immune cell infiltration using ssGSEA. (C) Analysis of immune function using ssGSEA. (D) 
ESTIMATE analysis of differences of TME scores between risk groups. ns, no significance; *, P<0.05; **, P<0.01; ***, P<0.001. TME, tumor 
microenvironment; ssGSEA, singlesample gene set enrichment analysis; MDSC, myeloid-derived suppressor cell.

and TMB is considered as a potential predictive marker of 
an immune checkpoint blockade (ICB) response (44,45). 
In our research, we found the TMB score was significantly 
increased in the high-risk group compared to the low-risk 
group (P=0.0069) (Figure 9C) and was positively associated 
with longer OS (Figure 9D). In addition, patients with 
a higher TMB in both groups had a better prognosis  
(Figure 9E), while the high-risk group had lower TIDE 
scores than the low-risk group (P<0.001) (Figure 9F). 
Furthermore, we assessed the association of risk score 
with the sensitivity of common drugs for LUAD and 
found it was inversely associated with the sensitivity 
to docetaxel (R=−0.18, P=8.4e−05), cisplatin (R=−0.4, 
P<2.2e−16), paclitaxel (R=−0.3, P=2.3e−11), gemcitabine 

(R=−0.25, P=4.8e−08), vinorelbine (R=−0.23, P=2.4e−07), 
axitinib (R=−0.28, P=2.9e−10), and saracatinib (R=−0.22, 
P=1.8e−06), and positively connected with erlotinib (R=0.23, 
P=2.4e−07) (Figure 9G-9N). 

Discussion

LUAD is a dominant cause of cancer death worldwide (1). 
Due to the high heterogeneity of the disease, given the 
same treatment regimen, patients may have different clinical 
outcomes (46,47). For example, programmed cell death 
protein 1 (PD1), cytotoxic T lymphocyte-associated antigen 
4 (CTLA4), and EGFR inhibitors significantly prolong the 
survival of some patients with advanced LUAD, but offer 
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Figure 9 Mutation, immunotherapy, and chemotherapy sensitivity analyses. (A) Somatic mutation frequency and common mutated genes 
in low-risk group. (B) Somatic mutation frequency and common mutated genes in high-risk group. (C) Difference analysis of TMB score 
between high and low-risk groups. (D) K-M analysis of TMB score and survival in patients with LUAD. (E) K-M survival analysis of TMB 
score in high and low-risk groups. (F) Difference analysis of TIDE score between high and low-risk groups. (G-N) Correlation analysis 
of risk score and chemotherapeutic drugs sensitivity. ***, P<0.001. TMB, tumor mutational burden; LUAD, lung adenocarcinoma; TIDE, 
Tumor Immune Dysfunction and Exclusion.

TP53
TTN

MUC16
CSMD3
RYR2

LRP1B
ZFHX4
USH2A
KRAS
XIRP2
FLG

SPTA1
NAV3

ZNF536
COL11A1

43%
41%
41%
34%
34%
33%
29%
29%
25%
22%
25%
20%
20%
18%
18%

52%
52%
40%
44%
37%
35%
35%
33%
29%
26%
22%
25%
21%
24%
22%

1361

0

Missense_Mutation
Nonsense_Mutation
Frame_Shift_Del
Frame_Shift_Ins

Missense_Mutation
Nonsense_Mutation
Frame_Shift_Del

In_Frame_Del
Translation_Start_Site
Multi_Hit

Frame_Shift_Ins
In_Frame_Del
Multi_Hit

High
Low High

Low

Risk

Risk

Risk

Risk

0                   89 0                  117

No. of samples No. of samples

8

6

4

2

0Tu
m

or
 tm

ba
tio

n 
bu

rd
en

 (I
og

2)

0.5

0.0

−0.5

−1.0

−1.5

TI
D

E

2

0

−2

−4

−6

P
ac

lit
ax

el
 s

en
si

tiv
ity

 (I
C

50
)

