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Background. -e evolution of the COVID-19 epidemic has been accompanied by efforts to provide comparable international data
on new cases and deaths. -ere is also accumulating evidence on the epidemiological parameters underlying COVID-19. Hence,
there is potential for epidemic models providing mid-term forecasts of the epidemic trajectory using such information. -e
effectiveness of lockdown or lockdown relaxation can also be assessed by modelling later epidemic stages, possibly using a
multiphase epidemic model. Methods. Commonly applied methods to analyse epidemic trajectories or make forecasts include
phenomenological growth models (e.g., the Richards family of densities) and variants of the susceptible-infected-recovered (SIR)
compartment model. Here, we focus on a practical forecasting approach, applied to interim UK COVID data, using a bivariate
Reynolds model (for cases and deaths), with implementation based on Bayesian inference. We show the utility of informative
priors in developing and estimating the model and compare error densities (Poisson-gamma, Poisson-lognormal, and Poisson-
log-Student) for overdispersed data on new cases and deaths. We use cross validation to assess medium-term forecasts. We also
consider the longer-term postlockdown epidemic profile to assess epidemic containment, using a two-phase model. Results. Fit to
interim mid-epidemic data show better fit to training data and better cross-validation performance for a Poisson-log-Student
model. Estimation of longer-term epidemic data after lockdown relaxation, characterised by protracted slow downturn and then
upturn in cases, casts doubt on effective containment. Conclusions. Many applications of phenomenological models have been to
complete epidemics. However, evaluation of suchmodels based simply on their fit to observed data may give only a partial picture,
and cross validation against actual trends is also valuable. Similarly, it may be preferable to model incidence rather than cu-
mulative data, although this raises questions about suitable error densities for modelling often erratic fluctuations. Hence, there
may be utility in evaluating alternative error assumptions.

1. Introduction

Epidemic forecasts have been an essential element in policy
decisions regarding the COVID-19 epidemic, such as
lockdown imposition and relaxation. Forecasting has been
assisted by well-organized efforts to provide international
data on new cases and deaths. -ese include the daily
updated comparative data provided by the European Centre
for Disease Prevention and Control (ECDC) (https://www.
ecdc.europa.eu/en/publications-data), and monitoring
profiles provided by John Hopkins University [1]. -ere is
also a growing literature providing evidence on the pa-
rameters of the COVID-19 infection (for example, case
fatality ratios and serial intervals). Hence, the potential

occurs for epidemic models that are applicable to routinely
collected data, whichmake use of accumulated evidence, and
can provide forecasts for epidemics observed at mid-stage.
Policy decisions in many countries (imposition of lock-
downs, and later, relaxation) have been made based on
trends in observed numbers of cases and deaths, while
admitting these may be subject to measurement error, for
example, identified cases may understate total numbers
infected; there are fluctuations in daily new cases due to
variation in daily testing, and there may be COVID-19
diagnostic errors.

Here, we focus on a practical forecasting approach using
routinely available data on new cases and deaths (from
ECDC) to estimate parameters in a bivariate version of the

Hindawi
Interdisciplinary Perspectives on Infectious Diseases
Volume 2021, Article ID 8847116, 15 pages
https://doi.org/10.1155/2021/8847116

mailto:p.congdon@qmul.ac.uk
https://www.ecdc.europa.eu/en/publications-data
https://www.ecdc.europa.eu/en/publications-data
https://orcid.org/0000-0003-1934-9205
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8847116


Reynolds phenomenological model. Implementation is
based on Bayesian inference principles, incorporating ac-
cumulated evidence on relevant parameters via informative
priors. -e operation and utility of this approach is dem-
onstrated using data on new cases and deaths in the United
Kingdom (UK), with a focus on predictive accuracy for 20-
day-ahead forecasts of cases and deaths, based on mid-ep-
idemic data. Other policy relevant parameters such as the
effective reproduction ratio and case fatality ratio are also
estimated in analysis of longer-term epidemic data.

-e use of a bivariate approach provides originality
compared to existing research, which, in the case of phe-
nomenological models, is limited to analysing incidence
only. Some studies have mentioned how the mortality curve
parallels the epidemic curve [2], and we formalize these
linkages under a bivariate approach. -e benefits of a bi-
variate approach include the ability to monitor and forecast
severity measures such as the case fatality ratio. We also
consider issues in modelling daily incidence and new deaths,
as opposed to cumulative incidence and mortality. -ere are
methodological issues in analysing cumulative outcomes,
discussed below, but also questions (not so far considered in
the literature) on how best to represent the overdispersion
present in uncumulated outcomes. -e analysis below
provides new evidence on the relative fit and forecasting
performance of different ways of representing Poisson
overdispersion and shows that the usually adopted negative
binomial performs less well than other options.

-e implications of the research are that effective me-
dium-term forecasts of COVID-19 incidence and mortality
can be provided by the proposed methodology. Such fore-
casts are useful in planning healthcare provision and
assessing closeness to full capacity in hospital bed occupancy
[3, 4]. At the time of writing, daily COVID-19 hospital-
isation data were not available for the UK. However, ex-
tension of the bivariate approach to include incidence,
mortality, and hospitalisations provides additional scope for
forecasting of indicators relevant to severity assessment
[5, 6]. Another possible outcome in a multivariate model is
recovered cases (cf. [4]), with a focus then on the ratio of
predicted recovered to predicted confirmed cases as an
indicator of care need and effectiveness of interventions.-e
methodology also presents a way to monitor longer-term
infection numbers leading to early detection of incipient
upturns in infection numbers, via continuous monitoring
and forecasting of the effective reproduction ratio.

In the following sections, we review relevant literature
and research gaps (Section 2) and set out the methodology
(Section 3). We then consider aspects of the UK case study
application (Section 4), present the results (Section 5), and
discuss the implications of the study’s findings and meth-
odology in the context of broader research (Section 6).
Section 7 provides concluding remarks.

