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Owing to myocardial abnormalities, cardiac ailments are considered to be the major

cause of morbidity and mortality worldwide. According to a recent study, membranous

vesicles that are produced naturally, termed as “exosomes”, have emerged as the

potential candidate in the field of cardiac regenerative medicine. A wide spectrum of

stem cells has also been investigated in the treatment of cardiovascular diseases (CVD).

Exosomes obtained from the stem cells are found to be cardioprotective and offer

great hope in the treatment of CVD. The basic nature of exosomes is to deal with the

intracellular delivery of both proteins and nucleic acids. This activity of exosomes helps

us to rely on them as the attractive pharmaceutical delivery agents. Most importantly,

exosomes derived from microRNAs (miRNAs) hold great promise in assessing the risk

of CVD, as they serve as notable biomarkers of the disease. Exosomes are small,

less immunogenic, and lack toxicity. These nanovesicles harbor immense potential as

a therapeutic entity and would provide fruitful benefits if consequential research were

focused on their upbringing and development as a useful diagnostic and therapeutic

tool in the field of medicine.
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INTRODUCTION

Cardiac problems and their related diseases are considered to be the major cause of morbidity and
mortality around the World (1, 2). Reports suggest that 17.7 million population succumb to death
every year due to the risk of cardiovascular diseases (CVDs), which claims 31% of the total deaths
worldwide (1). According to the recent studies (3–5), naturally producedmembranous vesicles have
the potential capability of targeting the recipient cells specifically and delivering their bioactive
constituents. Owing to this characteristic, these vesicles could emerge as a potential candidate in
the field of regenerative medicine. This non-living entity but bioactive, termed as “exosomes”,
shows promising preliminary results in mending a broken heart with the help of stem cells; thereby,
proving their advantage over the use of other cell types. Exosomes are looked upon as a best tool
with great emphasis on their nature of selectivity and the ease of uptake by target cells, thereby
creating a platform bestowed with immense opportunities in cell and tissue-specific targeting (6–8).
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The cellular waste from the lining cells are known to be
discarded by means of releasing secretory vesicles called as
exosomes (9, 10). Recent studies (4, 11–14) have indicated that
exosomes are escalated into crucial agents in cell–cell signaling
and find application in normal physiology, such as myocardial
angiogenesis, cardiac development, and the formation of vesicles
during the maturation of reticulocytes. Exosomes bring about
intracellular communication by way of particular modes, such
as direct interaction by cell-to-cell contact, electrical, as well
as long range signals and some chemical molecular interaction
processed extracellularly (15–17). It has been established that one
of the essential features required for the regulation of functions
of the heart is the use of extracellular vesicles (EVs), precisely
the exosomes (15, 18–20). The terminology “exosomes” were
proposed by Johnstone et al. (21) while investigating the vesicle
formation that are involved in the formation of reticulocytes. The
exosome synthesis and release are diagrammatically represented
(Figure 1A).

Exosomes are nanosized EVs that range from 30 to
150 nm in size with a floating density of 1.13–19 g/ml,
as determined by using the ultracentrifugation technique
on a linear sucrose density gradient (2–0.25M of sucrose)
(22–25). According to International Society for Extracellular
Vesicles (ISEV) the membrane vesicles classified three categories
apoptotic bodies (ABs), membrane vesicles (MVs) and exosomes.
Exosomes possess unique characteristic features, such as a fluid
lipid bilayer, surface proteins/receptors, mRNAs, microRNA
(miRNA), specific set of proteins, transcription factors, and other
substances (26, 27). Exosomes composed of various signaling
molecules, miRNAs and nucleic acids are clearly depicted
(Figure 1B). A previous study (15) indicated that the exosomal
contents are highly regulated in the case of stress and disease
conditions, which reflects the nature of the parent cell.

Exosomes belong to the unique subtype of membrane vesicles
that are released from the vital endocytic compartment of live
cells. The EVs develop from budding after the invagination of
plasma membrane and are synthesized through the endosomal
pathway (27, 28). The EVs with membranous structures
are typically, otherwise, called as exosomes, microvesicles,
microparticles, ectosomes, oncosomes, apoptotic bodies, and
so on (29–31). The United States is known to be the major
contributor and lead the World in terms of for the research on
exosomes (32).

