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Molecular imaging in neuroscience is a new research field that enables visualization of the
impact of molecular events on brain structure and function in humans. While magnetic
resonance-based imaging techniques can provide complex information at the level of
system, positron emission tomography (PET) enables determination of the distribution and
density of receptor and enzyme in the human brain. Previous studies using [11C]raclopride
and [11C]FLB457 revealed that the release of neuronal dopamine was increased in
human brain by psychostimulants or reward stimuli. Following on from these previous
[11C]raclopride studies, we examined whether the levels of neuronal release of histamine
might change [11C]doxepin binding to the H1 receptors under the influence of physiological
stimuli. The purpose of the present study was to evaluate the test–retest reliability of
quantitative measurement of [11C]doxepin binding between morning and afternoon and
between resting and attentive waking conditions in healthy human subjects. There was a
trend for a decrease in [11C]doxepin binding during attentive calculation tasks compared
with that in resting conditions, but the difference (less than 10%) was not significant.
Similarly, the binding potential of [11C]doxepin in the cerebral cortex was slightly higher in
the morning than that in the afternoon, but it was also insignificant. These data suggest
that higher histamine release during wakefulness could not decrease the [11C]doxepin
binding in the brain. This study confirmed the reproducibility and reliability of [11C]doxepin
in the previous imaging studies to measure the H1 receptor.
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INTRODUCTION
Histamine is a transmitter in the nervous system and a sig-
naling molecule in the gut, the skin, and the immune system.
Histamine neurons in mammalian brain are located exclusively
in the tuberomammillary nucleus of the posterior hypothalamus
and their axons extend throughout the central nervous system
(CNS). Four known histamine receptors and histamine bind-
ing to glutamate NMDA receptors serve multiple functions in
the brain, particularly control of excitability and plasticity (Haas
and Panula, 2003; Haas et al., 2008). The H1 and H2 receptor-
mediated actions are mostly excitatory, while H3 receptors act as
inhibitory auto- and heteroreceptors. Histamine neurons are pro-
posed to have a dual effect on the CNS, with both stimulatory and
suppressive actions (Watanabe and Yanai, 2001). As a stimulator,
neuronal histamine is one of the most important systems that
stimulate and maintain attentive wakefulness. Brain histamine
also functions in bioprotection as a suppressor of various noxious
and unfavorable stimuli of convulsion, drug sensitization, dener-
vation supersensitivity, ischemic lesions, and stress susceptibility.

We have examined the functions of histamine neurons using var-
ious approaches, such as histamine-related gene knockout mice
and human positron emission tomography (PET) (Yanai and
Tashiro, 2007).

Histamine neurons play an important role in the forebrain
waking systems (Lin, 2000; Eriksson et al., 2001; Huang et al.,
2001). Their neuronal activity is specific for a high-vigilance wak-
ing state and histamine neurons might play a role not in the
initiation of wakefulness, but in maintenance of the high level
of vigilance necessary for cognitive processes (Takahashi et al.,
2008; Sakai et al., 2010). An increase in histaminergic trans-
mission promotes wakefulness, whereas its blockade by sedating
antihistamines causes somnolence and impaired performance in
humans (Yanai et al., 2011). Several lines of evidence suggest that
histamine modulates circadian rhythms (Tuomisto et al., 2001;
Abe et al., 2004) and it has even been suggested to play a pivotal
role in circadian entrainment (Jacobs et al., 2000). Accordingly,
a clear circadian rhythm of histamine release was demonstrated
in the anterior hypothalamus by in vivo microdialysis studies
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(Mochizuki et al., 1992). Histamine release increased before the
active phase and was maintained at an elevated level during the
active phase.

