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WHITE PAPER

Applications of Quantitative Systems Pharmacology in 
Model-Informed Drug Discovery: Perspective on Impact 
and Opportunities

Erica L. Bradshaw1,*,†, Mary E. Spilker2,*,†, Richard Zang3, Loveleena Bansal4, Handan He5, Rhys D.O. Jones6, Kha Le7, Mark Penney8, 
Edgar Schuck9, Brian Topp10, Alice Tsai11, Christine Xu12, Marjoleen J.M.A. Nijsen13 and Jason R. Chan14,†

Quantitative systems pharmacology (QSP) approaches have been increasingly applied in the pharmaceutical since the land-
mark white paper published in 2011 by a National Institutes of Health working group brought attention to the discipline. In 
this perspective, we discuss QSP in the context of other modeling approaches and highlight the impact of QSP across various 
stages of drug development and therapeutic areas. We discuss challenges to the field as well as future opportunities.

BACKGROUND/MOTIVATION

During the past decade, quantitative systems pharmacology 
(QSP) has gained traction within the pharmaceutical industry 
as a modeling method to quantitatively and mechanistically 
describe diseases and the complexity of drug action. The 
preclinical QSP working group, within the Translational 
and ADME Sciences Leadership Group (TA LG), as part of 
the International Consortium for Innovation and Quality in 
Pharmaceutical Development (IQ), was formed in 2016 to 
bring together representatives across the pharmaceutical 
industry with objectives to share knowledge, assess the cur-
rent landscape of QSP modeling in the preclinical space of 
research and development, and discuss/align on best prac-
tices. The goals of this white paper are to (i) discuss and 
highlight how QSP modeling has impacted drug discovery 
efforts across multiple therapeutic areas; (ii) examine similar-
ities and differences between various modeling approaches 
and gain alignment within the modeling and simulation com-
munity on definitions and terminology; (iii) discuss some of 
the challenges and barriers to more widespread use of QSP 
in industry, underscoring the strengths and limitations of 
QSP modeling; and (iv) provide recommendations for its use 
in preclinical research as well as future opportunities.

In 2011, a National Institutes of Health (NIH) Workshop 
hite Paper was published that brought widespread atten-
tion to QSP.1 In that white paper, QSP was defined as “an 
approach to translational medicine that combines computa-
tional and experimental methods to elucidate, validate and 
apply new pharmacological concepts to the development 
and use of small molecule and biologic drugs,” with a pur-
pose of understanding “in a precise, predictive manner, how 

drugs modulate cellular networks in space and time and 
how they impact human pathophysiology.”1 In practice, this 
broad scope suggests that QSP may include several disci-
plines, methodologies, and applications. Thus, this presents 
a challenge in alignment, communication, and general un-
derstanding of what QSP is (and is not) both within and 
outside of the modeling and simulation community. In this 
paper, we expand on this, discussing similarities and differ-
ences between various modeling approaches and put forth 
a recommendation to clarify the definition of QSP modeling 
by stipulating certain model structural requirements.

BASIC PRINCIPLES

QSP is a discipline that integrates computational modeling 
of biological systems with that of pharmacologic systems. 
With advances in high throughput -omic technologies (ge-
nomics, transcriptomics, proteomics, and metabolomics) 
and increasing computational power and bioinformatic 
methodologies, there has been a surge in experimental 
data availability across several biological scales, time 
scales, and species. A quantitative framework, which 
requires the integration of diverse computational method-
ologies, is necessary to leverage this “big data” to enable 
understanding of disease pathophysiology and identify 
and test therapeutic strategies. QSP modeling can be 
used to integrate data across scales to understand the 
interacting network elements and bridge molecular to 
systems level scales. Further discussion of big data and 
model integration in QSP is covered elsewhere.2–4

The ultimate goal of QSP is to mechanistically and quan-
titatively understand a biological, toxicological, or disease 
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process in response to therapeutic modulation. Typically, 
formal mathematical models are developed that incorpo-
rate data at several temporal and spatial scales and include 
sufficient biological information to allow for extrapolation 
beyond the data used to develop and/or qualify the model. 
Furthermore, to be maximally impactful within preclinical 
drug discovery, QSP models should be fit for purpose to ad-
dress specific questions, be actionable, and built within a 
time frame that accommodates the rapid pace of decision 
making. Although a detailed discussion of the technical as-
pects of QSP modeling is beyond the scope of this work, 
several reviews and technical papers on QSP modeling are 
available.5–11

QSP modeling has been leveraged throughout preclini-
cal drug discovery to interrogate both therapeutic and toxic 
actions of drugs across therapeutic areas including metab-
olism, autoimmunity, oncology, and neuroscience as well 
as several others. As indicated in the 2011 NIH Workshop 
White Paper, a role for both industry and academia was en-
visioned for the development and implementation of QSP, 
whereby the pharmacokinetic-pharmacodynamic (PKPD) 
experience in the former would integrate with the systems 
biology interests of the latter. This coming together has oc-
curred in different ways including publication of models by 
academia that can then be used in industry, in partnership 
between academia and industry, through third-party ven-
dors to build QSP models12 that use industry-generated 
PKPD and/or mechanistic data and through precompetitive 
consortia (e.g., DILIsym, QSP Immunogenicity Consortium, 
etc.). Several examples of these published models are cap-
tured here (see Table 1).

DEFINITION AND TERMINOLOGY

Well-defined terminology provides direction, focus, and 
branding for a scientific discipline. In a corporate environ-
ment, it may also contribute to resourcing discussions as 
well as assessments of return on investment. Admittedly, 
it is a challenge to define in practice the broad discipline 
that is QSP. This was evident from the preclinical QSP 
modeling survey that identified that QSP modeling lacks a 
clear definition.12 Here we compare QSP with two poten-
tially overlapping modeling approaches: mechanistic PKPD 
and physiologically-based pharmacokinetic (PBPK) and at-
tempt to add clarity to QSP’s existing definition by defining 
the structural elements that are inherent to QSP models.

It is important to emphasize that quantitative systems 
pharmacology essentially developed from and still benefits 
from existing, complementary modeling approaches, includ-
ing systems biology, PKPD, and PBPK modeling methods. 
With advances in computational methods, access to new 
data and greater biological knowledge, a natural progres-
sion for some drug discovery questions is to move toward 
more mechanistic (and perhaps holistic) descriptions of the 
system, thereby permitting extrapolations beyond collected 
data sets and addressing new questions through QSP mod-
eling. It is also important to emphasize that these modeling 
approaches are not exclusive, and the appropriate model 
should be implemented to address the question at hand. In 
the future, a more seamless connection between a variety of 

different modeling approaches may be realized as demon-
strated later in the modeling approach by Wu et al.13