Various theories attribute to the mechanism of action of
exosomes. First, exosomes possess proteomic potency that exerts
a potent diverse effect on the immune responses from both
humoral and cell-mediated components of the immune system
(33–35). Second, exosomes play a pivotal role in disease-
modulating capacity due to the transfer of miRNAs (36, 37).
Third, exosomes are of endosomal origin predominantly and are
composed of small (∼30–140 nm) particles enclosed by a lipid
bilayer (13). Finally, they are classified further as a subset of EVs
that are secreted precisely by most of the cell types (16). The
isolation and purification of exosomes are still underdeveloped
(14, 16, 38, 39). The isolation of exosomes from raw biological
fluids seems to be a herculean task as they are similar to the size
of other components in the biological fluids, such as lipoprotein,

chylomicrons, and macrovesicles, which overlap with that of the
exosomes (17, 39, 40).

Storage and Preservation of Exosomes
The suitable temperature to store exosomes has been found to
be at −29◦C (40). The anti-freezing agents are found to be
helpful in preventing the formation of ice crystals inside the
exosomes, increase their shelf-life, and help in storing them at
−80◦C or in liquid nitrogen (41–43). The entire protein content
and representative functional analysis would be preserved in
the exosomes if they are analyzed immediately after isolation
(44). The isolation of exosomes was found to be easier from
conditioned culture media and the entire process seems to be not
complicated; however, different types of EVs are often co-isolated
owing to the size overlap and the lack of cell-specific biomarkers
(45). Many techniques have been devised for the purification
of exosomes and these are also known to impact the yield,
density, and function of recovered EVs (46–48). These techniques
have been classified broadly into two subgroups: conventional
methods and microfluidics-based methods (14, 49).

The conventional methods include size exclusion,
chromatography, ultracentrifugation, immunoaffinity,
ultrafiltration, and polymer-based precipitation (16, 50). These
are well-established methods and are used widely, but known for
lesser efficiency or reduced yield (51). In contrast, microfluidics-
based method has gained momentum in the rapidly evolving
isolation platforms as they possess many advantages, such as
low sample consumption, increased sensitivity, easy to use,
and tremendous speed when compared with conventional
methods (52–54).

The purification of exosomes using the conventional method
has been the most dependent mode over the past decade in
research laboratories and clinics. The main principle underlying
the method of isolation of exosomes is based on their physical
property or their functions. As a result, they have been classified
into three subgroups: density-based, size-based, and function-
based isolation (16, 55).

In order to process small amount of fluid, microfluidics
work on micron-sized channels (µL to pL) (52, 56). The
microfluidic devices are fabricated with a specific polymer named
polydimethylsiloxane (PDMS) (24, 57, 58). PDMS is known to
be optically transparent and biocompatible (59). On the basis of
application and separation approach required for the experiment,
different components comprise the microfluidic device, such as
microchannels, microvalves, connecting tubes, micropumps, and
micromixers (60). Recent studies (52, 53, 61) have proved that
microfluidics are capable of sorting exosomes with increased
purity and sensitivity. At the same time, cutting down costs,
reducing the amount of reagents utilized, and most importantly,
bringing down the duration of time invested in the protocol
drastically (62).

In general terms, microfluidics-based method has been
classified broadly into two methods: active and passive (63). The
former method relies on the exertion of external forces for its
application, whereas the latter one is dependent mostly on the
use of hydrodynamic and surface forces (64).
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FIGURE 1 | (A) A schematic representation of the major vital components of the endosomal pathway synthesis and release. (B) Represents standard exosomal

-markers that have been reported to serve as biomarkers for the identification of certain diseases. Exosomal cargo composed of various proteins, mRNA, miRNA and

DNA.

METHOD OF EXOSOME UPTAKE BY
CELLS

The uptake of exosomes could be denoted as the process
in which exosome signals are transferred to the recipient
cell by a three-step mechanism that involves the interaction
of receptors, membrane fusion, and endocytosis (65). In
addition, exosome uptake was measured quantitatively by using
fluorescent EGFP Renilla protein (66). The exosome uptakes
through the following processes are studied widely: clathrin-
mediated, caveolin-mediated, macropinocytosis, phagocytosis,
involvement of lipid rafts, and membrane fusion (67–72).

