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Abstract

Background: Pelvic ganglia are derived from the sacral neural crest and contain both sympathetic
and parasympathetic neurons. Various members of the neurotrophin and GDNF families of
neurotrophic factors have been shown to play important roles in the development of a variety of
peripheral sympathetic and parasympathetic neurons; however, to date, the role of these factors
in the development of pelvic ganglia has been limited to postnatal and older ages. VWe examined the
effects of NGF, NT-3, GDNF, neurturin and artemin on cell migration and neurite outgrowth from
explants of the pelvic ganglia from embryonic and newborn mice grown on collagen gels, and
correlated the responses with the immunohistochemical localization of the relevant receptors in
fixed tissue.

Results: Cell migration assays showed that GDNF strongly stimulated migration of tyrosine
hydroxylase (TH) cells of pelvic ganglia from EIl.5, EI4.5 and PO mice. Other factors also
promoted TH cell migration, although to a lesser extent and only at discrete developmental stages.
The cells and neurites of the pelvic ganglia were responsive to each of the GDNF family ligands —
GDNF, neurturin and artemin — from El [.5 onwards. In contrast, NGF and NT-3 did not elicit a
significant neurite outgrowth effect until E14.5 onwards. Artemin and NGF promoted significant
outgrowth of sympathetic (TH+) neurites only, whereas neurturin affected primarily
parasympathetic (TH-negative) neurite outgrowth, and GDNF and NT-3 enhanced both
sympathetic and parasympathetic neurite outgrowth. In comparison, collagen gel assays using gut
explants from E1 1.5 and EI4.5 mice showed neurite outgrowth only in response to GDNF at EI 1.5
and to neurturin only in E14.5 mice.

Conclusion: Our data show that there are both age-dependent and neuron type-dependent
differences in the responsiveness of embryonic and neo-natal pelvic ganglion neurons to growth
factors.
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Background

The pelvic ganglia provide the majority of autonomic
innervation to the urogenital organs and part of the
extrinsic innervation of the lower bowel [1-3]. In humans,
the plexus is extensive and is frequently injured during
pelvic surgical procedures [4-7]. The development of
regenerative therapies may be facilitated by improved
knowledge of the processes that occur during the normal
development of the pelvic neuronal circuits. In mice and
rats, the structure of the pelvic ganglia is simpler than in
humans, and consists of paired, morphologically discrete,
major pelvic ganglia [8]. Hence, developing rodent pelvic
ganglia are an accessible system in which to study devel-
opmental processes involved in formation of pelvic auto-
nomic circuits [9].

Unlike other autonomic ganglia, the pelvic ganglia are
comprised of a mixture of sympathetic and parasympa-
thetic post-ganglionic neurons [1,2,10]. Both sympathetic
and parasympathetic post-ganglionic neurons of pelvic
ganglia are derived from the sacral neural crest [11-14]. In
embryonic mice, sacral neural crest cells migrate ventrally
and coalesce into aggregates between the distal hindgut
and the urogenital sinus [11,15]. Some sacral neural crest
cells contribute neurons and glial cells to distal regions of
the gut [12]; these cells reside transiently within the pelvic
plexus primordia for around 3 days before entering the
hindgut [11,15-17].

The factors that regulate the migration of sacral neural
crest cells and the axonal projections of the developing
pelvic ganglia remain largely unknown. In contrast, fac-
tors regulating migration and axon extension in other
components of the autonomic nervous system including
the enteric nervous system, sympathetic ganglia, and cra-
nial parasympathetic ganglia have been well studied [18-
28]. As neural crest from different axial levels possess dif-
ferent developmental capabilities, and in wvitro, differ in
their response to some factors [29], the mechanisms regu-
lating cell differentiation in the sacral neural crest-derived
sympathetic and parasympathetic neurons may be differ-
ent from those in more rostral sympathetic and parasym-
pathetic ganglia.

Axon extension and neural migration in the peripheral
nervous system is influenced by numerous neurotrophic
factors. The best characterized group is the neurotrophin
family that consists of four members - nerve growth factor
(NGF), neurotrophin-3 (NT-3), brain-derived neuro-
trophic factor (BDNF), and neurotrophin-4 (NT-4). There
are three different tyrosine kinase receptors that mediate
the effects of neurotrophins - TrkA, TrkB and TrkC [30].
NGF binds and activates the TrkA receptor, BDNF and NT-
4 both signal through TrkB, and NT-3 activates TrkC.
While NGF, BDNF and NT-4 show very little receptor pro-
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miscuity, NT-3 can under some circumstances also inter-
act with the TrkA and TrkB receptors [31].

The GDNF family ligands (GFLs) - glial cell-line-derived
neurotrophic factor (GDNF), neurturin (NRTN) and
artemin (ART) are important neurotrophic factors for
many types of neurons including central motor,
dopamine, and noradrenaline neurons as well as for sub-
populations of peripheral autonomic and sensory neu-
rons [32-42]. All GFLs signal through a receptor complex
composed of a common signaling subunit, the Ret recep-
tor tyrosine kinase. The ligand specificity is determined by
a co-receptor subunit - GDNF, neurturin and artemin
bind preferentially to GFRa.1, GFRa2 and GFRa3 respec-
tively [43]. GFRa receptors are usually bound to the
plasma membrane, but can also be cleaved to produce sol-
uble forms [44].