Comparing PKPD and QSP
Through years of implementation in drug development, 
PKPD modeling has demonstrated tremendous value in 
elucidating the relationship between the pharmacokinetics 
(PK) of a therapeutic intervention and the resulting phar-
macodynamic (PD) effect.14,15 This is especially true in the 
translational space, where estimated PKPD parameters, 
derived from relevant preclinical studies and appropriately 
adjusted for the clinical scenario, enabled prospective sim-
ulations to evaluate key drug development questions such 
as clinical dose level and frequency.15,16 Over the years, 
translational PKPD modeling has evolved beyond empiri-
cal models to incorporate more mechanistic components 
to establish mechanism-based PKPD models, which fa-
cilitate biologic driven translations across species and/or 
between different patient populations. Although the value 
of PKPD modeling has been widely recognized, its main 
focus is to establish relationship between drug PK and 
selected elements of the biological system that are per-
turbed by a particular drug treatment. The focus on select 
PD end points in PKPD models, albeit parsimonious, could 
potentially miss other intermediate or parallel signals that 
are equally important because the interaction between a 
drug molecule and its target(s) will likely elicit a whole host 
of changes for multiple biosignals. As such, PKPD models 
may have limited capacity to extrapolate beyond collected 
data sets. Moreover, there could be causal linkages be-
tween these biosignals within a network of signaling 
pathways that cannot be ignored or dismissed. Although 
the degree of mechanistic detail and scientific questions 
addressed by PKPD and QSP models may differ, the two 
approaches also differ in technical aspects, such as data 
requirements, model implementation (e.g., data fitting vs. 
the use of virtual subject simulations) and model evalua-
tion/qualification methods. These topics are addressed in 
greater detail elsewhere.6,7,17–19

It can be appreciated that a natural evolution from em-
pirical PKPD to mechanistic PKPD to QSP occurred with 
a recent concerted effort to consider approaches from 
top-down (PKPD) and bottom-up (systems biology) per-
spectives. This blending of complementary perspectives 
was highlighted in the original QSP white paper.1 QSP was 
developed to address the desire to incorporate additional 
biological mechanism with the potential to character-
ize these important biosignals together simultaneously. 
Although empirical PKPD and QSP are more easily differ-
entiated from one another, in some cases, the separation 
of mechanistic PKPD from QSP models is less obvious, 
especially in scenarios where the underlying biological 
mechanism can be described with sufficient mechanistic 
detail using a parsimonious model that can subsequently 
extrapolate beyond existing data sets to address future 
questions.

Comparing PBPK and QSP
PBPK models are another type of model often debated as to 
whether it falls within the definition of a QSP model. Similar 
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Table 1 Examples of QSP impact in drug discovery

Title Disease Impact (focus: short description) Company References

Replication Vesicles Are Load- and 
Choke-Points in the Hepatitis C Virus 
Lifecycle

Antiviral Target identification/prioritization: The model 
described the biology of the viral replication 
cycle, identified sensitive processes in the 

pathway

Heidelberg University/
Technische Universität 

Dresden

65

Development and Application of a 
Quantitative Systems Pharmacology 
(QSP) Model of Complement 
Pathway to Evaluate Treatments for 
Autoimmune Diseases

Autoimmune Target validation and modality selection: A 
comprehensive QSP model of the comple-
ment pathway was developed and dosing 

tractability of several complement proteins 
were estimated by combining pharmacokinet-
ics for small/large molecule modalities within 

the QSP model

GlaxoSmithKline 20

A Physiologically-Based Mathematical 
Model of Integrated Calcium 
Homeostasis and Bone Remodeling

Bone Mechanism of action: Integrated calcium 
homeostasis and bone remodeling; utility to 

describe a range of therapeutics and disease 
states

Amgen 66

A Strategy for Developing New 
Treatment Paradigms for 
Neuropsychiatric and Neurocognitive 
Symptoms in Alzheimer's Disease

Neuroscience Understanding disease pathogenesis and target 
validation: A combined QSP, phenotypic 

screening, and preclinical model strategy for 
progressing drug discovery and development 

for Alzheimer's disease

In Silico Biosciences/
University of Pennsylvania/
Oregon Health & Science 

University

67,68

A Translational Systems Pharmacology 
Model for Aβ Kinetics in Mouse, 
Monkey, and Human

Neuroscience Understanding mechanism of compound 
and translation from preclinical species: A 

mechanistic model of Aβ production, degra-
dation, and distribution to predict Aβ42 inhibi-
tion for various avagacestat dosing regimens 

across species

Institute for Systems Biology, 
Moscow/Pfizer

69

A Computer-Based Quantitative 
Systems Pharmacology Model 
of Negative Symptoms in 
Schizophrenia: Exploring Glycine 
Modulation of Excitation-Inhibition 
Balance

Neuroscience Combined preclinical neurophysiological 
network, predicted biomarker modulation 
in clinical trials, which is helpful to under-
stand human neurophysiology of negative 

symptoms, especially with targets that show 
nonmonotonic dose responses

In Silico Biosciences/Oregon 
Health & Science University/
University of Pennsylvania

70

Systems Pharmacology Analysis of the 
Amyloid Cascade After β-Secretase 
Inhibition Enables the Identification of 
an Aβ42 Oligomer Pool

Neuroscience Mechanism of action: β-secretase 1 (BACE1) 
inhibitor pathway modulation (amyloid precur-

sor protein)

Leiden University 71

Mathematical Model on Alzheimer's 
Disease

Neuroscience Mechanism of action: Understanding 
Alzheimer's disease pathogenesis; identifica-

tion of combination therapies

Penn State University 72

Cross-Membrane Signal Transduction 
of Receptor Tyrosine Kinases (RTKs): 
From Systems Biology to Systems 
Pharmacology

Neuroscience A systems pharmacology model based on the 
local physiology of receptor tyrosine kinases 
to characterize its dynamics and study the 

effects of drug intervention

Pfizer 73

A Mathematical Model of Multisite 
Phosphorylation of Tau Protein

Neuroscience The development of a mathematical model of 
multisite phosphorylation of tau for identifying 

targets and biomarkers

Pfizer 74

QSP Modeling for the Identification of 
Key Drug Targets

Neuroscience Target validation: Suggested a druggable target 
(TrkA), and predicted the necessary Ki of TrkA 

inhibitor for efficacy

Xenologiq/Astellas/Pfizer 75

A Humanized Clinically Calibrated 
Quantitative Systems Pharmacology 
Model for Hypokinetic Motor 
Symptoms in Parkinson's Disease

Neuroscience Understanding mechanism of action and ef-
ficacy of drugs for Parkinson's; model also 
correctly recapitulates the lack of clinical 
benefit for many approved therapies, e.g., 

perampanel, MK-0567, and flupirtine

In Silico Biosciences/
Washington State 

University/University of 
Pennsylvania

76

Systems Pharmacology Modeling 
in Neuroscience: Prediction and 
Outcome of PF-04995274, a 
5-HT4 Partial Agonist, in a Clinical 
Scopolamine Impairment Trial

Neuroscience Compound efficacy prediction: Model for 
cognitive brain function resulting from with 
description of cortical neural network and 

neurotransmitter signaling and evalua-
tion of 5-HT4 modulation as treatment for 

Alzheimer's disease

Pfizer 77

In Silico Modeling of the Effects of 
Alpha-Synuclein Oligomerization on 
Dopaminergic Neuronal Homeostasis

Neuroscience Target identification: Homeostasis model 
included aggregation and degradation of the 
protein, exploration of possible points of drug 

intervention

National and Kapodistrian 
University of Athens

78

(Continues)
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Title Disease Impact (focus: short description) Company References

A Multiscale Model of Interleukin-6–
Mediated Immune Regulation in 
Crohn's Disease and Its Application 
in Drug Discovery and Development