Exosome Loading
Numerous methods have been proposed for loading exosomes
that are classified widely into two different strategies: cargo
loading after isolation and cargo loading during formation (73,
74). Exosomes composed of various types of cargo molecules
DNA, RNA, protein, miRNA and lipids (75). The exosomal cargo
loading is an important phenomenon for circulation and cell-cell
communication. Endosomal cargo loading is differs in various
physiological and pathological conditions. The endosomal
sorting complex required for transport (ESCRT) a pivotal roles
in synthesis and cargo loading (76). ESCRT family of proteins
such as Tsg101, Hrs, CHMP4, STAM1, VPS4, VTA1, nSMase
2, PLD. CD9 and ALIX are important roles in cargo loading
(77–81). N-linked glycosylation directed the glycoprotein sorting
in extracellular membrane vesicles (82). Lipids plays a crucial
roles in exosome biogenesis includes Phosphotidylserine (PS),
phosphotidylethanolamine (PE), phosphatidylcholaine (PC),

phosphatidylinositals (PIs), phosphatidic acid (PA), cholesterol,
ceramide and spingomyelins (83, 84).

Exosome Classification
Exosomes have been classified broadly as natural exosomes (13)
and engineered exosomes (85) (Figure 2). Naturally occurring
exosomes are further classified into animal-derived exosomes
(16) and plant-derived exosomes (86). As exosomes are
synthesized under normal and diseased or tumor conditions,
animal exosomes are subdivided further into normal exosomes
and tumor exosomes or oncosomes (30, 87). Some of the
normal cell type exosomes are derived from mesenchymal stem
cells (MSCs) (88) and immune cells, such as T cells, B cells,
macrophages dendritic cells, and natural killer cells (89). Among
these, MSCs play a vital role in the disease development and are
also involved in the damage and repair of tissues with definitive
therapeutic prospects on CVD and certain neurological diseases
(90). In addition, normal exosomes occur in body fluids, such as
saliva, plasma, urine, milk, bile, ascites, and express diagnostic
and therapeutic properties (13, 91, 92). Tumor exosomes are not
only associated with tumor growth and metastasis, but also helps
in identifying the disease conditions, thereby acting as ‘diagnostic
markers’ (35, 93, 94).

BIOGENESIS AND RELEASE OF
EXOSOMES

Initially, exosomes are synthesized with the inward budding of
the cell membrane that gives rise to early endosomes processed
by a secondary inward budding of the endosomal membrane
to develop into numerous intraluminal vesicles (ILVs), also
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FIGURE 2 | Classification of exosomes isolated from different resources. Natural exosomes have showed in animal/human derived exosomes, plant derived

exosomes and engineered exosomes.

referred to as the late endosomes (13). Late endosomes enclosing
ILVs are also known as multivesicular bodies (MVBs). In the
end, the MVBs tend to fuse with the cell membrane bringing
about the release of ILVs in an exocytotic manner outward into
the extracellular environment (16). Originally, these ILVs are
referred to as “Exosomes” (13, 80, 95–97).

Exosomes are released from the cell by either constitutive
or inducible process. The constitutive secretory pathway is
controlled by RAB GTPases (Rab 27a/b, Rab 11, and Rab
35), heterotrimeric G protein, WNT5A, glycosphingolipids,
and flotillins (98–104). Furthermore, the inducible secretion
pathway is controlled by stress stimuli that involve an aberrant
intracellular calcium release, thrombin, DNA damage, hypoxia,
lipopolysaccharides, and heat shock (99, 105–107).

Although the release is governed by either of these factors,
ultimately exosome secretion necessitates its fusion with the
plasma membrane (108). The membrane fusion of MVBs
is facilitated by a combination of soluble N-ethylmaleimide
sensitive factor attachment protein receptor (SNARE) proteins
localized on MVBs that interact with target SNAREs localized
on the intracellular side of the plasma membrane, which results
in a membrane-binding SNARE complex paving pathway for
membrane fusion (109–111).

A few pilot studies (112–115) have demonstrated that the
exosomal RNAs are quite functional in their recipient cells by
showcasing the composition of exosomes composed of double-
stranded DNA (dsDNA), mRNA, and non-coding RNA. A study
(81) depicts the efficient intercellular communication that arises
due to the exchange of exosome contents across cells. In addition,
evidence shows that the process of protein and RNA sorting into

exosomes is dependent mostly on multiple pathophysiological
factors, such as stress and disease (116, 117). This type of tailor-
made exosomes with modified functional constraints due to any
disease may serve as biomarkers for the diagnosis and prognosis
of various diseases namely CVD (15, 20, 118).

STEM CELLS

Since the first study describing the potential of skeletal muscle
in order to repair the heart, a wide spectrum of stem cells has
been investigated for the treatment of CVD (119). Stem cells are
capable of self-renewal with the ability to differentiate themselves
into numerous cell types. Stem cells could be guided to become
specific cells that can help to regenerate and repair diseased or
damaged tissues (120). Stem cells are unipotent, multipotent,
and pluripotent (121). Different types of stem cells exist and are
classified based on their source, such as embryonic stem cells,
umbilical cord blood stem cells, cardiac stem cells, MSCs, and so
on (122).