A number of studies have examined the expression of neu-
rotrophic factor receptors by pelvic ganglion neurons and
ligand expression in their targets in post-natal and adult
animals. A variety of neurotrophic factors including neu-
rotrophins and members of the GDNF family are
expressed in tissues innervated by pelvic neurons includ-
ing the colon, penis, vas deferens and bladder [45-51].
Furthermore, there are changes in pelvic neurons and
their innervation of targets in neurotrophic factor ligand-
or receptor-deficient mice; in mice lacking neurturin, or its
receptor GFRa2, there are defects in the parasympathetic
innervation of some of the reproductive organs [3,50,52].
In vitro studies have shown that neurturin stimulates soma
growth and promotes neurite extension of dissociated
parasympathetic neurons from adult male rats [53]. How-
ever, these studies demonstrate that neurturin is only
essential in some pelvic target organs.

While the role of neurotrophins and neurturin in the
adult [49-58], and more recently, postnatal [3] pelvic
plexus has been examined, there is relatively little known
about the role of different neurotrophic factors in the pre-
natal development of the pelvic ganglia. In mice, GDNF
and neurturin are expressed by a variety of pelvic tissues at
mid-embryonic ages including the colon (from E10), gen-
ital tubercle (from E10) and urogenital sinus (from E14),
ovary (from E14) and testicle (from E14) [59], but the
expression of neurotrophins and artemin does not appear
to have been examined pre-natally.

In the present study, we report the effects of neurotrophin
and GFL signalling on cell migration and neurite out-
growth of parasympathetic and sympathetic neurons in
pelvic ganglia from embryonic and newborn mice and
correlate the responses with the expression of the corre-
sponding receptors. Our data show that GDNF family
members have actions from early stages (E11.5) of pelvic
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plexus development, while neurotrophins do not exert an
influence until later. As in older animals, sympathetic and
parasympathetic neurons in pelvic ganglia from embry-
onic and newborn mice show differences in their
responses to a number of neurotrophic factors.

Methods

Animals

Embryonic C57/Bl6 mice were used for all explant culture
experiments. Mice in which the expression of GFP was
driven by the rat tyrosine hydroxylase (TH) promoter [60]
were used for receptor localisation studies. TH-GFP mice
were on a C57/BL6 background. The genotype of adult
TH-GFP mice was determined by PCR using the primers
and conditions previously reported [60]. Male mice heter-
ozygous for the TH-GFP allele (THS?/+ mice) were mated
to wild-type (C57/BL6) females. To distinguish THGFP/+
from wild-type embryos, the sympathetic chain of each
embryo was examined under a fluorescence microscope to
determine if GFP+ cells were present; only THGEP/+
embryos were used. Timed pregnant mice were killed by
cervical dislocation. The morning on which a copulatory
plug was observed was designated E0.5. All procedures
were approved by the University of Melbourne Animal
Experimentation Ethics Committee.

Pelvic plexus explants grown on collagen gels

The location of pelvic plexus primordium in E11.5 and
E14.5 mice has been described previously [11,15]. In
E11.5 mice, the plexus primordia are dorso-lateral to the
distal hindgut, and in E14.5 mice, they are ventro-lateral
to the distal hindgut. In PO male mice, discrete ganglia are
located on the dorsal surface of the prostate gland, and
can be recognized macroscopically [11,15]. Connective
tissue containing pelvic plexus primordia (E11.5, E14.5)
or ganglia (P0O) were dissected from E11.5, E14.5 and PO
mice and placed in culture medium (DMEM containing
10% foetal bovine serum, 2 mM glutamine, 0.075%
sodium bicarbonate and penicillin/streptomycin sulfate
solution), and were grown on collagen gels as described

Table I: Primary and secondary antibodies
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previously [61,62]. Briefly, acidic collagen solution (4
mg/ml; Upstate, CA, USA) was restored to normal osmo-
lality with 5 x Dulbecco's modified Eagle's medium
(DMEM) and normal pH with 200 mM NaOH, on ice.
This solution was diluted to 1 mg/ml with culture
medium. Growth factor was added to the collagen solu-
tion prior to gelling to give a final concentration of 100
ng/ml GDNEF, artemin, neurturin or NGF; or 40 ng/ml NT-
3 (Peprotech, NJ, USA). These concentrations are based
on previous studies that have examined the responses of
sympathetic and enteric neurons from embryonic and
post-natal mice in vitro [61,63,64]. Each explant con-
tained an entire ganglion. Transverse slices from E11.5
midgut and E14.5 hindgut, as well as dorsal root ganglia
from E11.5, E14.5 or PO mice, were also grown on control
and growth-factor impregnated gels.

Immunohistochemical analysis of cryosections

The pelvic region of THGF/+ embryos was fixed overnight
in 4% paraformaldehyde in 0.1 M phosphate buffer. Cry-
osections of 12 um thickness were cut transverse to the
neural tube and then processed for immunohistochemis-
try using antisera for Hu, GFP and either GFRa.1, GFRa.2,
GFRa3, TrkA or TrkC, as shown in Table 1. Characteriza-
tions of the GFRa antibodies used have been recently
described [65]. Moreover, the GFRa1 antibody gives an
identical pattern of staining to EGFP expression in
GfralEGFP mice [66]. Previous studies have shown that the
TrkA antibody does not cross react with TrkB or TrkC [67].
The immunogen sequence used to raise the TrkC antibody
was chosen to avoid cross reactivity with TrkA and TrkB
(manufacturers' information). Sections exposed to each of
the secondary antisera only showed no staining.