Crohn's 
disease

Target validation and compound efficacy pre-
diction: Comparative study of biotherapeutic 
strategies targeting IL-6–mediated signaling 

in Crohn's disease such as IL-6, IL-6Rα, or the 
IL-6/sIL-6Rα complex

Pfizer 79

A Systems Pharmacology Model for 
Inflammatory Bowel Disease

Inflammatory 
bowel 

disease

Literature-based Boolean network for therapeu-
tic target identification/validation for inflam-

matory bowel disease

University of Navarra/Janssen 80

Benefits and Challenges of a QSP 
Approach Through Case Study: 
Evaluation of a Hypothetical GLP-1/
GIP Dual Agonist Therapy

Metabolic A type II diabetes model (in PhysioLab) used to 
evaluate the efficacy of a hypothetical GLP-1/

GIP dual agonist therapeutic

Pfizer 81

Systems Pharmacology Modeling of 
Drug-Induced Modulation of Thyroid 
Hormones in Dogs and Translation 
to Human

Metabolic Prediction of compound efficacy and transla-
tion from preclinical species: A model of 

hormone physiology was developed based 
on in vitro and animal studies and used for 

prediction of drug-induced effects on plasma 
thyroid hormones concentrations in humans 

due to TPO inhibition

AstraZeneca 82

Preexisting Autoantibodies Predict 
Efficacy of Oral Insulin to Cure 
Autoimmune Diabetes in Combination 
with Anti-CD3

Metabolic For type 1 diabetes to rapidly identify candidate 
biomarkers, which were confirmed in subse-

quent preclinical studies

Entelos 83

Virtual Optimization of Nasal Insulin 
Therapy Predicts Immunization 
Frequency to Be Crucial for Diabetes 
Protection

Metabolic Model proposed optimal dose regimen and 
identified time frame at which biomarkers 
associated with disease protection were 

induced

La Jolla Institute for Allergy 
and Immunology

84

Model-Based Interspecies Scaling of 
Glucose Homeostasis

Metabolic Model described human glucose homeosta-
sis scaled for different preclinical species 
and can be applied toward translation of 

exposure/response

Uppsala University 85

Effects of IL-1β–Blocking Therapies 
in Type 2 Diabetes Mellitus: A 
Quantitative Systems Pharmacology 
Modeling Approach to Explore 
Underlying Mechanisms

Metabolic Used ex vivo data of IL-1β effects on β-cell func-
tion and turnover with a disease progression 
model of the long-term interactions between 

insulin, glucose, and β-cell mass in type 2 
diabetes mellitus

AstraZeneca/MedImmune 86

Radiation and PD-(L)1 Treatment 
Combinations: Immune Response 
and Dose Optimization via a 
Predictive Systems Model

Oncology Mechanism of action: tumor dynamics of radia-
tion and immuno-oncology (anti PD-(L)1) and 
optimization of the combinations and dose 

regimens

AstraZeneca 87

Therapeutically Targeting ErbB3: A Key 
Node in Ligand-Induced Activation of 
the ErbB Receptor–PI3K Axis

Oncology Describes a computational model of ErbB 
signaling network. Sensitivity analysis is 
used to identify ErbB3 as the key node. 

Model predicts the effects of MM-121, an 
antibody inhibiting ErbB3 phosphorylation, 

on halting growth of tumor xenografts in 
mice. Particularly, model predicted that an 
ErbB3 antagonist would inhibit combinato-
rial, ligand-induced activation of ErbB-PI3K 

network more potently than current marketed 
therapeutics

Merrimack 88

A General Network Pharmacodynamic 
Model–Based Design Pipeline for 
Customized Cancer Therapy Applied 
to VEGFR Pathway

Oncology Described a computational workflow for 
development of pharmacokinetic/enhanced 

pharmacodynamic models that can aid in new 
target identification and combination therapy 

identification

Icahn School of Medicine, 
Mount Sinai

89

Clinical Responses to ERK Inhibition 
in BRAF V600E-Mutant Colorectal 
Cancer Predicted Using a 
Computation Model

Oncology Model linking pathway signaling and activation 
to tumor growth inhibition predicted phase 
I drug combination efficacy and biomarker-

based patient stratification strategy

Genentech 90

Computational Modeling of ERBB2-
Amplified Breast Cancer Identifies 
Combined ErbB2/3 Blockade as 
Superior to the Combination of MEK 
and AKT Inhibitors

Oncology Mechanism of action: ErbB signaling network; 
optimization of dose regimen and combina-

tions of herceptin and lapatinib

Merrimack 91

Table 1 (Continued)

(Continues)
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Title Disease Impact (focus: short description) Company References

Computational Modeling of 
Sphingolipid Metabolism

Oncology/
CNS

A comprehensive model for lipid metabolism 
and to Alzheimer's disease (although not em-

bedded within a physiological framework)

University of Warsaw 92

A Computational Analysis of 
Proangiogenic Therapies for 
Peripheral Artery Disease

Peripheral 
artery 

disease

Mechanism of action: Molecular signaling simi-
larities and key differences in several classes 

of proangiogenic strategies

Johns Hopkins University 93

Systems Pharmacology-Based 
Approach for Dissecting the Active 
Ingredients and Potential Targets 
of the Chinese Herbal BJF for the 
Treatment of COPD

Pulmonary 
disease

Dissected the molecular mechanism of BJF 
for the treatment of chronic obstructive pul-
monary disease and predicted the potential 

targets of the multicomponent BJF, illustrated 
the synergetic mechanism of the complex 
prescription and discovered more effective 

drugs against chronic obstructive pulmonary 
disease

Henan University of Traditional 
Chinese Medicine

94

Systems Pharmacology-Based 
Dissection of Mechanisms of Chinese 
Medicinal Formula Bufei Yishen as 
an Effective Treatment for Chronic 
Obstructive Pulmonary Disease

Pulmonary 
disease

Mechanism of action of Bufei Yishen formula 
to prevent COPD and its comorbidities, such 
as ventricular hypertrophy; by inhibiting the 
inflammatory cytokine, hypertrophic factors 

expression, protease-antiprotease imbalance, 
and the collagen deposition

Henan University of Traditional 
Chinese Medicine

95

QSP Toolbox: Computational 
Implementation of Integrated 
Workflow Components for Deploying 
Multi-Scale Mechanistic Models

QSP workflow QSP workflows based on Matlab and 
Simbiology with capabilities in data integra-

tion, model calibration, and variability explora-
tion using an antibody drug conjugate QSP 

model

Bristol-Myers Squibb 96

Systems Biology for battling 
Rheumatoid Arthritis: Application of 
the Entelos PhysioLab Platform

Rheumatoid 
arthritis

Describes a QSP model for rheumatoid arthritis 
and application to rank putative drug targets 

using the Entelos PhysioLab platform

Organon/Entelos 97

Identification of CXCL13 as a Marker 
for Rheumatoid Arthritis Outcome 
Using an In Silico Model of the 
Rheumatic Joint

Rheumatoid 
Arthritis

QSP model used to predict candidate biomark-
ers for bone erosion. One of the markers, 
CXCL13, was validated with clinical data

Merck 98

Alternate Virtual Populations Elucidate 
the Type I Interferon Signature 
Predictive of the Response to 
Rituximab in Rheumatoid Arthritis

Rheumatoid 
arthritis

Mechanism of action: To understand how the 
interferon signature may predict response to 

rituximab

Entelos 17

Quantitative Pharmacokinetic-
Pharmacodynamic Modeling of 
Baclofen-Mediated Cardiovascular 
Effects Using BP and Heart Rate in 
Rats