2. Related Research and Research Gaps

Commonly applied approaches to quantitative modelling of
aggregate epidemic data differ in the data inputs they re-
quire, their assumptions, their estimability, and their scope

for practical application to making forecasts. Commonly
applied methods include phenomenological growth models
[7], such as the Richards family of densities [8], and variants
of the susceptible-infected-recovered (SIR) compartment
model [9]. Phenomenological models are parameterised in
terms of epidemic trajectories and provide estimates of
crucial epidemiological parameters [10, 11], while avoiding
the complexity of more formal mechanistic models of dis-
ease transmission, which can be difficult to estimate and
provide forecasts, and may not be realistic approximations
to real epidemic dynamics [2, 9, 12].

As mentioned by Chowell et al. [13], phenomenological
models are “particularly suitable when significant uncer-
tainty clouds the epidemiology of an infectious disease.” By
contrast, as noted in [14], compartmental transmission
models may be based on untested assumptions such as
random mixing between all individuals in a given pop-
ulation, may be sensitive to starting assumptions, and may
provide estimates that differ considerably between models.
Such models often rely on preset parameters, which may
mean prediction uncertainty is understated. -ey may also
be complex to specify when an epidemic has more than one
phase, whereas multiphase phenomenological models [15]
are available.

Regarding forecasts, the study by Zhao et al. [10] ex-
emplifies application of phenomenological models to fore-
casts of the Zika epidemic in 2015. Autoregressive modelling
of new cases, with potential for short-term forecasting, is
illustrated (for foot and mouth disease) by the first-order
autoregressive model of Lawson et al. [16], while (for
multiple spatial units) the model of Bracher and Held [17]
specifies a first-order autoregression based on the mean
incidence in adjacent areas.

Regarding the COVID-19 epidemic in particular,
studies with differing methodologies have been made,
some of which forecast different aspects of the COVID
epidemic or related health care need. In its impact on
policy making in the UK and US, perhaps most influential
has been the Imperial College model [18]. -is is based on
microsimulation with transmission through contacts
between susceptible and infectious individuals in various
settings, or randomly in the community, depending on
spatial distance between contacts. A number of epidemic
parameters (e.g., incubation periods and basic repro-
duction numbers) are preset. Forecasts are provided for
deaths and hospital beds. Also, providing forecasts across
countries is the model of the Institute for Health Metrics
and Evaluation [14]. -is has no underlying representa-
tion of epidemic dynamics, but is based on fitting a hi-
erarchical parametric model for observed cumulative
death rates in different countries, and then projecting
these forward.

Various types of time series forecast of the COVID-19
epidemic have also been made, using ARIMA models
[4, 19, 20], exponential smoothing [21], or autoregression in
cases; for example, the study by Johndron et al [22] pos-
tulates daily deaths as a lagged function of earlier new cases.
Applications of phenomenological models to COVID-19
incidence forecasts include the studies in [23, 24].
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One may identify some research gaps in the existing
literature. -us, existing applications (e.g., [23] in the case of
COVID-19) have most commonly been to incidence data
and have not considered interplay between outcomes in
terms of a bivariate model. However, examples of potentially
interlinked bivariate outcomes from COVID-19, and other
epidemics, include incidence and mortality, and incidence
and hospitalisations. -e study in [25] converts COVID-19
incidence, mortality, and case fatality into beta variables and
applies univariate beta regression models to each outcome.
-e study in [4] applies separate ARIMA models to inci-
dence and recovered cases. However, separate univariate
regressions or time series models do not reflect potential
interlinkages between the processes that facilitate the setting
of model assumptions or, in the case of Bayesian analysis,
facilitate the setting of priors on model parameters. Re-
garding forecasting, wider experience of time series mod-
elling (with nonepidemic applications) shows the benefit of
borrowing strength over outcomes [26].

Furthermore, many existing applications, such as
studies in [11, 25] in the case of COVID-19, study in [27] in
the case of H1N1 and Ebola, and study in [10] in the case of
Zika, have been to cumulative incidence. However, the
drawbacks of studying cumulative incidence have been
pointed out [28, 29]. Cumulative incidence data have se-
rially correlated measurement error, leading to under-
statement of parameter uncertainty. As stated in [29],
“independence of sequential measurement errors, . . .is
clearly violated when observations are accumulated
through time.” However, estimation using new cases or
deaths (uncumulated) puts a much greater focus on how to
deal with stochastic variation in the data. For daily data,
fluctuations in new events may be considerable (including
daily “spikes”), whereas cumulative cases and deaths are
usually smooth functions. -ere are choices in how to
model the overdispersion in new events, based on Poisson
mixtures [30], but in the epidemic literature, use of the
negative binomial is standard, and no evaluations of its
relative performance are available in the literature so far.

3. Methods

3.1. Phenomenological Models. Basic phenomenological
models for epidemic trajectories include the logistic,
Gompertz, and Rosenzweig, which have been the basis for a
range of generalisations [7, 8]. Application of the logistic
model to COVID-19 is exemplified by the studies of Batista
[31] and Shen [32]. For time t, the logistic model for new
cases C′(t) and cumulative cases C(t) is

C′(t) � rC(t) 1 −
C(t)

K
􏼢 􏼣,

C(t) �
K

1 + e
−r t−τL( )􏼔 􏼕

,

(1)

where K is the maximum number of cases (final epidemic
size), r> 0 measures the intensity of exponential growth in
cases in the early epidemic phase, and τL is the inflection

point where new cases are highest. -e Richards model [33]
modifies the logistic incidence function to

C′(t) � rC(t) 1 −
C(t)

K
􏼠 􏼡

a

􏼢 􏼣, (2)

with solution

C(t) �
K

1 + e
−r(t−τ)

􏽨 􏽩
1/a. (3)

-e parameter a> 0modifies the incidence decline phase
of the logistic, that is, measures the extent of deviation from
the standard logistic curve. -e turning point τ, when in-
cidence peaks, is obtained when C(t) equals K(1 + a)− 1/a

[34]. -e peak incidence is important for the healthcare
planning, for example, aligning the forecast peak with
hospital bed capacity [35].