Quantification of process outgrowth and cell migration

Explants grown on collagen gels were imaged under a
Leica MZ16F fluorescence stereomicroscope. Explants
were immunostained using antibodies to Tuj-1 and TH.
Tuj-1 immunostaining will identify all neurites and TH
immunostaining will identify the cell bodies and neurites

Primary antibodies Source

Secondary antibodies Source

Sheep anti-tyrosine hydroxylase Chemicon, Temecula, CA, USA

Mouse anti-Tuj- |
Human anti-Hu
Goat anti-GFP

Dr Miles Epstein; [99]
Rockland Immunochemicals,
Gilbertsville, PA, USA
Rabbit anti-GFP

Goat anti-GFRa |, GFRa2 or GFRa3
Rabbit anti-TrkA

Rabbit anti-TrkC

Rabbit anti-B-FABP

Dr Louis Reichardt; [67]
Chemicon
Dr Thomas Miiller; [69]

Covance Research, Berkeley, CA, USA

Molecular Probes, Eugene, OR, USA
R&D Systems, Minneapolis, MN, USA

Jackson Immunoresearch, West
Grove, PA, USA

Molecular Probes

Jackson Immunoresearch
Jackson Immunoresearch

anti sheep-FITC

anti mouse-594
anti human-Texas Red
anti sheep-FITC

anti rabbit-FITC
anti sheep-CY5
anti rabbit-CY5
anti rabbit-CY5
anti rabbit-FITC

Jackson Immunoresearch
Molecular Probes
Molecular Probes
Molecular Probes
Jackson Immunoresearch
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of most sympathetic neurons (see Discussion). To quan-
tify cell and neurite outgrowth from collagen gel explants,
a feathered, Otsu-algorithm thresholded mask was
applied to each channel, excluding the explant, to elimi-
nate noise from regions without outgrowth (ImageJ and
Adobe Photoshop, CA, USA) as described previously [62].
Three thresholded images were then produced for quanti-
fication corresponding to Tuj-1 fibres, TH-fibres and TH-
cells. The total area of stained pixels was obtained, as an
estimate of the total number of cells/fibres outside the
explant. The quantification of Tuj-1 fibres and TH-fibres
provided information about the area occupied by stained
fibres outside the explant, but do not provide any infor-
mation about the length of individual fibres or intensity
of immunostaining. To estimate neurite outgrowth from
parasympathetic neurons in the explants, the area of TH
immunostaining was subtracted from the area of Tuj-1
immunostaining. The quantification of TH+ cell bodies
separately from TH-fibres was possible due to TH+ cell
bodies possessing an increased intensity of immunofluo-
rescence compared to TH+ fibres, allowing their differen-
tial selection by thresholding. The quantification of TH+
cells outside of the explants provided information about
the area occupied by TH+ cell bodies outside the explants,
but do not provide any information about the distance of
the TH+ cell bodies from the explants. TH+ cells had to be
greater than one cell body diameter away from the explant
to be considered outside of the explant. Measurements
were made using Image] (NIH, USA). Results are reported
as mean + standard error of the mean. Statistical analyses
were performed using one way ANOVAs followed by
Dunnett's post-hoc tests. A p value of < 0.05 was deemed
significant. The data for each age and each factor are based
on analysis of a minimum of 3 experiments and a mini-
mum of 7 explants.

Results

Response of pelvic plexus neurons to neurotrophic factors
Explants of E11.5 or E14.5 pelvic plexus primordium or
PO pelvic ganglia were grown on collagen gels, with or
without 40 ng/ml NT-3, or 100 ng/ml GDNF, artemin,
neurturin or NGF. After 4 days in culture, the explants
were immunostained for Tuj-1 and TH; Tuj-1 immunos-
taining will identify all neurites and TH immunostaining
will identify the cell bodies and neurites of sympathetic
neurons. To estimate neurite outgrowth from parasympa-
thetic neurons in the explants, the TH staining was sub-
tracted from the Tuj-1 staining, which gives the area
occupied by TH-negative neurites. In addition, the migra-
tion of TH (sympathetic) cell bodies was quantified. The
data are summarized in Figures 1 and 2.

Control explants
Explants grown on control gels (devoid of any neuro-
trophic factor) did exhibit some basal neurite outgrowth
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(eg. Figs. 3A-A"; 4A-A") and TH cell migration. Explants of
E11.5, E14.5 or PO DRG grown on collagen gels also
exhibited some neurite outgrowth in the absence of neu-
rotrophic factors (data not shown). In contrast, there was
almost no cell migration or neurite extension from
explants of E11.5 midgut or E14.5 hindgut in the absence
of neurotrophic factor (see below).