Stress in our daily lives has been associated with various
psychiatric disorders including depression, schizophrenia, cog-
nitive disorders, and psychosomatic diseases such as anorexia
nervosa and irritable bowel syndrome. To date, we have con-
ducted several PET studies to elucidate the pathophysiological
mechanism behind the above-mentioned disorders, focusing on
alteration in neural transmission of the histaminergic neuron sys-
tems (Yanai and Tashiro, 2007). For PET studies, [11C]doxepin,
a potent antagonist of histamine H1 receptors, has been utilized
as an effective PET imaging tracer. Using [11C]doxepin, increas-
ing evidence has been accumulated regarding the role of the
histaminergic neuron system in the pathophysiology of stress-
related neuropsychiatric disorders. For example, histamine H1
receptor binding was measured using [11C]doxepin in patients
with schizophrenia (Iwabuchi et al., 2005), major depression
(Kano et al., 2004) and anorexia nervosa (Yoshizawa et al., 2009).
Another application of [11C]doxepin-PET is the measurement of
histamine H1 receptor occupancy by antihistamines. The inhi-
bition of histaminergic activity at the brain H1 receptor level
may have some favorable anxiolytic effects, however, more often
this is accompanied by unfavorable effects like increased daytime
somnolence, impaired memory and learning, decreased attention,
and weight gain. The brain H1 receptor occupancy measured by
[11C]doxepin-PET is one of the most reliable and objective meth-
ods to estimate the sedating properties of antihistamines (Yanai
et al., 2011, 2012). A critical step in validating [11C]doxepin to
measure the brain H1 receptor occupancy is to evaluate the repro-
ducibility of its binding potential (Bmax/KD) in the different
attentive conditions. Clinically-used PET probes should be exam-
ined on the test–retest reproducibility for the in vivo binding (Kim
et al., 2006; Yasuno et al., 2007; Edison et al., 2009; Narendran
et al., 2011), although [11C]doxepin binding to brain has not been
examined on this aspect until now.

Previous studies have shown that imaging with PET radiotrac-
ers that are specific for brain receptors can be used to visualize
changes in the release of neurotransmitters indirectly. Most suc-
cessful studies have focused on dopamine, since the dopamine
neurons that project to the striatum have been shown to play a
critical role in mediating motivational and addictive behaviors.
These imaging studies successfully measured increased extracel-
lular dopamine released by psychostimulants and physiological
reward stimuli in humans with [11C]raclopride (Koepp et al.,
1998; Rinne, 2003; Hommer et al., 2011) and [11C]FLB 457
(Narendran et al., 2011). However, some technical difficulties
have been encountered for the imaging of changes in the release of
other neurotransmitters. Among these are low sensitivity, changes
of neurotransmitter release pulse over time during PET imag-
ing and the issue of affinity states, the contribution of carryover
mass in the second PET scan, and internalization of receptors
(Boecker et al., 2008). Followed by the previous PET measure-
ment of dopamine release, we examined whether neuronal his-
tamine released as a result of mental stress and the circadian
rhythm might change the levels of H1 receptors measured in vivo
by PET and [11C]doxepin. Therefore, we undertook the present

study for the purpose of evaluating the test–retest reliability of
[11C]doxepin binding in the human brain during different atten-
tive conditions and circadian rhythm in healthy human subjects.

METHODS
SUBJECTS AND STUDY DESIGN
Japanese male volunteers, who were physically and mentally
healthy and had no history of allergy or long-term treatment with
H1 antagonists, were recruited to participate in this study. They
showed no abnormality in brain magnetic resonance imaging
(MRI). All subjects gave written informed consent for all study
procedures before participation. Concomitant medications, nico-
tine, caffeine, grapefruit or grapefruit juice, and alcohol were not
allowed during the experimental period. The present study was
approved by the Committee on Clinical Investigation at Tohoku
University Graduate School of Medicine, Japan, and was per-
formed in accordance with the principles of the Declaration of
Helsinki. All experiments were performed at the Cyclotron and
Radioisotope Center, Tohoku University.