Other commonly used models are the Gompertz model
[36] with

C′(t) � rC(t)log
K

C(t)
􏼢 􏼣, (4)

while the Rosenzweig model [27] has

C′(t) � rC(t)
C(t)

K
􏼠 􏼡

a

− 1􏼢 􏼣. (5)

-e incidence function represented by C′(t) can be
used to define mean incidence in statistical likelihoods for
new cases data. -us, time series of incidence counts can
often be satisfactorily modelled as a Poisson, with means
defined by C′(t) functions [37, 38]. Similarly, the cu-
mulative cases function C(t) can be used to define mean
epidemic size in models for cumulative case counts
[27, 39].

While for smaller epidemics, a Poisson density for mean
incidence may be applied, for larger epidemics such as
COVID-19, a negative binomial density is often preferred,
both because of large incidence counts and to represent often
erratic incidence fluctuations that lead to overdispersion
relative to the Poisson [29]. However, the literature does not
contain any evaluations of the negative binomial to represent
overdispersion. -ere are a number of other overdispersed
versions of the Poisson that can be achieved by mixing the
Poisson with a suitable density (e.g., a lognormal density)
[30, 40], and this may be beneficial in detecting unusual
observations.

3.2. Model Specification: Poisson Overdispersion. Consider
the Richards model parameters. Let ct and Ct denote in-
cidence and cumulative incidence counts at times
t � 1, . . . , T (days in the case of COVID data from ECDC).
We condition on the first case or cases (i.e., the first ob-
servation) and take incidence at time t as a function of
cumulative cases at t − 1, so that for a Poisson model for
cases (with subscript c for parameters) we have
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ct ∼ Poisson μct( 􏼁,

μct � rcCt−1 1 −
Ct−1

Kc

􏼠 􏼡

ac

􏼢 􏼣, t � 2, . . . , T.

(6)

In practice, many epidemic datasets are overdispersed
relative to the Poisson, and epidemic studies generally adopt
a negative binomial model instead. We can specify an
overdispersed model (including the negative binomial) by
introducing multiplicative random effects ([40], Equation
(2)), such that the Poisson means for incidence are specified
by

μct � rcCt−1 1 −
Ct−1

Kc

􏼠 􏼡

ac

􏼢 􏼣ϵct, (7)

where ϵct are positive random effects. For the Poisson-
gamma model (equivalent to a negative binomial), ϵct are
gamma distributed with mean 1, namely,

ϵct ∼ Gamma λc, λc( 􏼁, (8)

where 1/λc is the overdispersion parameter mentioned by
[29]. Note that the assumed parameterisation of the gamma
density with random variable x is

p(x | a, b) �
b

a

Γ(a)
x

a−1
e

− bx
. (9)

Other options in (7) are to take uct � log(ϵct) as normally
distributed [40]:

uct ∼ Normal 0, σ2uc􏼐 􏼑, (10)

or Student t distributed [41],

uct ∼ Student − t 0, σ2uc, ]c􏼐 􏼑, (11)

where ]c is a degrees-of-freedom parameter. -ese two
options define the Poisson-lognormal (PLN) and Poisson-
log-Student (PLS) options, respectively [30]. -e PLN and
PLS representations may provide a more robust alternative
to the Poisson-gamma [40–44], as their tails are heavier than
for the gamma distribution, and have been found to be better
at accommodating outliers (such as daily “spikes” in an
epidemic application).

3.3. A Joint Model for New Cases and New Deaths. In the
analysis below, we apply a bivariate estimation with both
new cases and deaths modelled using the Richards specifi-
cation.-us, denote dt and Dt as new and cumulative deaths
at time t. -e joint likelihood for an overdispersed Poisson
model for both outcomes then specifies

ct ∼ Poisson μct( 􏼁,

dt ∼ Poisson μdt( 􏼁,

(12)

μct � rcCt−1 1 −
Ct−1

Kc

􏼠 􏼡

ac

􏼢 􏼣ϵct, (13)

μdt � rdDt−1 1 −
Dt−1

Kd

􏼠 􏼡

ad

􏼢 􏼣ϵdt, t � 2, . . . , T. (14)

For a Bayesian application, we need to specify prior
densities, or priors for short, for the parameters. For the
epidemic size parameter Kc, a diffuse prior confined to
positive values, such as a diffuse gamma density, for ex-
ample, Gamma(1, ε) or Gamma(ε, ε), with ε small, was
found to lead to convergence problems. As noted in [31],
“. . .in the early stage, the logistic curve follows an expo-
nential growth curve, so the estimation of K is practically
impossible.” -is difficulty persists when an epidemic is past
its peak but early in a downturn.

However, Batista [31] mentions a relationship (for the
logistic model) between successive cumulative case counts
that may assist in providing a prior for Kc. Specifically, for
three points spaced m time units apart, one may obtain the
relationship for a point estimator of Kc, namely,

K
e
c �

Ct−m Ct−2mCt−m − 2Ct−2mCt + Ct−mCt( 􏼁

C
2
t−m − CtCt−2m􏼐 􏼑

. (15)

One may use this point estimator to define a prior mean
for Kc in the Richards model (which is a generalisation of the
logistic). Specifically, one may take a lognormal density prior
for Kc, with log(Ke

c) as mean, and a suitable variance, such
that the prior is still relatively diffuse. For example, suppose
Ke

c is 250,000, and the variance in the lognormal is set at 1.
-en, the 97.5 percentile for the lognormal prior is 1.77
million.