Safety Mechanism of action: Baclofen-mediated car-
diovascular changes in rats

AstraZeneca 30

A Systems Pharmacology Model of 
Erythropoiesis in Mice Induced by 
Small Molecule Inhibitor of Prolyl 
Hydroxylase Enzymes

Safety Mechanism of action: In vivo description of 
erythropoiesis regulation via the inhibition of 

prolyl-hydroxylase-2 (PHD2) enzyme by PHI-1 
in mice

University at Buffalo/Pfizer/
Amgen

99

Multiscale Mathematical Model of 
Drug-Induced Proximal Tubule 
Injury: Linking Urinary Biomarkers 
to Epithelial Cell Injury and Renal 
Dysfunction

Safety A systems pharmacology model for identifica-
tion of biomarkers for proximal tubule (PT) 

epithelial cell injury and organ-level functional 
changes

University of Georgia/
AstraZeneca

34

Characterization and Prediction of 
Cardiovascular Effects of Fingolimod 
and Siponimod Using QSP

Safety A QSP CVS model to identify total peripheral 
resistance and heart rate as the site of action 
for fingolimod using in vitro binding assays

Novartis/Leiden Academic 
Centre for Drug Research

32

Application of A Systems 
Pharmacology Model for Translational 
Prediction of hERG-Mediated QTc 
Prolongation

Safety Integrated preclinical in vitro (hERG binding) and 
in vivo (conscious dog ΔQTc) data of three 

hERG blockers (dofetilide, sotalol, moxifloxa-
cin) to compare the in vivo efficacy of the 

three drugs

Leiden University/Janssen/
Merck

33

The Role of Quantitative Systems 
Pharmacology Modeling in the 
Prediction and Explanation of 
Idiosyncratic Drug-Induced Liver 
Injury

Safety Describes the application of DILISym DILISym 23

(Continues)

Table 1 (Continued)
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to the PKPD evolution to QSP, mechanistic PBPK models 
demonstrated that highly mechanistic models could provide 
predictive biological insights and deliver value to the phar-
maceutical industry, laying the groundwork for QSP models. 
Although PBPK models can have significant mechanistic 
detail and rely on system and drug-dependent parameters, 
it is the focus on PD and disease biology/(patho)physiology 
components that separates the two modeling approaches. 
PBPK models are focused predominantly on absorption, 
distribution, metabolism, excretion, and PK questions, 
whereas QSP models are focused on modulation of a given 
target and the subsequent impact on the underlying biology 
and/or disease pathology. Thus, mechanistic PBPK models 
may be more aptly called quantitative systems PK models 
rather than QSP models. This distinction is not meant to 
diminish the value of either approach but, rather, to provide 
clarity regarding model focus, required data, deliverables, 
potential resourcing, and impact. Although the primary 
focus of the two modeling approaches may be different, 
it is important to emphasize that these approaches are not 
exclusive, and it could be desirable to connect a PBPK 
model to a QSP model to drive target tissue-specific drug 
concentrations for example. This integrated approach will 
be demonstrated later in the example by Wu et al.13

Proposed QSP model structural requirements
The initial scope and aim of QSP modeling, “to develop 
formal mathematical and computational models that incor-
porate data at several temporal and spatial scales; these 

models will focus on interactions among multiple elements 
(biomolecules, cells, tissues, etc.) as a means to understand 
and predict therapeutic and toxic effects of drugs” was pro-
vided in the 2011 NIH Workshop White Paper.1 However, as 
stated earlier, this broad scope has led to a lack of align-
ment across the modeling and simulation community as 
to what type of modeling qualifies as QSP. To understand 
and distinguish the impact of QSP from these other meth-
ods, we propose that the following structural requirements 
should be met for the modeling approach to be classified 
as QSP: (i) pharmacologic action of an agent, either an en-
dogenous biomolecule or exogenously delivered molecule 
must be incorporated; (ii) the model contains spatial and 
temporal components; (iii) the underlying biologic and/or 
(patho)physiologic details are quantitatively and mechanis-
tically described.

IMPACT

Through discussion within the IQ TA LG QSP Working 
Group, results from an industry-wide survey, and evaluation 
of the literature (Table 1), it is evident that QSP modeling 
has had a significant impact in preclinical drug discovery 
across multiple therapeutic areas. Here we demonstrate 
the areas of impact with a few examples considering only 
models that include the action of a molecule (therapeutic or 
toxicant) within the context of a comprehensive mechanistic 
model of a disease process with outputs that are relevant 
to decision making in drug discovery. The applications are 

Title Disease Impact (focus: short description) Company References

A Mechanistic, Multiscale 
Mathematical Model of 
Immunogenicity for Therapeutic 
Proteins: Part 1—Theoretical Model

Safety By recapitulating key biological mechanisms, 
the model suggested mechanistic under-

standing of immunogenicity, helpful for im-
munogenicity risk assessment and ultimately 

aid in immunogenicity prediction

Pfizer 100

A Mechanistic, Multiscale 
Mathematical Model of 
Immunogenicity for Therapeutic 
Proteins: Part 2—Model Applications

Safety This is a first attempt at modeling immunogenic-
ity of biologics to help understand the immu-

nogenicity mechanisms and impacting factors 
potentially set up the starting framework to 

integrate various in silico, in vitro, in vivo, and 
clinical immunogenicity assessment results 

to help meet the challenge of immunogenicity 
prediction

Pfizer 101

Systems Pharmacology Model of 
Gastrointestinal Damage Predicts 
Species Differences and Optimizes 
Clinical Dosing Schedules

Safety A QSP model with rat and human variants to 
predict a dosing schedule for irinotecan that 

would minimize gastrointestinal adverse 
events

AstraZeneca 36

Evaluating DILIsym for Pre-clinical 
Drug Development

Safety Prediction of compound toxicity: The DILIsym 
model was used to predict the likelihood 

of toxicity of a lead compound at expected 
human therapeutic exposures that led to the 
decision to terminate the lead compound and 
provided crucial insights on the mechanism of 

hepatotoxicity

GlaxoSmithKline 25

5-HT4, 5-hydroxytryptamine receptor 4; AKT, protein kinase B; BJF, Bufei Jianpi Formula; BP, blood pressure; BRAF, gene that encodes serine/threonine-
protein kinase B-raf; CD3, cluster of differentiation 3; CNS, central nervous system; COPD, chronic obstructive pulmonary disease; CVS, cardio vascular 
safety; CXCL13, chemokine ligand 13; ErbB3, human epidermal growth factor receptor 3; ERBB2, gene that encodes human epidermal growth factor receptor 
2; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide-1; hERG, human ether-a-go-go-related gene; IL-6, interleukin-6; IL-6Rα, 
interleukin-6 receptor alpha; IL-1β, interleukin-1 beta; Ki, equilibrium binding constant; MEK, mitogen-activated protein kinase kinase; PD-(L)1, programmed 
death-ligand 1; PI3K, phosphatidylinositol 3-kinase; QSP, quantitative systems pharmacology; QTc, corrected QT; sIL-6Rα, soluble interleukin-6 receptor 
alpha; TPO, thyroid peroxidase; TrkA, tropomyosin receptor kinase A; VEGFR, vascular endothelial growth factor receptor.