In the first part of this study involving test–retest measure-
ments, six healthy male volunteers (mean age ± SD: 24.6 ±
2.1 years old) were examined twice with [11C]doxepin-PET dur-
ing a resting condition in the morning (11:00 a.m.) and afternoon
(3:00 p.m.) of the same day in order to evaluate the circa-
dian rhythm of H1 receptor binding. In the second part of this
study involving investigation of ligand activation, 10 healthy men
(22.3 ± 1.0 years old) were examined during resting and attentive
waking conditions. They were scanned twice by PET (SET2400W;
Shimadzu Co., Kyoto, Japan) on the same day during atten-
tive calculation tasks involving two-digit addition and during
resting conditions with their eyes closed after administration of
[11C]doxepin. The task protocols are shown in Figure 1. The
order of resting and calculation conditions was randomized. We
performed measurements of subjective feelings five times dur-
ing PET scans before the scan (pre), at interval 1 (int1), interval
2 (int2), interval 3 (int3), and at the end of scan (end). Subjective
feelings including alertness, tiredness, and sleepiness were mea-
sured during PET scans using Line Analog Rating Scale (LARS).
In LARS measurement, subjects mark a series of 100 mm linear

FIGURE 1 | Study protocols of test–retest measurements in the

different conditions. (A) Resting condition. (B) Calculation condition.
The H1 receptors were examined with [11C]doxepin-PET during the resting
and calculation conditions. The subjective feelings during PET scans were
also measured during the 90 min before the scan (pre), interval 1 (int1),
interval 2 (int2), interval 3 (int3), and at the end of the scan (end).
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analog scales (+50 to −50 mm), indicating their present feeling
with regard to a midpoint, which represents their normal state of
mind.

PET IMAGE ACQUISITION AND DATA ANALYSIS
[11C]Doxepin was synthesized by 11C-methylation of desmethyl-
doxepin with [11C]methyl triflate as described previously. The
radiochemical purity of [11C]doxepin was greater than 99%, and
its specific radioactivity at the time of injection was 207.5 ± 61.9
GBq/μmol (5608 ± 1673 mCi/μmol). The single injected dose
and cold mass of [11C]doxepin were 119.8 ± 10.5 MBq (3.23 ±
0.283 mCi) and 0.577 ± 0.051 nmol, respectively.

For the measurement of H1 receptors, PET scans were car-
ried out with an SET2400W PET scanner (Shimadzu Co., Kyoto,
Japan). PET data were acquired 30 s after the administration of
[11C]doxepin with the subject’s eyes closed for 90 min.

In order to calculate the binding potential (BP) of H1 recep-
tors, brain PET images of each subject during resting and calcula-
tion conditions were subjected to inter-frame motion correction
and then co-registered to an identical stereotaxic brain coordinate
using a corresponding T1-weighted MRI image. MRI images were
obtained with a 1.5-T MR scanner (HiSpeed, ver. 9.1; General
Electric Inc., WI, USA). Regions of interest (ROI) were first placed
on the following brain regions on the T1 images for which precise
anatomical information was available: anterior and posterior cin-
gulate gyrus, inferior prefrontal cortex, superior prefrontal cortex,
temporal cortex, and cerebellum. ROI was defined for each corti-
cal region by 3–5 concentric circles with a diameter of 5.0 mm
for each hemisphere in 4–5 consecutive brain transaxial slices. An
averaged value from all ROIs was used as a representative value of
each region. In addition, we produced a time-activity curve (TAC)
of each region from ROI data. The TACs were obtained by apply-
ing the ROIs to the dynamic PET images. A standardized uptake
value (SUV) was calculated for the normalization of ROI-TACs as
follows:

SUV (TAC) = TAC (MBq/mL)/

[injected tracer dose (MBq)]/body weight (g)

Subsequently, Logan graphical analysis with the reference tissue
input (LGAR) method was applied to calculate BP using PMOD
kinetic modeling tool (PKIN) software (PMOD Technologies
Ltd., Zurich, Switzerland) and TAC (Suzuki et al., 2005), and we
compared the BP between different conditions (resting vs. cal-
culation; morning vs. afternoon). All data were analyzed by a
repeated measure of ANOVA followed by multiple comparisons
(Tukey–Kramer test, Scheffe’s F test, and Bonferroni–Dunn test),
and P < 0.05 was considered statistically significant.

RESULTS
During the performance of the attentive task involving two-digit
calculation, the percentage of correct answers was greater than
90%. Subjects felt significantly more tired during the calcula-
tion task than in the resting condition (Figure 2A). Subjects in
the resting condition tended to have significantly higher sleepi-
ness scores than those in the calculation condition (Figure 2B).