The cell-based therapies were studied widely in cardiac tissue
regeneration and the most significant type of cells identified are
as follows: skeletal myoblasts (SKM) (123), bone marrow derived
cells (BMCs) (124), induced pluripotent stem cells (iPSCs) (125),
endothelial progenitor cells (EPCs) (126), and cardiac progenitor
cells (CPCs) (127, 128). Among the three therapies identified,
exosome-based therapy has emerged as the novel focal point to
treat CVD (129). The various cell types that are studied widely
in the case of cardiac repair in vitro and clinical trials are ESCs,
iPSCs andmultipotent/unipotent adult stem cell lineages, such as
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MSCs, cancer stem cells (CSCs), and cardiosphere-derived cells
(CDCs) (130, 131).

Pluripotent stem cells are capable of differentiating into
any type of cells in the body and used for tissue repair
(132). Therefore, these stem cells were investigated widely as a
harbinger of hope in cardiac regenerative therapy. To support
this fact, Adamiak et al. (2) have stated that EVs derived from
murine iPSC (miPSC–EVs) offer cytoprotective properties to
cardiac cells in vitro and are capable of inducing superior
cardiac repair in vivo associated with left ventricular function,
vascularization, and amelioration of apoptosis and hypertrophy.
A recent study (133) has revealed that the treatment using iPSC-
derived exosomes induces the embryoid body differentiation and
remodeled the cardiomyocyte hypertrophic cells.

Stem Cell-Derived Exosomes
Pluripotent stem cells that are generated from adult somatic cells
or blood cells by a process of genetic programming are called
as iPSCs, wherein they revert into an embryonic-like pluripotent
nature (134, 135). Owing to the clinical hurdles, such as safety and
ethical issues, the use of human iPSCs for transplantation therapy
to offer cardiac protection and restore function has been looked
upon as a nightmare rather than a reality. Therefore, most of the
research studies have been focused on secretomes (cell-secreted
EVs) apart from iPSC injection/transplantation (133, 136). MSCs
are the most magnificent producers of exosomes among the
various cell types (90, 137, 138). The treatment of diseases based
on the mechanism of MSC-derived exosomes has emerged as the
future of scientific research. It has been put forth that therapeutic
exosomes in tissue regeneration occupy the hotspot which might
hold great promise for a long term.

In the 1970s, Friedenstein (47) described a population of
bone marrow stromal cells that are capable of mesodermal
differentiation and trophic support of hematopoiesis (48), Caplan
(139) was the one who coined the term “Mesenchymal stem
cells” in the early 1990s. MSCs constitute a heterogeneous
subset of stromal regenerative cells and could be harvested
easily from several types of adult tissues (140). MSCs have
attained a prominent place by being known as the most
promising of all therapy tools owing to their relatively simple
procedure for cell isolation, self-renewal capacity, differentiation,
ability, low immunogenicity, multipotency, and secretion of
mediators that support tissue renovation or its substitution
(140). MSC-derived exosomes seem to be enriched highly
in certain biologically active molecules, such as RNAs and
proteins (54). These MSCs are well equipped to maintain
homeostasis within the tissue and respond to external stimuli.
Studies have revealed that MSC-derived exosomes promote
protective effects against myocardial I/R injury through several
mechanisms that might include cardiac regeneration, anti-
apoptosis, anti-inflammatory effects, cardiac remodeling, anti-
vascular remodeling, and neovascularization (141–144). A recent
discovery suggested that cardiac progenitor-derived exosomes
inhibited cardiomyocyte apoptosis and improves the patients
hailing in myocardial infarction and left ventricular ejection
function (145).

As per a previous study (61), adipose-derived stem cells
(ADSCs) are stromal vascular fragment of the adipose tissue in
origin and have proved to be credible and reliable in terms of
clinical implications. These cells have inherent differentiation
properties that could give rise to diverse cell lineages and are
capable of secreting high levels of protein that are known to
play an important role in immunoregulation, revascularization,
angiogenesis, coetaneous wound healing, and regeneration of
worn-out tissues (146–148).

Apart from the secreted proteins, these cells are capable of
releasing exosomes that are designated as small EVs with a
multivesicular endosomal origin (13, 45). ADSC-Exos normoxic
or hypoxic environment have been isolated successfully by using
in vitromethods (149, 150). The work by Ribeiro-Rodrigues et al.
(151) have demonstrated that cardiomyocyte-derived exosomes
during ischemic condition gave rise to a new vessel formation
and on further investigation revealed the proangiogenic effect,
which was attributed partially to relatively expressed miR-143
and miR-222 in exosomes.