0

−2

−4

−6

Vi
no

re
lb

in
e 

se
ns

iti
vi

ty
 (I

C
50

)

−2.5

−5.0

−7.5

−10.0

D
oc

et
ax

el
 s

en
si

tiv
ity

 (I
C

50
)

6

4

2

0

C
is

pl
at

in
 s

en
si

tiv
ity

 (I
C

50
)

5

0

−5

G
em

ci
ta

bi
ne

 s
en

si
tiv

ity
 (I

C
50

)

4

2

0

−2

E
rlo

tin
ib

 s
en

si
tiv

ity
 (I

C
50

) 3

2

1

0

−1

A
xi

tin
ib

 s
en

si
tiv

ity
 (I

C
50

) 4

3

2

1

0

S
ar

ac
at

in
ib

 s
en

si
tiv

ity
 (I

C
50

)

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

Low-risk        High-risk

Low-risk        High-risk

Low-risk             High-risk

Low-risk                   High-risk
0  1  2  3  4  5  6   7  8  9 10 11 12 13 14 15 16 17 18 19 20

Time, years

0              5             10            15

Risk score
0              5             10            15

Risk score
0              5              10             15

Risk score
0              5              10             15

Risk score

0               5             10             15

Risk score

0               5             10             15

Risk score

0               5             10             15

Risk score

0               5             10             15

Risk score

0  1  2   3  4  5   6  7   8  9 10 11 12 13 14 15 16 17 18 19 20

Time, years

0.0069

TM
B

TM
B

Altered in 179 (87.32%) of 205 samples Altered in 209 (93.3%) of 224 samples

H-TMB
L-TMB

P=0.023 P<0.001

H-TMB + high risk
H-TMB + low risk
L-TMB + high risk
L-TMB + low risk

1422

0
TP53
TTN

MUC16
CSMD3
RYR2

LRP1B
ZFHX4
USH2A
KRAS
XIRP2
FLG

SPTA1
NAV3

ZNF536
COL11A1

***

A B C

D E F

G H I J

K L M N

no benefit in others (48-50). Therefore, it is important to 
authenticate new LUAD subtypes for providing precise 
treatment and prognosis prediction for patients. 

A previous study has shown copper participates in many 
biological processes such as tumorigenesis, development, 
angiogenesis, and epithelial-mesenchymal transition (51). 

While dysregulation of copper homeostasis can lead to 
mitochondrial dysfunction and promote cell death through 
the Fenton reaction or elevated ROS levels, copper can also 
bind proteasome subunits to promote cell death by inducing 
protein ubiquitinating (20). Therefore, some copper 
ionophores including bis (thiosemicarbazide) ligands, 
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dithiocarbamates, and flavonoids have been identified as 
anticancer agents (52). However, the latest research showed 
cuprotosis is a novel type of cell death caused by copper-
induced aggregation of mitochondrial proteins (53). Given 
the function of cuprotosis genes and their regulators in 
LUAD remains unclear, it is significant to explore the role 
of the cuprotosis genes and CR-lncRNAs in the molecular 
typing and prognosis of the disease. 