Table 1 (Continued)
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varied and demonstrate the utility of QSP models in all 
phases of discovery and highlight the flexibility of these 
models to address multiple research questions. In addition, 
the strengths of QSP modeling to a priori simulate com-
plex biological information, to integrate data from multiple 
sources and simulate beyond the data sets used to gener-
ate models, and to interrogate biological mechanisms and 
generate hypothesis are exemplified in the examples below 
and provide illustrative scenarios that differentiate QSP ap-
proaches from other modeling methods.

Target validation and modality selection
In early stages of discovery, QSP modeling can provide an 
initial assessment of the dosing tractability of target(s), i.e., 
the amount of dose and affinities required to engage a tar-
get using small-molecule or large-molecule compounds. 
This can guide modality selection as various modalities 
can have a specific feasible dose and affinity range. An ex-
ample of evaluating this has been demonstrated by Bansal 

et al.20 using a model of the complement pathway for the 
treatment of autoimmune diseases. The dosing tracta-
bility of several complement proteins was evaluated by 
incorporating the PK for small-molecule or large-molecule 
modalities within the QSP model. As an example, model 
simulations (Figure  1a) showed that 90% engagement 
of the target Factor B with a large molecule is infeasible 
because of the high concentration and turnover of Factor 
B. In contrast, a small-molecule modality can lead to 
> 90% engagement of the target with 10 mg daily dosing 
(Figure 1b). By predicting the doses needed for 90% tar-
get engagement of Factor B at several drug affinities, the 
optimal affinity was predicted to be ~ 0.3 μM to achieve 
≤ 100 mg dose of a small molecule (Figure 1c). The model 
was also used to predict the effect of Factor B inhibition 
on C5a (a marker for complement activation) and pre-
dicted a strong effect (> 99% inhibition) on C5a inhibition 
(Figure 1d). The model was instrumental in guiding target 
validation efforts as well as modality selection during lead 

Figure 1 Application of quantitative systems pharmacology model for modality selection. (a) Human dose prediction for engagement 
of Factor B (FB) with a large molecule modality (Kd = 10 pM, half life = 28 days) with monthly dosing. (b) FB engagement with a small 
molecule (Kd = 10 nM) with single daily dose (assuming no protein binding and bioavailability of 95%). (c) Fractional engagement FB 
with a small molecule at different affinities and doses. (d) Corresponding effect of FB inhibition on a downstream biomarker – C5a. The 
star denotes the minimum potency (~0.3 μM) required to keep small molecule dose under 100 mg. lnh, Inhibition.
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discovery efforts. Because of a lack of availability of com-
pounds that can bind to several complement proteins at 
the target validation and lead discovery stage, the gener-
ation of animal data and PKPD modeling was not feasible. 
The question of target and modality selection could only 
be addressed using mechanistic QSP modeling, which 
integrated literature knowledge around the pathway dy-
namics with plausible PK and affinities for small-molecule 
and large-molecule modalities.

Biomarker identification and selection
QSP modeling can also be leveraged for biomarker iden-
tification, and its mechanistic detail can provide valuable 
insights to new potential targets. An example in Alzheimer’s 
disease is the QSP model (Figure  2) published by 
Clausznitzer et al.21 that includes lipid dysregulation in the 
brain with a focus on sphingosine-1-phosphate receptor 5 
(S1PR5). The model reproduces expected baseline levels 
of lipids and amyloid-beta (Aβ) for healthy and Alzheimer’s 
Disease subjects, and appropriately captured reported 
plasma and cerebral spinal fluid treatment responses to sev-
eral therapies. This model was used to predict the treatment 
response for a compound targeting sphingosine-1-phos-
phate receptor 5 and showed modulation of sphingolipids 
as well as Aβ, in particular, soluble Aβ in cerebral spinal 
fluid. These simulations built confidence in soluble Aβ’s po-
tential utility as a clinical biomarker to monitor treatment 
response. Furthermore, a sensitivity analysis identified ad-
ditional potential targets to modulate lipid dysregulation 
and Aβ in Alzheimer’s disease. The QSP model was able 
to increase confidence in a novel disease pathway and can 
be used further for validation of potential new targets as 

well as the identification of clinical biomarkers that may be 
used to monitor treatment response. Although nonclinical 
data were also generated that demonstrated changes in 
brain Aβ concentration following sphingosine-1-phosphate 
receptor 5 treatment, the QSP model captured the com-
plexity of dysregulation of interrelated pathways observed 
in human Alzheimer’s disease. Therefore, it is expected 
that the QSP model provides a better estimate of expected 
timescales and size of the treatment effect compared with 
directly extrapolating from preclinical species through a 
PKPD approach.

In another example, Schuck et al.22 developed and used a 
QSP model to identify biomarkers predictive of tumor growth 
inhibition for a cancer immunotherapeutic, E7046. The 
model, initially developed in mice, was intended to be trans-
lated to human to aid in the selection of efficacy biomarkers 
in clinical development and to identify combination therapies 
hypothesized to provide the highest possibility of improved 
response. Through sensitivity analyses of the various system 
parameters, the following three markers were identified as 
predictors of tumor growth inhibition by E7046: (i) tumor CD8 
T cell infiltration, (ii) prostaglandin E2 serum levels, and c) 
tumor growth rate. The hypothesis generated by the model 
was tested in additional tumor models (B16F10, 4T1, SalN, 
and PAN02) outside of the QSP model calibration system 
(CT26). Overall, the tumor growth inhibition predictions for 3 
of the 4 tumors matched the experimental observations well 
(Figure 3b–e). The predictions for B16F10 and 4T1 appear 
to predict experimental observations closely, and although 
the experimental data were much more variable for the SaIN 
model, the predictions were able to capture the general fea-
ture of the data set, namely, that vehicle grew at a modest rate 

Figure 2 Application of quantitative systems pharmacology model for biomarker selection. (a) Schematics of the quantitative systems 
pharmacology model consisting of (1) physiology, including brain, CSF, and plasma and (2) the pharmacology model including 
pharmacokinetics and pharmacological effect. The brain model includes submodules for cholesterol and sphingolipid pathways 
as well as APP/Aβ metabolism. Their interrelations by molecular interactions are represented schematically by lines connecting 
the submodules. Transport between different compartments is included for some molecular species of interest and is indicated 
schematically by the directional arrows. (b) Predictions of the model for treatment responses to sphingosine-1-phosphate receptor 5 
agonist indicate dose-dependent modulation of sphingolipids and the AD-relevant Aβ pathway in the brain and CSF. Figure reprinted 
from Clausznitzer et al. 21, licensed under CC BY-NC-ND 4.0 © 2018 The Authors. Aβ, amyloid-beta; APP, amyloid precursor protein; 
AD, Alzheimer’s disease; BL, baseline level; Cer, ceramide; CSF, cerebrospinal fluid; Emax, maximal effect; Ka, absorption rate constant; 
Ke, elimination rate constant; PK, pharmacokinetic; V, volume of central compartment; VBrain, volume of brain compartment; V2, 
volume of peripheral compartment.
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and the E7046 treatment resulted in control of that growth. 
The model was used to explore the tumor growth inhibition 
resulting from different doses of E7046 and its combination 
with a mouse PD-1 checkpoint inhibitor (data not shown), 
one of the promising potential combinations identified. Here 
QSP modeling was employed because of its prospective 
nature and ability to integrate data from multiple separate 
experiments. Experimental data for multiple markers were 
available, but understanding how they integrated to predict 
response was lacking. QSP modeling provided a quantitative 
way to assess and evaluate the impact of multiple markers 
together. Sensitivity analysis indicated that tumor growth in-
hibition was most sensitive to three different markers and 
that the use of a single marker could not accurately predict 
tumor growth inhibition following E7046 treatment. PKPD 
models are normally developed based on each marker inde-
pendently, which would not help in this case.