In the bivariate specification (for new cases and new
deaths jointly), we seek to share prior information between
outcomes. One option for the prior on Kd (the final death
total) is as a function of Kc, namely,

Kd � ΦKc, (16)

whereΦ is a form of case fatality ratio (CFR). An informative
prior for Φ could be based on the COVID experience in
similar countries, or on experience of epidemics of similar
diseases. Considering the first option, and an appropriate
prior for analysing UK data, an informative prior for Φ
could be provided by the case fatality ratio across the Eu-
ropean Union (the UK being no longer an EU member).
International information on case fatality is provided at
https://ourworldindata.org/mortality-risk-covid#the-
current-case-fatality-rate-of-covid-19.

Alternatively, one may link Kc and Kd using both the
point estimator Ke

c and a case fatality ratio; namely,
Ke

d � ΦKe
c. -en, a lognormal density prior can be taken for

Kd, with log(Ke
d) � log(Ke

c) + log(Φ) as the mean, and a
suitable variance such that the prior is still relatively diffuse.

Another possible prior to link ultimate cases and deaths
would involve a time series in time-specific case fatality
ratios, such as an autoregression ϕt ∼ N(ρϕt−1, σ2ϕ), with ϕt

estimated from cumulative data on deaths and cases. Some
analyses of epidemics show that the CFR early in an epi-
demic may underestimate later values [45], in which case the
prior on Φ may be constrained to exceed the final ϕt based
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on observed data. With regard to COVID-19, this pattern
may not necessarily apply, with the US (for example)
showing a decline in CFRs at later epidemic stages. -ere is
also evidence that the mortality to infection ratio (a more
precise measure than the CFR) has fallen [46]. To allow for
such a scenario, the prior for Φ could be centred at the last
observed ϕt, rather than constrained to exceed it.

Joint priors on other parameters could be considered, for
example, bivariate normal priors on the logs of rc and rd, or
on the logs of ac and ad. In the empirical analysis below, we
focus on priors linking the final epidemic and death total
parameters, Kc and Kd, as these are an important influence
on forecasts.

3.4. Medium-Term Forecasts. Many applications of phe-
nomenological models are to historic data on epidemics,
where the epidemic has run to its full extent. Here, we
consider applications to incomplete epidemics (e.g., epi-
demics observed to their mid-point or early in the down-
turn), and to forecasts using such data. Forecasts at an
intermediate point within the observation span are of in-
terest in themselves for policy purposes. However, they can
also be used in comparative model evaluation by using cross
validation, with only some data used for estimating the
model, and some held out for validation.

-us, suppose the training sample is formed by ob-
servations up to time M<T, while the F subsequent ob-
servations at times t � M + 1, . . . , M + F (where
M + F≤T) are used as a validation sample. Predictions
cnew,M+1 and dnew,M+1 for new cases and deaths at time M +

1 are based on observed cumulative counts CM and DM. As
usual in Bayesian inference, predictions are obtained as
replicate data sampled from the posterior predictive den-
sities p(cnew|Y) � 􏽒 p(cnew|Y, θ)dθ and p(dnew|Y) �

􏽒 p(dnew|Y, θ)dθ, where Y � (c, d) are data on new cases
and deaths, and θ are parameters in the joint model of
Section 3.3 [47].

Predicted cumulative counts at time M + 1 are then
obtained as Cnew,M+1 � Cnew,M + cnew,M+1 and DnewM+1 �

Dnew,M + dnew,M+1. Predicted new cases and deaths at M + 2,
namely, cnew,M+2 and dnewM+2, are then sampled from the
appropriate phenomenological model form, based on
Cnew,M+1 and Dnew,M+1. Cumulated cases and deaths at M +

2 are then obtained by adding predicted new cases and
deaths for M + 2 to Cnew,M+1 and Dnew,M+1. -is process is
continued until time M + F.

Fit can be assessed by whether credible intervals for
predictions in the cross-validation period include actual
incidence and new deaths. Also relevant are probabilities of
overprediction or underprediction. For example, consider
predicted new cases cnew,s,t for the validation period
t � M + 1, . . . , M + F, and for MCMC samples s � 1, . . . , S,
and let average new predicted cases during the validation
period (the average over F days) at iteration s be denoted
cnew,s,M+1: M+F. We want to compare average predicted new
cases with average observed new cases, cM+1: M+F, during the
validation period. Probabilities of overprediction can be
obtained from binary indicators:

O
(c)
s � I cnew,s,M+1:M+F > cM+1:M+F), s � 1, . . . , S,􏼐 (17)

where I(A) � 1 if condition A is true, and I(A) � 0 oth-
erwise. -us, at each iteration, we compare average new
cases (modelled) during the validation period with actual
average new cases.

Probabilities of overprediction for new cases, ωc, are
estimated as 􏽐

S
s�1(O(c)

s /S). Probabilities of underprediction
can be obtained as 1 − ωc. A satisfactory prediction would
have 0.05<ωc < 0.95, with ωc over 0.95 indicating a high
probability of overprediction, whileωc under 0.05 indicates a
high probability of underprediction. Underprediction
means underforecasting of future cases and may lead to
incorrect inferences regarding epidemic control, as it implies
a lessening in incidence earlier than actually occurred.

3.5. Longer-Term Epidemic Monitoring, Effective Reproduc-
tion Ratios, and Case Fatality Ratios. Strategic decisions
regarding containment of the COVID-19 epidemic, in the
UK and other countries, have depended on trends in new
infections and deaths, but also on the effective repro-
duction rate. -us, in the UK, the choice on whether or
not to relax the initial COVID lockdown restrictions was
based on five criteria, with two being numeric: first, “a
sustained and consistent fall in daily death rates” and
second that the “rate of infection is decreasing to man-
ageable levels,” meaning that the effective reproduction
ratio is demonstrably below 1. -e reproduction rate may
also become especially relevant at later epidemic stages
(postlockdown), after a downturn from the initial peak
and after lockdown measures have been relaxed. Here, the
concern is to prevent a resurgence of infection, indicated
by an upturn in Rt.