FIGURE 2 | Subjective tiredness (A) and sleepiness (B) evaluated using

LARS during PET scans. Data are presented as the means ± SEM of
LARS (mm) from 10 healthy subjects in the resting and calculation
conditions. All data were analyzed by a repeated measure of ANOVA
followed by multiple comparisons and P < 0.05 was considered statistically
significant.

These data suggest that there was a significant difference in the
attention level between the resting and calculation conditions.

Six subjects were tested in the evaluation of the test–retest reli-
ability of [11C]doxepin PET. Given concerns about the possibility
that [11C]doxepin binding changes over days and week, the test
and re-test trials were performed in the morning (11:00 a.m.) and
afternoon (3:00 p.m.) of the same day. As shown in Figure 3A,
average SUVs over time from test–retest scans show that the
tracer gradually entered the brain and the brain activity remained
almost stable. The radioactivity in the anterior cingulate gyrus
showed a slightly longer elimination phase in the test trial per-
formed in the morning than that in the afternoon, but the
difference was insignificant. The radioactivity in the cerebellum
with negligible H1 receptor binding was essentially the same
between the test and re-test trials. There was an apparent trend
for decreased BP in the afternoon, but the BP values in the brain
regions including anterior cingulate gyrus were not significantly
higher in the morning test trial (Figure 3B), demonstrating that
[11C]doxepin binding in the brain is essentially the same between
in the morning and afternoon.

In order to verify the effects of attentive waking on in vivo PET
measurements of H1 receptor binding, [11C]doxepin binding was
examined twice in the brains of 10 normal volunteers during rest-
ing and attentive waking conditions on the same day, as shown in
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FIGURE 3 | Test–retest trial. (A) TACs in terms of SUVs for the regions of
anterior cingulate gyrus (ac) and cerebellum (cb) of test–retest scans.
Test–retest scans were performed in the morning and afternoon of the same
day, demonstrating a gradual initial increase in SUV followed by a longer
elimination phase. Data are expressed as the means ± SEM of six young

healthy male volunteers. (B) The binding potential (BP) in the test–retest trial.
Abbreviations: ac, anterior cingulate gyrus; ifroL, left inferior prefrontal cortex;
ifroR, right inferior prefrontal cortex; pc, posterior cingulate gyrus; sfroL, left
superior prefrontal cortex; sfroR, right superior prefrontal cortex; tempL, left
temporal cortex; tempR, right temporal cortex.

Figure 4. The order of rest and calculation trials of PET studies
was randomized to eliminate the effects of circadian rhythm on
H1 receptor binding observed in previous experiments. The time
courses in the regions of anterior cingulate gyrus (H1 receptor
rich region) and cerebellum (H1 receptor null region) were not
significantly different between the resting and attentive calcula-
tion conditions (Figure 4A). There was a trend for decreased BP
during the calculation task compared with that in the resting con-
dition, but the difference was not significant. These data suggest
that [11C]doxepin binding in the brain is not significantly influ-
enced by the performance of a calculation task as an example of
an attentive waking condition.

DISCUSSION
The main objectives of this study were to analyze the specific
brain uptake and kinetics of [11C]doxepin in normal volunteers
under different conditions, and to assess the test–retest reliability

of quantitative PET measurements between morning and after-
noon and between resting and attentive waking conditions. The
test–retest reliability for estimated BP was found to be suffi-
ciently high to afford reasonable precision in the tracer binding
determinations of H1 receptors. Attentive waking and circadian
rhythm might have some influences on the BP of H1 recep-
tors, but only within the range of 10% over all regions. The low
variability within 10% in the test–retest studies can be compat-
ible to other PET tracers such as [11C]DASB (serotonin trans-
porter), [18F]SPA-RQ (NK-1 receptor), [11C]PIB (amyloid Aβ),
and [11C]FLB457 (D2/3 receptor) (Kim et al., 2006; Yasuno et al.,
2007; Edison et al., 2009; Narendran et al., 2011).