El1.5 explants

In explants of pelvic plexus primordium from E11.5 mice,
parasympathetic fibre outgrowth was significantly
increased by both GDNF and neurturin (12-fold and 13-
fold change compared to control explants, respectively; p
< 0.01), whereas artemin did not elicit a significant
response (Fig. 1A). Neither NGF nor NT-3 affected the
parasympathetic fibre response (Fig. 1A). We observed a
significant increase in outgrowth of TH fibres in the pres-
ence of both GDNF and artemin (4-fold and 3.5-fold,
respectively; p < 0.01; Figs. 1B, 3B' and 3C'), but not in the
presence of neurturin, NGF or NT-3 (Figs. 1B and 3D").
Significant increases in TH+ cell migration were only
observed in the presence of GDNF and artemin (2-fold
and 1.5-fold, respectively; p < 0.05; Fig. 2A).

El4.5 explants

Parasympathetic fibre outgrowth was significantly
increased by GDNF (17-fold, p < 0.01) and neurturin (9-
fold, p < 0.05; Fig. 1C). Unlike E11.5 explants, NT-3
induced a significant parasympathetic outgrowth from
E14.5 explants (6-fold, p < 0.05; Fig. 1C). NGF and
artemin did not promote parasympathetic outgrowth
from E14.5 explants. GDNF and artemin no longer stim-
ulated a significant TH+ fibre outgrowth, whereas
increased TH+ fibre outgrowth was observed in response
to neurturin, NGF, and NT-3 (3.5-fold, 3-fold, and 3-fold,
respectively; p < 0.05; Fig. 1D). In the presence of NT-3,
neurites appeared to be more fasciculated than in control
explants or explants grown in the presence of the other
growth factors. In E14.5 explants, GDNF continued to
elicit TH+ cell migration (4-fold, p < 0.01; Fig. 2B). Neur-
turin and NGF were also able to elicit significant TH+ cell
migration (3-fold, p < 0.05; and 2-fold, p < 0.01; respec-
tively; Fig. 2B). However, unlike E11.5 explants, no signif-
icant TH+ cell migration was observed in response to
artemin, and, despite inducing TH+ fibre outgrowth at
this age, NT-3 did not promote TH+ cell migration (Fig.
2B).

PO explants

A number of differences in the response of pelvic ganglia
explants to the various growth factors were observed in PO
explants compared to E11.5 and E14.5 explants. Parasym-
pathetic fibre outgrowth continued to be stimulated in
response to both neurturin and NT-3 (8.5-fold and 12-
fold, respectively; p < 0.05; Fig. 1E). However, GDNF no
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Figure |

Quantification of the effects of glial cell line-derived neurotrophic factor (GDNF), neurturin, artemin, NGF
and NT3 on non-TH+ (area of Tuj-1 immunostaining minus area of TH immunostaining; A, C, E) and area of
TH+ (B, D, F) fibre outgrowth from pelvic plexus explants taken at embryonic day (E) 11.5 (A-B), embryonic
day (E) 14.5 (C-D) and postnatal day (P) 0 (E-F) and cultured for 4 days. The data (mean * SEM) show the immunos-
tained area as a percentage of mean immunostained area of control explants at each developmental stage. Significant responses
are indicated with asterisks (one way ANOVA followed by Dunnett's post-hoc test; * — p < 0.05, ** — p < 0.01). "n"s refer to the

number of explants analysed.
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Figure 2

Quantification of the effects of glial cell line-derived
neurotrophic factor (GDNF), neurturin, artemin,
NGF and NT3 on area occupied by TH+ cells outside
the explants, from pelvic plexus explants taken at
embryonic day (E) 11.5 (A), embryonic day (E) 14.5
(B) and postnatal day (P) 0 (C) and cultured for 4
days. The data (mean + SEM) show the immunostained area
as a percentage of mean immunostained area of control
explants at each developmental stage. Significant responses
are indicated with asterisks (one way ANOVA followed by
Dunnett's post-hoc test; * — p < 0.05, ** —p < 0.01). "n"s refer
to the number of explants analysed.
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Figure 3

Inverted fluorescence micrographs of embryonic day
(E) 11.5 pelvic plexus explants grown on collagen gels
impregnated with various neurotrophic factors (A-
D'). After 4 days, the explants were processed for Tuj-1 (A,
B, C, D) and TH (A', B, C', D') imunohistochemistry. There
was limited Tuj-1+ (A) and TH+ (A') fibre outgrowth from
control gels. GDNF-impregnated gels produced significant
Tuj-1+ (B) and TH+ (B') fibre outgrowth; whereas Neurturin
treated gels only produced significant Tuj- |+ fibre outgrowth
(C), with little TH+-fibre outgrowth (C'). The level of out-
growth from NT-3-impregnated gels was not significant (D-
D"). Scale bar = 500 um

longer produced a parasympathetic fibre outgrowth
response (Fig. 1E). NT-3 stimulated TH+ fibre outgrowth
(3-fold; p < 0.05; Figs. 1F and 4D'); and, similar to their
effect on E11.5 but not E14.5 explants, GDNF and
artemin elicited significant TH+ fibre outgrowth
responses from PO explants (3-fold and 2.5-fold, respec-
tively; p < 0.05; Figs. 1F and 4B'). All of the growth factors
except NGF induced significant increases in TH+ cell
migration (GDNEF: 5.5-fold, NT-3: 4.5-fold, p < 0.01; neu-
rturin: 2.5-fold, artemin: 4.5-fold, p < 0.05; Fig. 2C).
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Figure 4