In the case of a protracted downturn, but with new cases
still occurring, the concern is especially that there may be a
substantial resurgence in cases, and possibly also deaths, at
some point. -is scenario is colloquially known as a “second
wave,” and in most European countries, there have been
pronounced second waves in the COVID-19 epidemic
during 2020, albeit at different times. Such a resurgence
indicates use of a multiphase model [15], with a second
phenomenological model applied to data after a latent
switch-point between epidemic regimes. Note that at the
time of writing (August 2020), a fully developed second wave
had not yet happened in the UK, although the signs were of
an upturn in Rt, as the analysis below confirms.

In planning for hospital care, longer-term trends in
disease severity may be relevant. For example, an upturn in
cases may reflect more cases among younger people at lower
mortality risk. Hence, trends in, and forecasts of, the case
fatality rate are an important aspect of strategic manage-
ment. In a bivariate model of cases and deaths, as here, we
can trace the modelled CFR through time, where the
modelled CFR at day t is given by the ratio of predicted total
deaths to predicted total cases Dnew,t/Cnew,t. In a natural
extension of the bivariate model to include hospitalisations,
trends in, and forecasts of, hospitalisation rates (ratios of
hospitalised cases to total cases) can also be estimated.
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Assume there is some evidence from new cases data of an
upturn in cases, even before a second wave epidemic is fully
established. Consider a model for new cases only. -en, a
two-phase model to reflect the upturn would involve two
phenomenological models, before and after a latent switch-
point, with each model having distinct parameters. Denote
the single switch-point as κc, such that for a two-phase
Richards model,

ct ∼ Poisson μct( 􏼁,

μct � I t< κc( 􏼁rc1Ct−1 1 −
Ct−1

Kc1
􏼠 􏼡

ac1

􏼢 􏼣

+ I t≥ κc( 􏼁rc2Ct−1 1 −
Ct−1

Kc2
􏼠 􏼡

ac2

􏼢 􏼣,

(18)

where I(A) � 1 when condition A is true, and 0 otherwise.
Parameters, such as (rc1, rc2), are differentiated by outcome
and by wave. -e parameter κc can be assigned a uniform
prior (on a positive interval) or a positive valued prior, such
as an exponential density. If there is a second wave upturn in
deaths also, then a bivariate model can be used, with switch-
points κd assumed later for deaths than cases, due to possible
delays in mortality upturns following incidence upturns. A
three-phase model for cases would have two switch-points,
with mean

μct � I t< κc1( 􏼁rc1Ct−1 1 −
Ct−1

Kc1
􏼠 􏼡

ac1

􏼢 􏼣

+ I κc2 > t≥ κc1( 􏼁rc2Ct−1 1 −
Ct−1

Kc2
􏼠 􏼡

ac2

􏼢 􏼣

+ I t≥ κc2( 􏼁rc3Ct−1 1 −
Ct−1

Kc3
􏼠 􏼡

ac3

􏼢 􏼣.

(19)

An estimator of the effective reproduction rate Rt at time
t is based on predictions from this phenomenological model
and from an estimate of the serial interval density. -e serial
interval is the time between symptom onset in an infected
subject and symptom onset in the infectee.-e serial interval
density can be discretised in the form of weights ρj, applied
to serial interval lengths (in days) up to a maximum J. -ese
can be used to estimate effective reproduction ratios Rt

within a phenomenological model to analyse new cases; see
the papers [37, 48, 49]. -us, Rt can be estimated as

Rt �
cnew,t

􏽐
J
j�0 ρjcnew,t−j

, (20)

where cnew,t are predicted new case data from the phe-
nomenological model. By virtue of the MCMC sampling
strategy used below, we can readily obtain 95% credible
intervals for Rt, and the probability that Rt < 1, which is
important for assessing epidemic containment strategy.

4. Model Application

We consider the application of the above methods to UK
data on new cases and deaths from 1st February 2020 (when

the first two cases of COVID-19 in the UK were reported
according to ECDC). Observations are assigned dates as in
the ECDC data, with times t in days from 1st February 2020.
Figures 1(a) and 1(b) show daily trends in these outcomes up
to 8th August 2020, with erratic fluctuations apparent in
both outcomes. However, there is a broad downward trend
in both outcomes from days 70 to 80, although with a more
protracted decline as opposed to the steep initial upturn.
Figures 2(a) and 2(b) show the relatively smooth evolution of
cumulative cases and deaths.

4.1. Medium-Term Forecasts. For medium-term forecasts,
we focus on the Richards bivariate model (Section 3.3) and
compare three alternative error assumptions as discussed in
Section 3.2: Poisson-gamma (PG), Poisson-lognormal
(PLN), and Poisson-log-Student (PLS). -e Student density
is represented by a scale mixture of normals [50, 51]. -us,
for new cases, instead of taking

uct ∼ t 0, σ2uc, ]c􏼐 􏼑, (21)

where ]c is the degree of freedom parameter and
uct � log(ϵct), we take

δct ∼ Gamma
]c

2
,
]c

2
􏼒 􏼓,

uct ∼ N 0,
σ2uc

δct

􏼠 􏼡.

(22)

-e indicators δct have average 1 but are significantly
lower than 1 for more outlying observations, such as daily
spikes in cases.