Predictive toxicology
Equally important to understanding a compound’s effi-
cacy is mitigation of a compound’s known toxicity risks, 
and there are multiple examples of QSP models devel-
oped to predict hepatic,23–25 cardiac,26–33 renal,34,35and 
gastrointestinal36 toxicity (Table 1). These models can be 
extremely useful early in the drug discovery process by 
helping teams predict and mitigate potential risks of the 

toxicity associated with molecules. Michalski et al. lever-
aged DILIsym,37 a QSP model of drug-induced liver injury 
(DILI), to investigate the mechanisms of hepatotoxicity ob-
served during lead optimization of a program. The DILIsym 
model, developed by the DILIsym initiative (now part of 
Simulations Plus, Lancaster, CA, USA), is an example of a 
modeling effort that was in part developed through a con-
sortium approach, where knowledge from across industry 
was leveraged to construct a shared model framework. In 
the example, the systems model was developed and em-
ployed to identify the primary mechanism of hepatotoxicity 
as mitochondrial toxicity. The DILIsym model was used to 
predict the likelihood of toxicity of the lead compound at 
expected human therapeutic exposures, indicating a sub-
optimal safety margin. This prediction led to the decision 
to terminate the lead compound and importantly provided 
crucial insight on the mechanism of toxicity allowing a 
discovery team to modify their lead optimization strategy 
to include measures of mitochondrial dysfunction in their 
screening cascade.

Another application of QSP modeling to translate preclin-
ical toxicology findings to predict potential clinical impact is 
in cardiac safety risk assessment. Tremendous efforts have 
been made from both academia and industry to develop 
mechanistic and predictive models for drug-induced cardiac 
toxicity.26–29 Wu et al.13 developed a model that integrated 

Figure 3 Prediction of E7046 dose-effect in preclinical tumors. Predicted tumor growth inhibition curves (lines) and experimental data 
(points) for (a) CT-26, (b) B16F10, (c) 4T1, (d) SalN, and (e) PAN02 tumors.

�

�

�
�

�

� �

� �

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�
�

�

� �
�

�

� �

�

�

�

� �
�

�

�

� � �

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�
�

�

�
�

�

�

�

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15

Time (days)
Tu

m
or

 v
ol

um
e 

(m
m

3 )

�

�

E7046 150 mg/kg
E7046 150 mg/kg predicted
Vehicle
Vehicle predicted

(b) B16F10

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

� �
�

�

�

�

�

�

� �
�

�

�

�

�

�

0

400

800

1200

1600

0 5 10 15 20 25

Time (days)

Tu
m

or
 v

ol
um

e 
(m

m
3 )

�

�

�

�

�

E7046 0.5 mg/kg
E7046 0.5 mg/kg predicted
E7046 150 mg/kg
E7046 150 mg/kg predicted
E7046 5 mg/kg
E7046 5 mg/kg predicted
E7046 50 mg/kg
E7046 50 mg/kg predicted
Vehicle
Vehicle predicted

(c) 4T1

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

� �

�
�

�

�

�

�

� �

�
�

�

�

�

�

� �

�

�
�

�

�

�

�
�

�
�

�

�

�

�

� �
�

�

�

�

�

�

� �
�

�
�

�

�

�

� �
�

�
�

�

�

�

� �
�

�
�

�

�

�

� �
�

�
�

�

�

�

� �
�

�

�

�

�

�

� �
�

�

�

� �

�

� � �
�

�

�

� �

� � �
�

�

�

�

�

� �
�

�
�

�

�

�

� �
�

�
�

�
�

�

� �
�

�
�

�

�

�

� � � � � � �
�

� � � � �

�
�

�

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25

Time (days)

Tu
m

or
 v

ol
um

e 
(m

m
3 )

�

�

E7046 150 mg/kg
E7046 150 mg/kg predicted
Vehicle
Vehicle predicted

(a) CT−26

�

�

�

�

�

�

�

� � �

� �
�

�

� �

�

� �

�

�

�
�

�

�

�
�

�

� �
�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

� �

�

�

�

�

�

� �

�

�

�

�

�

� �

�

�

�
�

�

�

� � �

� �

�

�
�

� �

�

�

�
�

� � �

�

�
� �

�

� �

�
�

�
�

� �
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

0

100

200

300

400

500

0 10 20 30 40

Time (days)

Tu
m

or
 v

ol
um

e 
( m

m
3 )

�

�

E7046 150 mg/kg
E7046 150 mg/kg predicted
Vehicle
Vehicle predicted

(d) SalN

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

��

� �

�

�
�

�

�
�

�

�
�

0

100

200

300

400

500

600

0 10 20 30 40

Time (days)

Tu
m

or
 v

ol
um

e 
(m

m
3 )

�

�

E7046 150 mg/kg
E7046 150 mg/kg predicted
Vehicle
Vehicle predicted

(e) PAN02



786

CPT: Pharmacometrics & Systems Pharmacology

Industry Perspective on QSP Applications in MID3
Bradshaw et al.

PBPK with population PKPD and a mechanistic cardiac ac-
tion potential model (Figure  4) to reveal the mechanisms 
underlying the observed species-specific drug-induced 
toxicity for a lead molecule (NVS001) and further predict po-
tential clinical safety risks. The distinct dose-QT/corrected 
QT (QTc) relationships for NVS001 observed in dogs and 
monkeys lead to challenges in translating preclinical cardio-
toxicity findings to clinical risk. The authors show that the 
integrated QSP and PBPK-PD modeling approach success-
fully predicted the clinical exposure–safety risk relationships 
by incorporating the QSP-model-derived, species-specific 
PD sensitivity and PBPK-derived clinical PK variability. The 
model predictions were verified with clinical thorough QT re-
sults and further applied to guide future clinical studies.

Other applications
A strength of QSP modeling is the incorporation of the 
underlying biological information of a disease (network of 
signaling pathways, feedback or compensatory control, 
and redundancy, etc.) beyond simplified empirical rela-
tionships describing the target modulation and impact on 
disease (e.g., traditional PKPD), which allows for extrap-
olations beyond a given data set or patient population. 
Take the QSP model of bone remodeling with integrated 
calcium homeostasis as an example; the motivation was to 
address questions that could not be practically answered 
either by clinical trials or traditional PKPD modeling for de-
nosumab.38 A decade later, this model was used by the US 
Food and Drug Administration (FDA) to address a safety 
concern of hypercalciuria for a drug, parathyroid hormone 
(NATPARA), in an entirely different indication (hypopara-
thyroidism). Similarly, the Alzheimer’s disease QSP model 
presented earlier was used to identify new targets in the 
lipid regulation pathway that were not previously studied in 
the clinic.21

Furthermore, the integrated biological mechanisms within 
QSP models can reveal key processes or parameters that are 

important but not readily obvious otherwise. For example, 
the human epidermal growth factor receptor 2 (HER2) tar-
geted liposome encapsulating doxorubicin (MM-302), where 
it seemed obvious that the first and foremost important de-
terminant for in vivo efficacy should be the HER2 expression 
level of a given cancer type. However, the QSP model indi-
cated the two most important parameters for efficacy are 
the liposome PK and tumor leakiness followed by the HER2 
expression level. The model performance was validated in 
murine xenograft models and later verified in humans via 
positron emission tomography imaging studies.39,40

CHALLENGES AND CONTROVERSIES
Data availability for model construction and 
qualification
Preclinical QSP modeling has the potential to leverage ex-
isting knowledge of known targets and pathways to aid in 
the selection and development of novel targets that have 
not yet been tested in the clinical setting. The aforemen-
tioned QSP model of the complement pathway serves as 
a perfect example of this. In fact, when reflecting on many 
of the examples presented here, it is evident that additional 
insights beyond the initial question asked of the model 
frequently arose from the QSP model, creating collateral 
benefits and insights.