In our research, we first investigated the expression and 
prognosis of 19 cuprotosis genes in LUAD. Subsequently, 
we divided 474 LUAD cases into cluster A and cluster B 
with an unsupervised consensus clustering method based on 
34 CR-lncRNAs, and K-M analysis showed cluster B had 
worse OS compared to cluster A. To understand the reasons 
for the difference in prognosis, we analyzed the TME of 
the two clusters, and found StromalScore, ImmuneScore, 
and ESTIMATEScore were all significantly elevated in 
cluster A. Previous study reported longer OS was generally 
accompanied by higher stromal and immune scores (54), 
which was consistent with our results. Immune cells play 
critical roles in the TME, and immune infiltration is closely 
related to patient survival (55). Our results showed activated 
B cells, eosinophils, immature B cells, immature dendritic 
cells, mast cells, MDSC, memory B cells, natural killer 
cells, plasmacytoid dendritic cells, and T follicular helper 
cells infiltrated more in cluster A, and CD56dim natural 
killer cells and neutrophils infiltrated more in cluster B. 
Different immune cells play tumor-promoting or tumor-
suppressing roles in different ways. For instance, B cells can 
inhibit tumor progression via secreting immunoglobulins, 
promoting T cell responses, and directly killing cancer 
cells (56), and tumor-infiltrating eosinophils synthesize 
granulin to kill cancer cells or inhibit tumor progression by 
remodeling the TME (57). Dendritic cells can promote T 
cell immunity and immunotherapy responses by presenting 
endogenous or exogenous antigens to T cells to enhance 
memory T cell responses (58), while MCs inhibit cancer 
cell proliferation and induce death by releasing various 
cytokines such as IL-1, IL-6, MCP-4, TNF-α, IFN-γ, and 
TGF-β (59). T follicular helper cells enhanced the function 
of CD8+ T and inhibited tumor proliferation in vivo (60), 
and MDSCs promoted tumor progression by producing 
ROS, NO, Arg1, and suppressor cytokines for anti-tumor 
immunity (61). Neutrophils have become an important 
part of the TME, and TAN can promote tumor recurrence 
and metastasis by driving angiogenesis, extracellular matrix 
remodeling, and immunosuppression (62). NK cells exert 
antitumor effects indirectly through direct cytolytic activity 

and production of cytokines such as IFN-γ (63). Therefore, 
we speculate that the better prognosis of cluster A patients 
may be caused by more immune cell infiltration. Although 
cluster B had more NK cell infiltration, we speculate this 
could not reverse its immunosuppressive microenvironment. 

To better elucidate the relationship between CR-
lncRNAs and the prognosis of LUAD, we constructed a 
Lasso COX regression model based on 10 CR-lncRNAs. 
The OS of the high-risk patients was significantly lower 
compared to the low-risk patients, and the internal multiple 
validation analysis demonstrated the model had high 
accuracy. Subsequently, we found immune cell infiltration 
and immune function were significantly suppressed in the 
high-risk group, which could partly explain the poorer 
prognosis of that group. We then analyzed somatic 
mutations and TMB to further understand the reason for 
the difference in immune cell infiltration between the high 
and low-risk groups. Interestingly, the waterfall plot showed 
the high-risk group had a higher mutation frequency and 
TMB score, suggesting immunosuppression was more 
severe in the high-risk group compared with the low-risk 
group. 

Previous study identified TMB as a potentially important 
biomarker of the immunotherapy response and that it 
positively correlated with anti-PD-1 and anti-PD-L1 
responses (64). Therefore, we conjectured the efficacy of 
ICB therapy in the high-risk group was better. In addition, 
research has shown patients with higher TIDE scores 
were more likely to escape from antitumor immunity and 
that they had had lower response rates to ICB therapy. 
Compared with TMB, TIDE is more accurate in predicting 
survival outcomes of ICB-treated cancer patients (42). In 
our study, patients in the high-risk group had lower TIDE 
scores, which further supported the enhanced effect of ICB 
treatment in the high-risk group. Therefore, we believe 
the CR-lncRNA model could be available as a credible 
biomarker for immunotherapy of LUAD patients. In 
addition, drug sensitivity analysis also provided a theoretical 
basis for the selection of chemotherapy drugs.

Conclusions

In conclusion, our research identified two molecular 
subtypes and constructed a prognostic model of LUAD 
based on CR-lncRNAs. We elucidated the differences in 
clinical characteristics, prognosis, immune cells infiltration, 
TME, and functional enrichment between subtypes and risk 
groups, and investigated the differences of immunotherapy 
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and chemotherapeutic drugs sensitivity between the risk 
groups. Our study provides new ideas for the molecular 
classification of LUAD and the prediction of patient 
survival. However, our research is based on the analysis 
of bioinformatics data, and in the future, experimental 
research is required to validate the results. 
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