Cross-validation estimations are made at points M<T.
-us, we consider twenty-day-ahead forecasts at three dif-
ferent stages of the UK COVID-19 epidemic. For the first
cross validation, estimations are based on training data up to
day M � 80 with F � 20 (i.e., the cross-validation period
consists of days 81 to 100). Cross-validation estimations with
F � 20 are also made for M � 100, and for M � 120, with
forecast accuracy based on comparing forecasts with hold-
out data for days M + 1, . . . , M + F.

4.2. Model Assumptions. For prior densities on the un-
knowns in the medium-term forecasts, exponential priors
with mean 1 are assumed on rc, rd, ac, and ad. For the
precisions 1/σ2uc and 1/σ2ud in the PLN and PLS options, and
for the parameters λc and λd in the Poisson-gamma model, a
gamma prior Gamma (1, 0.001) is assumed. For the PLS
option, we take ]c � ]d � 4 as a preset option.-e degrees of
freedom can be difficult to estimate for relatively small
datasets, and the option of the preset value ] � 4 is a robust
option [52, 53]. For the maximum cases (epidemic size)
parameter Kc, we assume as lognormal prior, centred at
log(Ke

c) and with variance 1, as discussed in Section 3.2.
For the maximum deaths parameter Kd, we assume

Kd � ΦKc, where the prior for Φ is beta distributed with
mean defined by the EU-wide case fatality ϕEU. -e beta has
total prior count C set at 5, C � 5. -us, the prior on Φ is
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Beta(CϕEU, C(1 − ϕEU)). For example, on 20-04-2020 (at
day t � 80), the EU-wide case fatality rate was 0.101, and the
prior is set atΦ ∼ Beta (0.505, 4.495). -is illustrates the use
of relevant external information, rather than diffuse priors.

4.3. Model Fit and Estimation. Fit to the observed training
data is assessed using the Watanabe–Akaike information
criterion (WAIC) [54]. -is is a fit measure which takes
account of fit but also penalises model complexity. Cross-
validation fit (fit out of the observed sample) is assessed by
the probabilities of forecasting overprediction, ωc and ωd,
and by predictive coverage: whether the credible intervals for
predicted cases and deaths (averages over each validation
period) include the observed averages. Estimation uses the
BUGS program [55], with posterior estimates based on the
second halves of two chain runs of 100,000 iterations, and
convergence assessed using Brooks–Gelman–Rubin criteria
[56].

4.4. Modelling Later Epidemic Stages. To provide a longer-
term perspective on epidemic containment, we apply the
best performing model from analysis of the first wave to the
full set of observations as at 8th August 2020 (T�190), when
the first epidemic peak had passed. So this application is to a

situation where the epidemic first wave has passed, but there
are still nonnegligible numbers of new cases, and a potential
for possible upturns and further waves.

New cases and deaths (as 7-day moving averages) had
reached maxima of 4850 and 950, respectively, when the UK
epidemic peaked in April 2020. As a result of lockdown
measures imposed in late March, daily new cases averaged
just over 500 daily by July. However, lockdown relaxations
from July were accompanied by the risk of resurgence. In
that regard, an upturn was apparent with new cases in late
July and early August averaging over 800 daily (see Figure 3),
although deaths continued to fall, averaging around 50 per
day in early August.

To model the full time series, and since there was no
upturn in deaths apparent in early August 2020, we focus on
new cases only. To reflect the evidence of an upturn in cases,
a two-phase model is applied. For this model, the shift
parameter κc is assigned an exponential prior density with
mean 150. Priors on the parameters of the second-phase
Richards model are as before for the exponential ascent and
logistic modifier parameters. For Kc2 (the forecast total cases
under wave 2), we assume Kc2 � ηcKc1 with ηc assigned an
exponential prior with mean 1. Of policy interest here is
epidemic containment, as summarised by the effective re-
production ratio: specifically the question of policy relevance
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Figure 2: (a) Trends in total cases, UK; (b) trends in total deaths, UK.
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Figure 1: (a) Trends in daily new cases, UK; (b) trends in daily new deaths, UK.
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is whether this ratio consistently is below 1, and whether its
95% credible interval also is entirely below 1. If the ratio is
not below 1, this suggests a significant upturn.

To provide estimates of the effective reproduction ratio,
we use accumulated evidence on COVID serial intervals
from five studies [57–61]. A gamma density on the serial
interval (SI) is assumed, and information on mean and
standard deviation of the SI, or on quantiles of SI, is con-
verted to gamma density parameters; for use of SI quantiles
in this regard, see [62]. Large samples (of a million) from
each the five densities are taken, and parameters of the
pooled gamma density are estimated from the pooled sample
of five million; the pooled gamma density has shape 1.38 and
rate 0.36.-is density is then converted to a discretised form
(with 16 bins) to provide an informative prior on the SI to
the model of White and Pagano [63], which updates the
prior serial interval density using new case data for the UK.
-e study in [64] recommends that the initial, approximately
exponential, epidemic phase be used in estimation, and we
use UK new case data up to time 24-04-2020, when UK new
cases peaked (see 55, page 3). -e updated mean serial
interval is estimated as 3.5 days with standard deviation 3.1.
-e discretised serial interval is estimated as in [63], with J in
Section 3.5 set at J � 16.

5. Results

Table 1 compares parameter estimates from the observed
(training) data under the three error assumptions for the three
cross-validation analyses at M� 80, M� 100, and M� 120
(i.e., nine scenarios). It should be noted that predictions of
cases and deaths should be based not on the posteriormean or
median parameter values in Table 1, but on sampled posterior

predictive replicate data at each iteration. -ese are based on
sampling new data from the Poisson means (13) and (14), and
from the Richards model parameter profile at each particular
iteration. -e predicted values of cases and deaths are very
close to actual values: for example, for the PLS model at
M� 120, the average absolute deviation (over t � 2, . . . , 120)
between actual new cases and predicted new cases is under 1.
Table 2 compares the WAIC fits to the observed data under
the nine options, while criteria regarding 20-day-ahead
forecasts are shown in Table 3.