Inverted fluorescence micrographs of postnatal day
(P) 0 pelvic plexus explants grown on collagen gels
impregnated with various neurotrophic factors (A-
D'). After 4 days, the explants were processed for Tuj-1 (A,
B, C, D) and TH (A', B', C', D) imunohistochemistry. There
was limited Tuj-1+ (A) and TH+ (A) fibre outgrowth from
control gels. GDNF-impregnated gels produced significant
Tuj-1+ (B) fibre outgrowth, almost all of which was TH+ (B')
fibre outgrowth. Neurturin treated gels also stimulated sig-
nificant Tuj-1+ fibre outgrowth (C), almost all of which was
not TH+-fibre outgrowth (C'). The level of Tuj-1+ (D) and
TH+ (D) fibre outgrowth from NT-3-impregnated gels was
significant. Scale bar = 500 pm

Response of EI 1.5 midgut and EI4.5 hindgut explants to
NT-3, NGF and GDNF family members

Transverse slices of E11.5 midgut, or E14. 5 hindgut were
grown on collagen gels, with or without 40 ng/ml NT-3,
or 100 ng/ml GDNF, artemin, neurturin or NGF. The data
are summarized in Figure 5.

As previously shown [64], E11.5 and E14.5 gut explants
grown on control gels (devoid of any neurotrophic factor)
or in the presence of artemin, exhibit little or no neurite
outgrowth (Fig. 5A); which is in contrast to pelvic plexus
explants, which show some basal level of neurite exten-
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sion in the absence of added neurotrophic factor. We
observed a significant neurite outgrowth response to
GDNF from E11.5 midgut slices (GDNF: 4-fold, p < 0.05;
Fig. 5A). At E14.5, only neurturin induced significant neu-
rite outgrowth (2.5-fold, p < 0.05) and there was little or
no neurite outgrowth in response to GDNF (Fig. 5B).
Although TrkC is expressed by a sub-population of neural
crest derived cells in the gut and NT-3 has effects on differ-
entiation [68], the effects of NGF and NT-3 on neurite out-
growth from gut slices has not been previously examined.
Neither NGF nor NT-3 elicited a significant increase in
total (Tuj-1+) neurite outgrowth at either E11.5 or E14.5
(Fig. 5A and 5B, respectively).

Expression of receptors for NGF, NT-3 and GDNF family
members during development of pelvic ganglia
Immunohistochemical localisation of TrkA, TrkC, GFRa 1,
GFRa2 and GFRo3 was performed on cryosections
through the pelvic region of E11.5, E14.5 and PO TH-GFP
mice. The overlap in expression of the receptors with Hu,
a pan-neuronal marker, and GFP (TH) was also examined.
The results are summarized in Table 2.

EIlS

In E11.5 mice, the pelvic plexus primordia were present
bilaterally in small, dispersed clusters located dorsolateral
to the distal hindgut, as previously reported [15]. Many of
these cells were Hu+, and a sub-population of the Hu+
cells was also TH+ (Fig. 6). Most Hu+/TH- neurons were
GFRal+ (Fig. 6A-D). In addition, some Hu+/TH+ neu-
rons and some Hu-/TH- cells within the cell clusters were
also GFRal+ (Fig. 6A-D). Hu-/TH- cells are likely to be
neural progenitors. GFRa2 was only expressed by Hu+
cells; the intensity of GFRa.2 staining appeared higher on
TH+ cells, while TH-negative cells exhibited relatively
weak GFRa2 immunoreactivity (Fig. 6E-H). Most Hu+/
TH+ cells were TrkC+ (Fig. 61-L). Cells within the pelvic
plexus primordia did not exhibit any immunostaining for
TrkA or GFRa3 (data not shown). However, TrkA staining
was present on cells within the sympathetic ganglia and
DRG (data not shown).

El4.5

The pelvic plexus primordium is now located ventrola-
teral to the gut and dorsolateral to the urogenital sinus
[15]. A sub-population of the Hu+ cells was also TH+.
TrkA staining was first evident at this stage and was
present primarily on the Hu+/TH+ cells, although some
Hu+/TH- cells also were TrkA+ (data not shown). Simi-
larly, Hu+/TH+ cells were found to show strong TrkC
immunostaining, but no TrkC staining was observed on
the Hu+/TH- sub-population of cells (data not shown).
GFRa2 immunostaining was also present primarily on the
Hu+/TH+ sub-population of cells, with most of the Hu+/
TH- population only weakly GFRa2+. By contrast, GFRa.1
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Figure 5

Quantification of the effects of glial cell line-derived neurotrophic factor (GDNF), neurturin, artemin, NGF
and NT3 on area of Tuj-1+ fibre outgrowth, from slices of embryonic day (E) I 1.5 midgut (A), or embryonic
day (E) 14.5 hindgut (B), cultured for 4 days. The data (mean + SEM) show the area of immunostaining as a percentage
relative to the mean immunostained area of Tuj- 1+ fibres obtained from control explants at each developmental stage. Signifi-
cant responses to GDNF at E1 1.5 (A), and neurturin at EI4.5 (B) are indicated with an asterisk (one way ANOVA followed by

Dunnett's post-hoc test; * — p < 0.05). "n"s refer to the number of explants analysed.

was localised primarily to a subgroup of the Hu+/TH-
cells, with only weak GFRa1 staining found on the Hu+/
TH+ sub-population (data not shown). GFRa3 staining
was uniformly weak across all Hu+ cells (data not shown).