However, it must be acknowledged that the clinical data 
used to develop and constrain these models can vary 
widely across the spectrum of disease areas for which QSP 
models have been developed (Table 1), and one of the chal-
lenges the modeling community faces is limited availability 
of well-annotated data. For example, in rheumatoid arthritis 
there are many large trials that span diverse mechanisms of 
action and well-established clinical measures used across 
these studies that can be used for model calibration and 
qualification.41–51 By contrast, in Alzheimer’s disease there 
are fewer trials with none thus far showing efficacy.52–54 
Nonetheless, neuroscience has been identified as a key 

Figure 4 A diagram illustrating the work flow for the integrated quantitative systems pharmacology–PBPK/pharmacodynamic 
modeling approach to predict the clinical safety risks of drug-induced QT/QTc changes using the preclinical safety data. PBPK, 
physiologically-based pharmacokinetic; PK, pharmacokinetic; QTc, corrected QT; TD, toxicodynamic; TK, toxicokinetic.
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disease area for investment in QSP models,2 and exam-
ples of successful QSP impact in this therapeutic area are 
available, such as the one presented above by Clausznitzer 
et  al.21 Although the availability of clinical data does not 
preclude the development and use of QSP models, it can 
influence how simulation results are interpreted. Models 
built on copious amounts of clinical data are likely to be 
more predictive, whereas models built with sparse clinical 
data are likely better suited for hypothesis generation.

In contrast to clinical data, which are used to assess 
high level behavior of the model, preclinical data are es-
sential to establish the underlying pathway connections 
representative of the biology. One of the challenges for QSP 
model building is defining the scope of biology necessary 
to answer the research question. Typically, this is driven by 
subject matter experts but can also be informed by insights 
gained from bioinformatic analyses of omics data and the 
use of databases and software tools such as Metacore 
(Clarivate Analytics, Boston, MA, USA), Ingenuity (QIAGEN 
bioinformatics, Redwood City, CA, USA), database for an-
notation, visualization and integrated discovery (Laboratory 
of Human Retrovirology & Immunoinformatics, Frederick 
Nataional Laboratory for Cancer Research, Frederick, 
MD, USA), Kyoto Encyclopedia of Genes and Genomes 
(Kanehisa Laboratories, Institute for Chemical Research, 
Kyoto University, Kyoto, Japan), and Reactome (http://www.
react ome.org). However, the major gap is a database of 
well-annotated biological parameters that the community 
can access and refer to during model development. The 
development and use of resources such as BioNumbers 
(http://bionu mbers.hms.harva rd.edu) and the Merck Manual 
(Merck & Co., Inc., Kenilworth, NJ, USA) would accelerate 
model building and bring consistency to models that ad-
dress specific therapeutic areas.

Purposeful complexity
Each case study presented here and the examples in Table 1 
provide critical and insightful answers to project problems, 
and each QSP model must be able to demonstrate a suffi-
cient degree of validity such that its guidance is accepted 
and acted on. For more conventional (population) PKPD 
models built entirely on data from one or more trials and 
answering questions from a descriptive (covariate identifica-
tion), interpolative (optimal dose), or a limited extrapolative 
analysis, validation can be achieved by confirming the ad-
equacy of the model fit. This is not true for QSP models55: 
The model structure is purposefully complex to connect 
disparate data sets and then inform on novel situations, and 
in doing so it is accepted that the model will contain param-
eters and assumptions that may not be uniquely confirmed 
by a validation data set. Indeed, the objective of informing 
novel situations typically means such validation data sets 
will not exist. The case studies herein instead achieve an 
appropriate model qualification by testing their predictive 
ability against scenarios that are distinct from those of the 
partial data sets used to create them. The ability to pre-
dict results without the originating data demonstrates that 
a model has been constructed to describe adequately the 
behavior of the underlying pharmacological system being 
modeled over and above a recapitulation of the data and 

as such may make valid predictions for further scenarios in 
which the system is involved. Note that even with such inde-
pendent validation, model predictions can still be affected 
by unidentifiability. Although the impact of this may be lim-
ited because parameters in the QSP model are typically 
based on physiological quantities and thus are bounded by 
observed physiological data as opposed to parameters in 
empirical models that are estimated to achieve best fit, it 
can nonetheless be assessed via sensitivity analyses and 
the exploration of parameter uncertainty used to under-
stand the robustness of simulation results.56 Importantly, 
the studies given here also provide both an answer to the 
research question and a mechanistic rationale from which 
a further assessment of the model validity may be made. 
For example, proposing biomarkers of the response of the 
complement system or DILIsym identifying the mechanism 
of toxicity may allow for an independent test of the QSP 
model predictions.

Transparency and reuse of QSP models
The transferability of QSP models remains an issue. Most 
of the examples referenced here are “one-time” models—
used at a discrete time and place to provide an answer 
to a specific question and then shelved. In part, this is 
because of the time and cost of developing QSP models: 
It is more pragmatic to build a “fit for purpose” model 
than to design one intended for multiple projects because 
of time and cost (including access to an appropriate 
budget). Furthermore, although the originating modeling 
team will have gained experience and understanding of 
their QSP model during its derivation, the choice of struc-
ture, discussion of data applicability/parameter values, 
and understanding of system behavior is often not ad-
equately documented. Such detailed consideration can 
rarely be expressed in the model write-up or publication, 
making it difficult for other parties to adopt their models 
with confidence. Consequently, it is often easier to build 
models from scratch, as illustrated by the commentaries 
of Chelliah et al.,57,58 which noted that there are some 160 
models of type 1 diabetes mellitus in the literature. The 
QSP community has recognized this shortcoming and 
has begun to recommend reporting methods to facilitate 
transparency and model reuse.59,60

The DILIsym and QTc examples presented here illustrate 
that transferable models are possible. It is notable that these 
examples relate to issues common to therapeutics largely ir-
respective of their target or modality. This provides the benefit 
of enabling precompetitive data sharing and a way for third 
parties to evaluate the utility of the model without requiring 
an in-depth knowledge of the model workings, as they can 
test the model against in-house data with known outcomes 
to qualify the model for their chemical space. However, this 
necessitates significant resource to be spent on data man-
agement, model curation, documentation, and updates. Such 
models are inevitably developed within consortia that can af-
ford the dedicated modeling team and budget significantly in 
excess of any QSP resource within the largest pharmaceuti-
cal companies.12,37,61 A limitation of the consortium approach 
is that it is often difficult to adopt outside of safety or other 
shared concerns such as immunogenicity62 as leveraging 

http://www.reactome.org
http://www.reactome.org
http://bionumbers.hms.harvard.edu
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this approach to build standard disease-specific models typ-
ically requires that partners reveal the targets that they are 
interested in, which can put competitive advantages at risk. 
Despite this, Certara (Certara USA, Inc., Princeton, NJ, USA) 
recently launched a consortium to develop a QSP model for 
immuno-oncology with the purpose of identifying biomarkers, 
optimal therapeutic combinations, and dosing regimens in vir-
tual patient populations.