5.1. Mid-Term Forecasts. Table 1 shows broad consistency
between the three distributional options in terms of esti-
mated final epidemic size Kc and eventual death total Kd.
-e posterior density of these parameters may be skewed,
with posterior mean exceeding median. For the PLN and
PLS options, the estimate of Kc increases as M does. -is
reflects the protracted nature of the UK downturn in cases
after the peak in the first wave. Posterior mean estimates of
the turning points τc and τd vary slightly and tend to be
higher forM � 100 andM � 120, but for both outcomes and
all M values are between 72 and 86. Turning point estimates
for new cases τc are also mostly higher under the PLS option.

Table 2 shows that the PLS option has better fit, with
lower WAIC values. Hence, its estimates of epidemic size
and turning points are preferred and provide a better de-
scription of the slow decline in cases from their peak. Table 3
shows generally better cross-validation performance for the
PLS option. As discussed above, satisfactory prediction
would have 0.05<ωc < 0.95, and 0.05<ωd < 0.95, with ωc or
ωd over 0.95 indicating overprediction, and with ωc or
ωdunder 0.05 indicating underprediction. Both PG and PLN
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options show underprediction for higher values of M, and in
policy terms, may be misleading in suggesting a faster de-
cline in cases and deaths than actually occurred. By contrast
for M � 100 and M � 120, the 95% interval for predicted
average cases under the PLS model comfortably includes the
actual average new cases.

5.2. Longer-Term Scenario. Estimates of policy relevant
parameters also come from the longer-term scenario when
the log-Student Richards model is applied to UK COVID

new case data up to dayT�190 (8th August, 2020). -e shift
point in the two-phase model is estimated as 179.1 with 95%
interval from 179.0 to 179.3.

Figure 4 plots out the posterior mean estimated effective
reproductive ratios (5-day moving averages), distinguishing
those estimates significantly above 1. -e estimates hover
around 1 throughout June and the first half of July but, in
late July/early August, tend to exceed 1.-e impression from
this is that success in fully effective containment is then in
doubt. -e estimates of the reproduction ratio, and their

Table 2: Fit to training data (WAIC criterion).

Poisson-gamma Poisson-lognormal Poisson-log-Student
M� 80
Cases 605.0 600.0 564.1
Deaths 365.7 367.4 350.4
Total 970.7 967.4 914.5
M� 100
Cases 851.6 845.8 808.8
Deaths 562.0 560.1 550.1
Total 1413.6 1405.9 1358.9
M� 120
Cases 1097.0 1086.3 1042.3
Deaths 743.3 741.4 731.5
Total 1840.4 1827.7 1773.8

Table 1: Estimations according to timing of cross-validation period (M is days after start of epidemic).

Parameter
Poisson-gamma Poisson-lognormal Poisson-log-Student

Mean 2.5% Median 97.5% Mean 2.5% Median 97.5% Mean 2.5% Median 97.5%
M� 80
Kc 373800 151800 210500 1172000 170200 135900 153200 289000 198800 135100 177200 336600
Kd 32920 25070 32080 45560 33220 24180 32390 46770 35780 17950 29060 91460
rc 0.31 0.22 0.27 0.58 0.24 0.19 0.23 0.30 0.12 0.08 0.13 0.18
rd 0.82 0.44 0.75 1.51 0.80 0.38 0.67 1.81 0.29 0.17 0.28 0.46
ac 0.31 0.07 0.32 0.60 0.54 0.21 0.55 0.89 1.06 0.53 1.06 1.79
ad 0.13 0.05 0.12 0.26 0.14 0.04 0.13 0.33 0.75 0.20 0.63 1.75
Φ 0.13 0.03 0.15 0.25 0.21 0.10 0.20 0.31 0.18 0.09 0.16 0.40
τc 76.2 72 75 80 72.5 70.0 72.0 80.0 76.1 73.0 75.0 80.0
τd 74.5 71 74 79 74.7 71.0 75.0 80.0 75.8 71.0 76.0 80.0
M� 100
Kc 271040 243490 268820 310190 262700 245700 261100 284000 295800 223800 276400 453200
Kd 37395 35097 37274 40538 37040 34470 36920 40340 38740 32290 37610 53060
rc 0.30 0.22 0.30 0.38 0.26 0.22 0.26 0.33 0.18 0.13 0.17 0.27
rd 1.51 0.63 1.21 4.01 1.27 0.48 1.06 2.88 0.55 0.22 0.49 1.12
ac 0.25 0.17 0.24 0.42 0.28 0.20 0.28 0.37 0.46 0.20 0.46 0.83
ad 0.07 0.02 0.06 0.13 0.08 0.02 0.07 0.17 0.20 0.06 0.15 0.62
Φ 0.14 0.12 0.14 0.16 0.14 0.13 0.14 0.16 0.14 0.08 0.13 0.20
τc 79.4 78 79 82 79.0 78 79 80 83.1 78 82 97
τd 76.2 75 76 77 76.1 75 76 77 77.6 75 77 83
M� 120
Kc 302800 295900 302300 312100 303100 293900 302700 317100 349100 282000 321300 549100
Kd 40670 39670 40630 41890 40370 39410 40330 41560 41050 38580 40770 45020
rc 0.38 0.30 0.36 0.51 0.34 0.25 0.32 0.49 0.40 0.11 0.45 0.80
rd 1.87 0.65 1.50 5.38 1.57 0.67 1.52 2.82 0.94 0.34 0.78 2.35
ac 0.16 0.11 0.16 0.21 0.18 0.11 0.18 0.24 0.27 0.04 0.30 0.69
ad 0.05 0.01 0.04 0.11 0.05 0.02 0.04 0.10 0.09 0.03 0.08 0.22
Φ 0.13 0.13 0.13 0.14 0.13 0.13 0.13 0.14 0.12 0.07 0.13 0.15
τc 81.0 80 81 82 81.2 81 81 82 85.6 82 84 99
τd 77.3 77 77 78 77.1 77 77 78 77.9 77 78 79
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path through June and July, are similar to those for the UK
available at https://epiforecasts.io/covid/posts/national/
united-kingdom/#national-summary and based on the
methods in [65].