Another variant, known as a cardiac telocyte cell, that belong
to the novel class of stromal cells was known to induce the
growth and differentiation of CSCs/CPCs during organogenesis
and brought about improvement in cardiac function (152). In
addition, the transplantation of cardiac telocyte cells led to an
enhancement of angiogenesis coupled with a decrease in cardiac
fibrosis, which was involved in heart physiology and regeneration
(153). Cardioprotective factors that enable beneficial effects
to damaged heart were secreted by cardiac telocyte-derived
exosomes (154).

A previous research work carried out by Kervadec et al. (155)
stated that exosomes that are secreted by human ESC-derived
cardiovascular progenitors (hESC-pg) were capable of providing
equal benefits of cardioprotective effects in contrast to hESC-
pg alone injected in a mouse with post-infarct heart failure
(HF). Kervadec et al. (155) also identified over 927 upregulated
genes in the heart owing to the treatment with hESC-pg and
their derivative exosomes, which led to an increase in cardiac
function by 78%. Khan et al. (156) have also observed that mouse
ESC-derived exosomes help in restoring the cardiac function
in acute myocardial infarction (MI)-infected mouse model. In
addition, the study even reported that miR-294 was responsible
for neovascularization, improved survival of cardiomyocytes, and
reduced fibrosis post infarction.

Therapeutic efficacies of iPSC-derived exosomes have
contributed to neovascularization and survival of cardiomyocytes
in experimental animal models of CVDs, as demonstrated by
Jung et al. (157). Besides these exosomes, iPSC-derived
cardiovascular progenitor cells (iPSC-pg) have proven to be
effective in the treatment of congenital cardiac failure (CCF),
attributed mainly to the specificity of 16 highly abundant
miRNAs that were known to be evolutionarily conserved
mRNAs and involved in pathways associated with tissue repair
(158). Khan et al. (156) have demonstrated that the mouse ESC-
derived exosomes are capable of endogenous repair and preserve
the functions of the heart when delivered by intramyocardial
injection, as soon as left anterior descending ligation in an
infraction-afflicted murine model. In particular, the researchers
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attributed the success toward ESC-derived exosomes, which
were responsible for the beneficial effects in therapy to exosomal
miR-294 (19, 156, 159). Cardiac progenitor-derived exosomes
composed of pregnancy associated plasma protein A cleavage
of insulin-like growth factor binding protein-4 and insulin-like
growth factor-1 and activated the cell proliferation in Akt and
ERK1/2 pathways in cardiomyocytes (160). In addition, cardiac
progenitor-derived exosomes inhibited caspase activation and
cardiomyocyte protection (160).

Beneficial Role of Stem Cell-Derived
Exosomes in CVD
Research data suggest that exosomes obtained from stem cells aid
in cardioprotection, which promotes therapeutic remedy in the
treatment of CVD (136, 161). Lai et al. (162) have demonstrated
that human embryonic stem cells (hESC) secreted 50–100 nm
membrane vesicles using an ex vivo Langendorff model of
ischemia/reperfusion (I/R) injury, wherein they observed that
these purified MSC-derived exosomes help in reducing the
infarct size in mouse cardiac tissue.

Arslan et al. (163) showed that a single intravenous injection
of exosomes (5mm) before reperfusion reduced the size of infarct
by ∼45% in mice. It was also reported that the treatment with
exosomes helped to restore depleted energy and redox rate
potential in mouse health within 30min after I/R, which was
proven by the presence of increased levels of ATP and NADH
levels with a decrease in oxidative stress (164). The studies
conclude that MSC-derived exosomes harbor all necessary
enzymes that are required for the generation of ATP (165,
166). The report also suggest that exosome treatment leads to
the reduction in systematic inflammation in mice model after
treatment with myocardial I/R (167) (Figure 3). Thus, MSC-
derived exosomes could be a powerful therapeutic solution for
patients diagnosed with acute myocardial infarction (167). The
cardiac progenitor cells plays crucial role in angiogenic and
cardiogenic properties in high-glucose conditions in both in vitro
and animal models (168).

The data obtained by Wang et al. (169) revealed the
supreme cardioprotective nature, inclusive of cell survival
and angiogenesis by human endometrium-derived MSC (En-
MSC). Mounting clinical and experimental evidences suggest
the possibility that MSC with the ability to differentiate into
different cell lineages could serve as a promising therapy to treat
patients with cardiac dysfunction (170–172). Hematopoietic stem
cell (HSC)-derived exosomes provide support to repair cardiac
tissues by differentiating into cardiomyocytes (173, 174).