Evidence from animal studies has implicated the histaminergic
neuron system in the pathophysiology of stress-related disorders.
Although several antidepressants and atypical antipsychotics are
potent H1R antagonists, the significance of their interaction with
H1R in a clinical context of efficacy is still unclear. In previous
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FIGURE 4 | Resting-attentive calculation trial. (A) TACs in terms of SUVs
for the regions of anterior cingulate gyrus (ac) and cerebellum (cb) of resting
and attentive waking conditions. Data are expressed as the means ± SEM of
10 young healthy male volunteers. (B) The binding potential (BP) in the resting

and attentive conditions. Abbreviations: ac, anterior cingulate gyrus; ifroL, left
inferior prefrontal cortex; ifroR, right inferior prefrontal cortex; pc, posterior
cingulate gyrus; sfroL, left superior prefrontal cortex; sfroR, right superior
prefrontal cortex; tempL, left temporal cortex; tempR, right temporal cortex.

PET studies, significant reduction in H1 receptor binding was
observed in patients with schizophrenia and major depression.
It is suggested that prolonged massive histamine release due to
repeated stress might lead to the down-regulation and/or inter-
nalization of H1R, which may result in decreased binding of
[11C]doxepin in stress-related disorders (Endou et al., 2001).

We previously demonstrated that normal female volunteers
had significantly higher BP of [11C]doxepin to H1 receptors in
the cerebral cortical areas than male volunteers (Yoshizawa et al.,
2009). The brain exhibits sexual dimorphism. For example, there
are gender differences in the size of the interstitial nucleus of
anterior hypothalamus (INAH) (male > female). INAH in homo-
sexual men is only half the size of the nucleus in heterosexual
men. The gender difference in human H1 receptors that we
observed is reasonable because histamine neurons are exclusively
located in the posterior hypothalamus. Sexual dimorphism was
also reported for brain histamine in rodents. The density of his-
tamine H1 receptors was higher in female rats than in male rats

(Ghi et al., 1999), and hypothalamic histamine release was higher
in male rats than in female rats (Ferretti et al., 1998). It is not ruled
out that neuronal histamine release and in vivo H1 receptor bind-
ing are closely correlated. Therefore, we should carefully consider
unknown factors influencing in vivo [11C]doxepin binding in the
brain.

One of the most commonly used types of drug for allergies is
the antihistamines. There are many available antihistamines with
different sedating properties. Therefore, it is important to develop
an objective and reliable method for measuring the strength of
such sedative side effects, on which we have conducted numer-
ous PET studies (Tagawa et al., 2001; Yanai et al., 2011, 2012).
[11C]Doxepin-PET has been shown to be useful for evaluat-
ing their sedating side effects and the mechanisms involved. We
succeeded in quantifying the strength of the sedating proper-
ties of antihistamines in terms of brain histamine H1 receptor
occupancy. We previously reported an age-related decline in
H1 receptor binding in normal human brain, especially in the
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prefrontal, temporal, cingulate, and parahippocampal regions
(Yanai et al., 1992), which are known to be involved in attention
and cognition. Therefore, we chose only young male volunteers
for these studies of receptor occupancy. This study confirmed
the reliability of values in H1 receptor occupancy by antihis-
tamines because different PET studies were summarized to make
the figures of occupancy (Yanai et al., 2011, 2012).

This study demonstrates for the first time that subjects’ atten-
tive conditions do not affect the reliability of H1 receptor binding
measured by [11C]doxepin-PET. This study does not necessarily
rule out the feasibility of measuring neuronal histamine release in
the living human brain using PET, although PET tracers with bet-
ter signal-to-noise properties should be developed in the future.
For this purpose, H3 receptor binding would be more appropriate
because H3 receptors are easily down-regulated by stress-related
histamine release. The previous studies reported that histamine
release was significantly increased during stressful conditions,

and that the H3 receptor density rapidly decreased in response
to stress (Ghi et al., 1995; Endou et al., 2001; Westerink et al.,
2002). Following the development of other histaminergic PET
probes, non-invasive measurement of neuronal histamine release
would be feasible in humans by PET ligand-activation study in
the future.
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