PO

In PO male mice, the pelvic ganglia are located near to the
dorsal surface of the prostate, closely associated with the
urogenital organs and hindgut [9]. A sub-population of
Hu+ neurons was also TH+ (Fig. 7A-B, 7E-F, 71-], 7M-
N). The proportion of Hu+/TH- to Hu+/TH+ neurons var-
ied throughout the ganglia with some regions almost
exclusively Hu+/TH- or Hu+/TH+. TrkA staining was
found exclusively on the Hu+/TH+ sub-population of
neurons (Fig. 7A-D). The Hu+/TH+ sub-population of
neurons also showed a high intensity of TrkC immunos-
taining, while Hu+/TH- neurons were only weakly TrkC+
(Fig. 7E-H). In contrast, GFRal was present predomi-
nantly on the Hu+/TH- cells (Fig. 7I-L). All Hu+ cells
within the ganglia were weakly GFRa2+ (Fig. 7M-P),

while nerve fibres were strongly GFRa2+. GFRa.3 immu-
nostaining was found only in Hu- regions of the ganglia.
Double staining with the glial precursor marker B-FABP
[69,70] also revealed no overlap between B-FABP and
GFRa3 (Fig. 7Q-T). GFRa3 immunostaining therefore
appeared to be associated with the neuropil.

Discussion

We have used collagen gel assays to investigate the role of
the GFLs and neurotrophins in pelvic plexus development
in embryonic and newborn mice. Our data show that neu-
rons in the pelvic plexus primordium of E11.5 mice show
neurite outgrowth and cell migration responses to GFLs.
By contrast, an effect of the neurotrophins was not seen
until E14.5. Most of the sympathetic neurons in pelvic
ganglia are TH+ [2]. To estimate neurite outgrowth from
parasympathetic neurons in the explants in the current
study, the TH staining was subtracted from the Tuj-1 stain-
ing. A caveat of these methods is that definitions of "sym-
pathetic" and "parasympathetic" should be based on

Table 2: Expression of receptors for NGF, NT-3 and GDNF family members during development of pelvic ganglia

TrkA TrkC GFRal GFRo2 GFRa3
Hu+/TH+ Hu+/TH- Hu+/TH+ Hu+/TH- Hu+/TH+ Hu+/TH- Hu+/TH+ Hu+/TH- Hu+/TH+ Hu+/TH-
ElIl.5 - - + - + + + + _
El4.5 + + + - + + + + + +
PO + - + + + + + Neuropil only -

- no detectable immunoreactivity; + immunstaining observed
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Merge

Receptor

Confocal images of transverse sections through the pelvic region at the level of the pelvic plexus primordium
of ElI 1.5 TH-GFP mice processed for Hu (blue), GFP (TH, green) and either GFRal (red) (A-D), GFRa2 (red)
(E-H) or TrkC (red) (I-L) immunohistochemistry. Chains of Hu+ cells were present in the pelvic plexus primordium (A,
E, I). A sub-population of the Hu+ cells was also GFP+ (TH+) (A-B, E-F, I-J). GFRa.l immunoreactivity was present on Hu+/TH-
negative neurons, as well as some TH+/Hu+ neurons and some cells in the clusters that were TH-/Hu- (arrows) (A-D). Weak
GFRa2 immunostaining was found on all Hu+ cells in the pelvic plexus primordium; however, strong GFRa.2 immunoreactivity
was found on many of the Hu+/TH+ cells (asterisks), whereas GFRa2 immunorectivity was weak on the Hu+/TH-negative sub-

population (E-H). TrkC immunostaining was mainly observed on the Hu+/TH+ sub-population (I-L). Scale bars = 20 um.

neuroanatomical inputs rather than chemistry [2]. For
example, there are some TH-negative sympathetic neu-
rons in pelvic ganglia [2] and thus a small number of TH-
negative neurites analysed in the current study are likely to
arise from sympathetic neurons. Our data show that both
the sympathetic (TH+) and parasympathetic (TH-nega-
tive) sub-populations of neurons are responsive to GDNF
and NT-3, sympathetic neurons are primarily responsive
to artemin and NGF, while parasympathetic neurons are
mainly responsive to neurturin.

Effects of neurotrophic factors on pelvic plexus cell
migration

Of the receptor components studied, only GFRa1 was
found to be expressed on Hu-negative sacral crest-derived
pelvic plexus cells at E11.5. These cells are probably cells
of the neural crest-derived progenitor pool, but may also
be glial precursors. As all other growth factor receptors

were only found on Hu+ cells, it appears that only differ-
entiated neurons are responsive to NGF, NT-3, artemin
and neurturin. GDNF-GFRal signaling could therefore
potentially regulate the very early stages of pelvic ganglia
formation, with possible actions on guidance, differentia-
tion, proliferation or survival of the undifferentiated sac-
ral neural crest cells.