The research work published by Tseliou et al. (175) stated
that the exosomes derived from cardiospheres (CDCs) seem
to transform inert dermal fibroblasts into therapeutically
active cells, which could bring about a decrease in the
size of the scar and improve cardiac function in a chronic
myocardial infarction model. CDCs are known to stimulate the
regeneration of angiogenesis and functional improvement in
the infarcted myocardium (176). Exosomes from CDCs could
inhibit apoptosis significantly and are capable of promoting

FIGURE 3 | A head-to-head comparison of cell therapy and cell-free therapy.

the proliferation of cardiomyocytes apart from enhancing
angiogenesis (6).

Adult Stem Cells (ASC) Based Therapy
Endothelial progenitor cells, a class of unipotent adult stem
cells, have been looked upon as a therapeutic progenitor for the
post-injury treatment of cardiac muscles (177, 178). A group of
researchers (179) have demonstrated that adult human CD34+

stem cells isolated and purified from mobilized peripheral blood
mononuclear cells (PBMCs) secrete exosomes (CD34 Exo) and
are capable of inducing angiogenic activity in isolated endothelial
cells and in murine models (179, 180). A study by Sahoo et
al. (179) also reported a similar finding that human CD34+

stem cells have the ability to secrete cup-shaped exosomes
that expressed CD63, phosphatidylserine, and TSG101. Recent
striking discoveries shows that CD34-Exo are internalized easily
by endothelial cells in the ischemic tissue, wherein they tend to
induce cell cycle, angiogenesis, and cell proliferation (6, 181, 182).

On the basis of in vivo results, the scientists noted that
both CD34+ cells and CD34+ exosomes induced the formation
of vessel, such as endothelial cells, influenced by appropriately
elevated proportion of endothelial cells in the Matrigel plug. A
previous study (183) reveals that CD34+ exosomes form a key
paracrine component of CD34+ cells induced vessel cell growth.
Exosomes purified from body fluids and somatic cells have also
been reported to be capable of being implemented as novel
therapeutic options for certain CVD (36).

Stroke and Stem Cell-Derived Exosomal
Therapy
Stroke is a malfunction of the heart that leads to death and
disability. Stroke is a form of degenerative disease associated
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with aging in individuals. Stem cell therapy could pave the
way for a biological treatment alternative to the traditional
therapy based on pharmacology (184). MSCs are chosen widely
because of their differentiation ability and the ease with which
they can be isolated from various adult tissues. In addition,
adult MSCs pose less problems when compared with ESCs in
terms of tumorigenesis and ethical issues (185, 186). In this
regard, an evidence (139) claimed that the beneficial effects of
stem cell transplantation are based on their ability to secrete
bioactive molecules, namely, the exosomes. In a myocardial
infarctionmodel, the utilization of exosomes obtained frommyc-
transformedMSCs was known to reduce the infarction size (187).
A previous study (138, 188) has focused mainly on the role
of EVs in MSC transplantation and their therapeutic effects.
The major subtypes of EVs are exosomes, microvesicles, and
apoptotic bodies.

MSC-derived exosomes could be isolated steadily from MSC-
conditioned medium. They are more effective compared with
direct MSC transplantation used in the treatment of various
ailments, such as CVD, acute kidney injury, liver injury, and lung
injury (125, 185).

Therapeutic Application of Exosomes
Exosomes contain various molecules, such as miRNA, that
are capable of mediating biological function by means of
gene regulation (185). miRNAs belong to a novel class
of small non-coding RNAs (189, 190). Evidence show
that miRNA are packaged into exosomes. They help to
mediate cell–cell communication by acting as paracrine
messengers (191). Exosomes serve as a new therapeutic
target and could act as a biomarker for various disorders
including cardiac disease (190). Mesenchymal stem cell derived
exosomes (MSC-exo) used for various aging related diseases
(192).

Exosomal miR-146a could be used as a highly specific blood
biomarker that will help in the diagnosis and risk stratification
of patients suffering from peripartum cardiomyopathy (115).
Another studies (15, 193) has claims that the impairment
of myocardial angiogenesis in diabetic patients occurs due
to the secretion of anti-angiogenic exosomes released from
cardiomyocytes. Sepsis-induced cardiomyopathy has been
attributed to the high number of exosomes and their intrinsic
properties (194).