Communication
Communication is another key challenge that can often 
impede understanding of the purpose and utility of QSP 
models as well as analysis and interpretation of simulation 
results, which can limit wider use in preclinical drug discov-
ery. This is important as organizational buy-in is necessary 
for resource allocation both in terms of budget and full-time 
employees to support model development. In addition, QSP 
model development requires a cross-functional, multidisci-
plinary effort to ensure that the appropriate components of 
the biology are being incorporated and that the data neces-
sary for model parameterization and qualification/validation 
are identified or generated, necessitating proper communi-
cation of the modeling approach and its impact. The effective 
communication of simulation outputs, results, and how to 
best leverage the model is paramount to maximizing the im-
pact of QSP modeling efforts to influence program strategy. 
Learning how to describe the models, how they are used, 
how data are incorporated, how outputs are represented, 
and how to draw appropriate conclusions from simulations 
to nonmodeling and simulation stakeholders is a necessary 
skill that often takes modeling and simulation experts years 
to refine or can require multiple iterations of communication 
of the information to help teams digest the messaging.

RECOMMENDATIONS

Although the challenges to the broader adoption of QSP 
described here can and have led to suboptimal uptake at 
times in industry during the past few years, none of these 
issues are insurmountable. As we continue to live in a world 
that is generating new data exponentially (i.e., “omics” 
data), approaches such as QSP can be used to gain insights 
from these seemingly disconnected data, and vice versa, 
the vast data generated by multi-omic approaches can be 
leveraged to evolve QSP modeling. The following recom-
mendations to standardize documentation of model design 
and construction, promote model publication, and improve 
publication process, leverage consortium or consensus 
model-building approaches, and advocate for inclusion of 
model-based approaches in internal documents and gov-
ernance materials can serve as initial guidelines to set the 
foundation so that QSP conducted today can be prepared 
to take on the needs of tomorrow.

A lack of model transparency can be addressed via 
standardization of reporting practices.60 Although mod-
els may start as fit for purpose, we advocate reusing and 
building on these models where possible such that they 
move toward “platform” status and indeed serve as a 
means of institutional learning and knowledge retention. 
Integral to this would be standard operating procedures 

for project teams to document design decisions, sources 
for parameter values, clinical data used, relevant literature, 
and so on. Ideally software would be leveraged to do this 
and perhaps the QSP community can look to the software 
industry and adopt tools such as GitHub (San Francisco, 
CA, USA) and Jira (Atlassian, Sydney, Australia), which are 
effective at maintaining version control and tracking is-
sues, respectively. Ultimately, transparency can likely only 
be truly achieved through publication of models. Given 
the complexity of these models, it is presently difficult for 
a reviewer to properly assess them. A flexible approach 
may be required given the variety of models that can be 
considered QSP and, importantly, the context of use.56 In 
addition, practices should be adopted to ensure model 
reproducibility.59

Many QSP models have been developed behind the 
firewalls of small consulting or large pharma companies. 
Although some of the models/methods/applications have 
been published, the industry lacks standard pathway and/
or disease-related QSP models, which could facilitate their 
uptake. Precompetitive consortiums that include pharma-
ceutical companies, academic thought leaders, and FDA 
experts in both mathematical modeling and the pertinent 
physiology should be leveraged to define standard models 
where possible. As mentioned previously, the consortium 
approach can be applied to shared concerns such as safety 
but faces more challenges for disease areas where the 
consortia members would be competitors. Nonetheless, 
consensus models may be a viable approach for some ther-
apeutic areas where the pathophysiology is well understood, 
such as type II diabetes. For these models, the community 
will likely need to rely on publication for dissemination. In the 
spirit of standardization, these models should be published 
with all equations and parameters written in a standard for-
mat such that they can be coded in any software of choice. 
We recommend this path as there are many software op-
tions for building and applying QSP models, but no clear 
frontrunner.63

For QSP modeling to reach its full impact within pharma 
it needs to move from an ad hoc, nice-to-have activity to 
a standard method for addressing early mechanistic ques-
tions across programs and disease areas. In the fast-paced 
pharmaceutical environment, it is paramount that QSP 
modeling activities demonstrate impact on a portfolio in a 
timely manner by addressing well-defined, specific ques-
tions with short-term deliverables that provide quick wins 
for the discipline and demonstrate the benefit of a sus-
tained investment. To achieve this timely implementation 
of QSP models, researchers can leverage existing mod-
els by incorporating new biological knowledge to address 
new questions. As such, learnings from prior projects with 
the original model will be carried forward. QSP models 
should be updated to reflect new learnings, especially as 
knowledge around the fundamental biology in the model 
changes and as new clinical data emerge. Furthermore, as 
QSP modeling demonstrates its utility, it is expected that it 
will become integrated into internal documents and gover-
nance meetings. For example, preclinical target validation 
could include in vitro, in vivo, and in silico assessments. 
Finally, when appropriate, it is encouraged that QSP 



789

www.psp-journal.com

Industry Perspective on QSP Applications in MID3
Bradshaw et al.

modeling results be included in regulatory documents and 
that companies actively engage with regulators in planning 
and implementing proposed models. Based on the out-
come of the QSP survey,12 QSP models are rarely or never 
included in regulatory documents. However, recent data 
suggest that this is changing, with most regulatory exam-
ples occurring in investigational new drug submissions.64 
This is perhaps not too surprising because the mechanis-
tic nature of QSP models lends itself to potential inclusion 
as part of the supporting knowledge defining the proposed 
mechanism(s) and its role in the pathophysiology of the 
disease as well as initial trial design considerations. The 
details of when and how QSP models should be shared 
with the FDA are still developing and may require differ-
ent regulatory engagement depending on the intent of the 
QSP modeling results.64 One aspirational goal is that, sim-
ilar to internal documentation, QSP model results could 
be included in target validation/mechanism of action sec-
tions of FDA documents (in vitro, in vivo, in silico). This will 
necessitate greater transparency of QSP models through 
publications or direct engagement with the FDA through 
their model-informed drug development program.

ANTICIPATED OUTCOMES

As QSP has become a regular topic of education sessions, 
symposiums, round tables, discussion groups, and so on 
at national and international conferences, it is expected 
that QSP as a discipline will continue to develop and will 
be leveraged more broadly across academia and industry. 
However, as a modeling community we need to be cautious 
of overselling QSP modeling and maintain the mind-set of 
generating the right-sized and right type of model to address 
program questions and industry needs. This paper high-
lights the growing use of QSP modeling in preclinical drug 
discovery to evaluate the tractability of targets, identify new 
targets, guide modality selection, influence compound de-
sign, aid in biomarker identification and selection, elucidate 
biological mechanisms, and generate new testable hypoth-
eses. It is our hope that as an industry and community we 
can see an even greater penetration of QSP modeling in this 
critical space of new drug design and development.
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