GDNF exhibited the most potent chemotactic action on
cell migration of pelvic plexus neurons of all the factors
examined; GDNF stimulated migration of TH+ cells from
pelvic plexus explants at E11.5, E14.5 and PO mice. The
finding that GDNF produces significant TH+ cell migra-
tion at all stages is surprising, as TH+ cells did not express
detectable levels of GFRa1. There are three possible expla-
nations: first, the migration-promoting action of GDNF is
not through its canonical receptor GFRal. GFRa2 is
expressed by TH+ cells, and it has been reported that, in
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Figure 7

Confocal images of transverse sections through the pelvic ganglia from postnatal (P) 0 day mice processed for
Hu (blue), TH (green) and either TrkA (red) (A-D), TrkC (red) (E-H), GFRal (red) (I-L), or GFRa2 (red) (M-
P); or for Hu (blue), B-FABP (green) and GFRa3 (red) (Q-T) immunohistochemistry. A sub-population of cells
immuno-positive for the pan-neuronal marker Hu are also TH+ (A-B, E-F, |-}, O-N, Q-R). These Hu+/TH+ cells are distributed
throughout the ganglia, sometimes forming discrete clusters (B, F), othertimes more dispersed (], N). Strong levels of TrkA (A-
D), and TrkC (E-H) immunostaining were observed on the Hu+/TH+ sub-population of cells, although Hu+/TH-negative cells
were also weakly TrkC immuno-positive (E-H). In contrast, GFRo.l immunostaining was observed only on the Hu+/TH-nega-
tive population of cells, and not on the Hu+/TH+ cells (asterisks). GFRa2 immunostaining was found to be ubiquitously
expressed on all Hu+ cells throughout the pelvic ganglia (M-P). GFRa.3 immunostaining was found to be on the neuropil only as
it did not co-localise with either the pan-neuronal marker Hu or the glial marker B-FABP (Q-T). Scale bars = 20 um.
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vitro, GDNF can actively signal through binding to GFRa.2
[71]. However, neurturin, which most strongly activates
the GFRa2 receptor, does not elicit a significant cell
migration response at E11.5, and thus this possibility
appears unlikely. Second, GDNF may act on the Hu-/TH-
and/or Hu+/TH- sub-populations of cells, which do
express GFRa1; these cells migrate in response to GDNF
and then subsequently up-regulate TH expression. Finally,
the number of GFRa1 receptors required to mediate a bio-
logical response might be below the detection threshold
for immunohistochemical detection.

The timing of effect of the other growth factors on TH+
cell migration also gives the latter explanation further cre-
dence, as in each case the stages at which TH+ cell migra-
tion occurred correlated with the expression of the
relevant receptors on the Hu+/TH- sub-population, but
does not correlate with the expression of the relevant
receptors on the Hu+/TH+ sub-population. Further stud-
ies are required to examine the migratory ability of Hu+/
TH+, Hu+/TH- and Hu-/TH- cells.

Responses to neurotrophins

NGF is widely expressed within the target pelvic organs of
neurons of the pelvic ganglia [49,72-78]; and the neuro-
trophin receptors trkA and p75 are expressed by adult
noradrenergic pelvic ganglion neurons [49,54], as would
be expected for NGF-sensitive neurons [79,80]. Further-
more, in mice in which both the NGF and Bax genes were
knocked-out to permit the role of NGF in target innerva-
tion to be determined separately from the role of NGF in
survival, there were impairments in the density of sympa-
thetic nerves in the urinary bladder, ureter and gonads,
demonstrating a role for NGF in axon pathfinding and/or
axon growth and branching in these targets [81]. Thus, it
has been assumed that many or all pelvic noradrenergic
neurons are potentially affected by endogenous NGF.
However, we found NGF to be the neurotrophic factor
least effective at eliciting responses from the pelvic ganglia
in embryonic and newborn mice, resulting in a small but
significant increase in TH+ cell and fibre outgrowth only
in E14.5 mice. An earlier study using Remak's ganglia in
chick, which are also derived from the sacral neural crest
and are comprised of both sympathetic and parasympa-
thetic neurons - also found a weak response to NGF
throughout embryonic development with a limited
period (E8-E12) of fibre outgrowth above the control
level [82]. This lack of effect of NGF on explants up to PO
in age contrasts with previous studies which showed NGF
to stimulate sympathetic neurite outgrowth from dis-
persed adult rat pelvic ganglion neurons [55,56,58]. How-
ever, maturation of the pelvic ganglia continues after P0;
particularly changes in the pelvic ganglia neurons due to
the actions of sex hormones. Thus, it appears that the
major actions of NGF occur post-natally.

http://www.biomedcentral.com/1471-213X/8/73

Neurotrophin-3 (NT-3) is essential during sympathetic
neuron development [83-85], but the role of NT-3 in pel-
vic ganglion development has received only limited atten-
tion [49,82]. We found that NT-3 induces strong
sympathetic (TH+) and parasympathetic (non-TH+) fibre
outgrowth responses from E14.5 onwards.

Effect of GDNF family ligands on pelvic plexus
development

The glial cell line-derived family of neurotrophic factors
(GFLs) are implicated in development, maintenance, and
plasticity of parasympathetic neurons [43,86,87]. Various
studies have also implicated GFLs in the development or
plasticity of sympathetic noradrenergic neurons
[35,39,88-90]. In addition, the common GFL co-receptor,
Ret, was found to be essential for survival of cholinergic
sympathetic neurons in the stellate ganglion [91], and the
development and/or maintenance of cholinergic sympa-
thetic innervation of sweat glands are at least partly
dependent on GFRa2 signaling [92]. Thus, the GFLs are
likely to play key roles in the development of the pelvic
plexus, where noradrenergic sympathetic, cholinergic
sympathetic and parasympathetic classes of neurons are
all present.