Exosomes along with their biologically active cargos would
offer apparent prognostic information about various diseases,
such as chronic inflammation (195), cardiovascular and renal
diseases (196), neurodegenerative diseases (197), lipid metabolic
disorders (198), and tumors (199). Exosomes resemble the
paracrine factors in both human and mouse CPCs (200)
and stimulate heart protection inclusive of miRNAs both in
vitro and in vivo. Gray et al. (201) reported that CPC-
derived exosomes in response to hypoxia also led to the
upregulation of 11 miRNAs compared with normal exosomes.
In the previous work of Ong et al. (202), CPCs that
overexpressed hypoxia inducible factor 1α (HIF-1α) help in
improving the survival rate of transplants and the success
was attributed mainly to the increased levels of miR126 and

miR120 present within the exosomes, which had activated the
prosurvival kinases and induced the glycolytic switch in the
recipient CPCs.

Human CD34+ stem cell-secreted exosomes portrayed
angiogenic activity, which was independent of its action in both
in vitro and in vivo studies. This supports the notion that
exosomes from stem cells could be an important component
of therapeutic angiogenesis (11, 203). Ischemic heart disease
(IHD) is caused by the blockage of blood flow to the heart
arteries, resulting in reduced blood supply to the heart (204).
It seems to be one of the most common cause of death,
of over 9 million deaths per year worldwide (205). To cure
this disease, stem cell therapy using somatic multipotent and
pluripotent stem cells presents a valid approach to harness
cardiac regeneration and myocardial function recovery (206).
Giricz et al. (207) have demonstrated that EVs released from
rat heart after ischemic preconditioning is essential and plays a
crucial role in the transmission of remote conditioning signals
for cardioprotection.

Exosomes deal with the transport and intracellular delivery of
proteins and nucleic acids naturally. This helps us to rely on them
as the attractive pharmaceutical delivery agents (208). Numerous
commercial organizations have started developing exosome-
based cancer diagnostics lately, such as Caris life sciences,
exosomes diagnostics, and Humsa Bio Med. However, in the
field of cardiovascular medicine exosomes remain an unexplored
world that is committed to pioneer in order to reach the zenith of
fruitful therapy.

Exosomes are known to offer atherosclerotic protein by
means of cell–cell communication. Chen et al. (209) were able
to trace the presence of RNAs in the supernatant of human
MSCs that might be correlated to exosomes. They were able
to witness a cardioprotective effect offered by these exosomes
when infused into the rat model. Ibrahim et al. (210) have
claimed the exosomes as critical agents that are capable of
bringing about cardiac regeneration influenced by cardiosphere-
mediated cell therapies. CPCs seem to possess antifibrotic effects
by way of transferring the exosomes into fibroblasts therapy
promoting angiogenesis and the survival of cardiac myocytes in
vitro (85).

Exosomes that have been isolated from CDCs expressing
Lamb 2b was known to contain cardiomyocyte-specific
peptide on their surface and, therefore, led to the increased
uptake by cardiomyocytes (85). Exosomes that were isolated
from hiPSC-ECs contained miR-199b-5p and are known
to promote angiogenesis (211). Exosomes have been
synthesized naturally within the body and promote cell–
cell communication, molecular therapy for cancer treatment
(212), and in the diagnostics of various skeletal disorders,
such as osteoarthritis (213), Osteochondral regeneration (214),
myocardial I/R injury (162), limb ischemia, and pulmonary
hypertension (215). Exosomes have been explored widely
to act as the natural drug delivery vehicles, because they
can travel safely in extracellular fluids trespassing immune
cells and deliver the cargo to designated target cells with
both utmost efficiency and a high degree of specificity
(216, 217).
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When it comes to exosomes as a notable therapeutic delivery
system, it offers a few benefits in terms of specificity, safety,
and stability. Exosomes are capable of delivering cargo to
specific targets located at distant sites and could be employed to
deliver small interfering RNA (siRNA) or other pharmaceutically
active compounds (218). The miniature size of exosomes,
being native to animals, helps them in avoiding phagocytosis
easily, capable of fusing diligently with the cell membrane and
escape the engulfing by lysosomes. As if the exosomes are
a natural product of our body, which results in minimal or
low immune response (219). In addition, exosomes possess a
hydrophilic core that make them apt to deliver water-soluble
drugs (220). ADSC-exosomes seem to play prominent tissue
engineering and regenerative therapies (61). Exosomes have
been used for therapeutic applications of cardiac ischemic
diseases (221).

Transplantation of stem/progenitor cells have been declared
as one of the promising therapeutic strategies for CVDs
with the ability to replace lost cardiomyocytes and improve
contractility (132, 222). Interestingly, exosomes have been
stated to bring about communication among the cardiac
fibroblasts, endothelial cells, and cardiomyocytes via delivering
a wide array of contents inclusive of proteins and nucleic
acids, such as RNA and DNA (108). This seems to be
essential in order to support myocardium with oxygen
and nutrients detrimental in normal heart and, thereby,
mediate homeostasis of the heart maintaining structural
integrity. In addition, exosome-enriched miRNAs nurture great
promise for predicting the risk of developing CVD. Li et
al. (55) have identified and listed plasma exosomal miR-
422a and miR-125b2-3p, which might serve as a blood-based
biomarker for the diagnosis and monitoring of patients suffering
from ischemic stroke (IS). Recently, mesenchymal stem cell
derived exosomes used in therapeutic purposes in SARS-CoV-
2 infected cases (223). Recently, the exosomes which induces
the autophagy and metastasis of tumor cells (224). Exciting
results indicated that a long-term treatment of low-dose of
Ticagcelor enhances the release of cardioprotective-exosomes
through increasing cell proliferation in cardiomyocytes in vitro
models (225).

Advantages of Exosomes
Exosomes are smaller in size and being nanovesicles, they are less
complex and less fragile than parent cells. They could be easily
modulated/modified, engineered, manufactured, and stored.
They evince no risk of tumor formation and are considered to be
less immunogenic. They offer safety to their molecular cargos by
providing the protection against enzymatic and non-enzymatic
degradation (226).

First, the use of exosomes helps to avoid problems
pertaining to cells that have defective or mutant DNA
(227). Second, their small size makes it feasible to
circularize easily through capillaries, whereas cells used
in cell-based therapies, such as MSCs, might be large
in size to traverse through the capillaries. Third, level
of MSCs might diminish quickly after transplantation,
whereas exosomes might be able to achieve a higher

benefit than the transplanted MSCs (24). Fourth, exosomes
lack toxicity and immunogenicity (228). It has been
evident from various studies (229–232) that exosomes
and their contents have the innate ability to govern
cell survival, proliferation, migration, and differentiation
in the damaged heart; thereby, reducing the risk of
CVD-related deaths.

Limitations/Disadvantages of Exosomes
It is really tough to note that a remarkable challenge lies
ahead in developing scalable and reproducible protocols for
isolation, purification, and storage of exosomes. In addition,
there is a great deal of efforts necessary to provide improvised
techniques and frame essential or vital norms for the analysis of
the quality of exosomes. The suitable method to isolate sterile
exosomes should be in compliance with good manufacturing
practices capable of reproducible purity and potency (23). It
is also difficult to set up a particular unit for determining
the dose of exosomes, dosage regimen, particle numbers,
and the route of administration (233). There is a great
deal of effort and efficiency required to design a successful
protocol to identify, quantify, and characterize the major
exosomal component that are responsible for the biological
effect in a particular disease. In addition, proposing the
mechanism of action through qualified potency assays in
case of relevant disease in vitro and in animal models is a
tedious task requiring a lot of perfection with utmost efficiency
(234).

Future Perspectives
Exosomal research an emerging area of study which
implies various advantages for therapeutic and diagnostic
applications in cardiovascular disorder and other disease
conditions. The future perspectives is need to address
the route of administration of exosomes, dose fixation,
biological half-life will be identified. The engineered exosomes
are required to be tested in toxicity, immunogenicity and
allergic potentials.

CONCLUSION

Exosomes has a wide array of sources from stem cells to body
fluids. Not only the regeneration potency of the exosomes,
but also the cardioprotective roles of exosomes have been
researched in many in vivo and in vitro findings. Exosomes
are best studied for multi-targeted system biology for repair
and regeneration as it harbors number of molecules. Based
on the research purpose, the required therapeutic exosomes
can be developed. To achieve this, a sensitive technique
dissection and detailed analysis of exosomes components are
required which will ultimately lead us to early diagnosis and
standard treatment. This detailed review shows that the exosomes
are effective and efficient drug delivery models. They also
seem to be a promising path in the field of regenerative
medicine. The stem cell-based therapy has emerged as the
promising and safe therapeutic strategy for CVD. In conclusion,
exosomes derived from stem cells is capable of exerting
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beneficial therapeutic effects onmyocardial regeneration, thereby
help in the treatment of CVD. In addition, clinical trials
are required to prove the therapeutic efficacy of exosomes
in CVD.
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