In adult rat pelvic ganglia, GFRal has previously been
found to be expressed by many noradrenergic and cholin-
ergic neurons [50]; however, we did not observe detecta-
ble GFRa1 immunostaining on TH+ (ie noradrenergic)
neurons after E11.5. This may be because GFRa1 is only
expressed by TH+ neurons after birth, or due to an inter-
species difference. Despite the absence of detectable
GFRol immunostaining by TH+ cells, we found that
GDNF can stimulate outgrowth from both the TH+ and
TH- classes of cells. As proposed above for the effects of
GDNE-GFRal signaling on TH+ cell migration, some
GFRa1+/TH- neurites may grow in response to GDNF,
and then upregulate TH and downregulate GFRa1 during
the culture period. GDNF also induced large increases in
parasympathetic fibre outgrowth at E11.5 and E14.5, but
had no significant effect on parasympathetic fibre out-
growth at PO. However, neurturin stimulated outgrowth
of these fibres at PO, and GFRa.2 was upregulated at PO on
the Hu+/TH- cells. The switch from an early importance of
GDNEF to a later importance for neurturin is fairly com-
mon during development of peripheral ganglia
[25,26,93].

Gfra2-/- and Nrtn-/- mice have defects in a number of par-
asympathetic ganglia [87,93,94] and the innervation of
target organs by the parasympathetic component of the
pelvic ganglia has also been shown to be altered. A recent
study of PO-P21 Nrtn-/- mice has shown that the parasym-
pathetic fibre deficit in each organ is quite variable and
can be due to failure of initial projection to the tissue and/
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or maintenance of the terminal field [3]. Our results also
support a role for neurturin in stimulating parasympa-
thetic (non-TH+) fibre outgrowth, as previously shown in
adult rat primary neuronal culture [53], because we
observed significant increases in non-TH+ fibre outgrowth
atE11.5, E14.5 and P0O. We also observed an effect of neu-
rturin on sympathetic (ie TH+) fibre outgrowth, although
this only occurred at E14.5. However, no major deficits
have been identified in noradrenergic sympathetic neu-
rons in Gfra2-/- and Nrtn-/- mice [3,51,52], so the in vivo
significance of this data is unclear. We found widespread
GFRa.2 immunostaining on all neurons within the devel-
oping pelvic ganglia, which is in contrast to previous stud-
ies on adult mice and rat where no GFRa.2 expression was
found on the noradrenergic sympathetic neurons [52].

In the adult rat, most noradrenergic neurons, as well as
half the penile projecting S1 DRG neurons, contained
mRNA for GFRa3 [50]. We could not find detectable lev-
els of GFRa3 protein in pelvic neurons using immunohis-
tochemistry in E11.5 or PO mice, and levels only barely
above background in E14.5 mice. GFRa.3 may be upregu-
lated at post-natal stages, especially if it plays a role in the
innervation of reproductive tissues, which largely occurs
post-natally [3]. Nonetheless, we observed artemin-
induced TH+ fibre outgrowth at both E11.5 and PO, but
not E14.5. This may be because the number of GFRa3
receptors required to mediate a biological response is
below the detection threshold for immunohistochemical
detection.

Neurotrophic factor regulation of transmitter phenotype
Neurotrophic factors can be involved in regulating pheno-
typic characteristics of neurons, including the expression
of peptides and enzymes involved in neurotransmitter
pathways. Studies in parasympathetic neurons have dem-
onstrated that lack of neurotrophic support can decrease
choline acetyltransferase expression and increase neu-
ropeptide Y expression [55,95]. Of particular relevance to
the current study are the effects of neurotrophic factors on
TH synthesis: NGF has been found to enhance TH synthe-
sis in adult rat major pelvic ganglion cultures [56]; neur-
turin reduced the upregulation of TH expression in
cultured pelvic parasympathetic neurons [53]; and, GDNF
has been demonstrated to downregulate expression of TH
in dopamine neurons upon overexpression in vivo [96],
but to upregulate the expression of TH in a neuroblastoma
cell line by increasing the activity of the TH gene promoter
and stabilizing TH mRNA [97]. In the current study we
analysed the effects of neurotrophins on the TH+ cell
migration and TH+/TH- fibre outgrowth from developing
pelvic plexus, but we cannot rule out the possibility that
the analysis may be confounded in part due to an action
of the factors on the phenotype, as well as migration and
neurite outgrowth.

http://www.biomedcentral.com/1471-213X/8/73

Conclusion

Previous studies have shown that adult pelvic ganglion
sympathetic and parasympathetic neurons show differen-
tial responses to neurotrophic factors. This study showed
that TH+ (sympathetic) neurons are present in the pelvic
ganglion primordium from E11.5, and that at this devel-
opmental stage, pelvic TH+ neurons already show differ-
ences from the non-TH neurons in their neurite
outgrowth and migration responses to neurotrophic fac-
tors. This may result from the fact that some transcription
factors that regulate neurotransmitter expression also reg-
ulate expression of receptors for neurotrophic factors. For
example, in developing sympathetic ganglia, Phox2b is
required for both Ret and TH expression [98]. Further
studies are required to determine how expression of the
different GFRas, Trks and p75 are developmentally regu-
lated on cells in pelvic ganglia.
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