To illustrate the potential for longer-term forecasts of
severity indicators, we also use observed data up to day 150
to make forecasts 40 days ahead through to day 190. -is
analysis uses the PLS model option for Poisson mixing.
Figure 5 shows the resulting forecast of the case fatality ratio,
with 95% intervals. -e interval for t � 190 includes the
observed value of 0.151.

6. Discussion

-e existing epidemic modelling literature has recognized
the need for overdispersed distributions to deal with erratic
incidence counts [29, 66, 67]. -us, the study in [67] shows
that use of a negative binomial distribution is more ap-
propriate than the Poisson for describing emerging infec-
tions with overdispersed case distributions due to
superspreading events. However, so far as the authors are
aware, there has been no evaluation of the negative binomial
as compared to other methods of representing over-
dispersion in epidemic counts. Hence, one contribution of
this paper rests on a comparison of the negative binomial
(Poisson-gamma mixture) against alternative Poisson
mixture models [30]. For example, the Poisson log-normal
distribution is a longer tailed alternative to the negative
binomial distribution andmay better fit overdispersed count

data [68, 69]. -e analysis here suggests such alternatives
may usefully be considered as alternatives to the negative
binomial and may both improve fit to actual observations
and provide more accurate forecast performance.

Tackling overdispersion is one issue present inmodelling
count data associated with epidemics. Another is the out-
come focus: the choice is between incidence alone (the usual
approach), or on taking account of both incidence and
related outcomes. We have developed here a bivariate ap-
proach to jointly modelling epidemic outcomes, using priors
that link parameters between outcomes. For example, here,
the eventual death total Kd is linked (via the Bayesian prior
specification) to the eventual epidemic size Kc. -is ap-
proach has been used here to study the interrelationships
between incidence andmortality but can be readily extended
to more outcomes, such as incidence, mortality, and hos-
pitalisations. Forecasts from such joint outcome models
enable forecasts of epidemic severity (e.g., case fatality rates,
case-hospitalisation ratios, deaths-hospitalisations ratios,
and effective reproduction ratios) that assist in pandemic
severity assessment. Severity assessment, as well as the de-
velopment of summary indicators of epidemic severity, is
being recognized as an important aspect of epidemic
monitoring and modelling [70, 71].

-e present paper also considers the gain in applying
phenomenological models to later stages of incomplete epi-
demics, especially (in the case of COVID-19) after lockdown
relaxations, where there may be a protracted period of nonzero
incidence or further more pronounced waves of infection. -e

Table 3: Criteria for out-sample predictions (M is number of days in training sample; F� 20 in all cases).

Criterion
Poisson-gamma (PG) Poisson-lognormal (PLN) Poisson-log-Student (PLS)

Mean 2.5% Median 97.5% Mean 2.5% Median 97.5% Mean 2.5% Median 97.5%
M� 80
Average daily cases 4357 1818 3686 7407 2214 1078 1881 4875 3118 1043 2869 5652
Average daily deaths 609 344 603 904 613 303.8 613.4 921.8 587 0 514 1471
ωc 0.41 0.03 0.16
ωd 0.34 0.38 0.40
Actual daily averages
in period (M+ 1, M+ F)
New cases 4857
New deaths 662
M� 100
Average daily cases 2346 1523 2353 3173 1975 1384 1947 2658 2630 622 2565 4340
Average daily deaths 265 184 265 351 224.8 135.8 221.5 332.8 275 52 276 510
ωc 0.09 0.00 0.31
ωd 0.06 0.03 0.32
Actual averages
in period (M+ 1, M+ F)
Cases 3039
Deaths 330
M� 120
Average daily cases 1132 1006 1129 1274 1133 963.2 1136 1320 1310 604 1358 1835
Average daily deaths 129 89 129 170 117.9 77.6 117.6 160.4 135 37 134 236
ωc 0.00 0.00 0.42
ωd 0.00 0.00 0.07
Actual averages
in period (M+ 1, M+ F)
Cases 1506
Deaths 216
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above analysis has therefore applied the Poisson-log-Student to
late epidemic data for the UK (up to early August 2020), when
there was some evidence of an incidence upturn, but not yet a
full-blown second wave. -e focus of this analysis was on the
effective reproduction rate and the case fatality ratio, both
indicators of epidemic severity. As mentioned in [72], “the
COVID-19 pandemic has shown that the effective reproduc-
tion rate of the virus Rt is a crucial determinant not only of
public health, but also of public policy.” -ere are a number of
ways of estimating this quantity, including novel approaches
such as usingGooglemobility data [73]. Here, an analysis using

estimates of Rt based on a two-phase Richards model suggests
an upturn in transmission in the UK by late July/early August
2020.

Hence, the added value of the study is provided by the
following: (a) proposing a multivariate framework readily
applied for assessing severity, (b) providing an approach for
assessing alternative methods for representing over-
dispersion, and (c) providing a methodology for assessing
long-term trends and making longer-term forecasts (e.g., of
case fatality and the effective reproduction rate) in a mul-
tiwave situation.
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7. Conclusion

Many applications of phenomenological models have been
to complete epidemics. However, evaluation of such models
based simply on their fit to observed data may give only a
partial picture. Also relevant to epidemic model assessment,
particularly for policy application, is the accuracy of me-
dium-term forecasts for incomplete epidemics. Arguably,
evaluation in this case is better done using a cross-validation
approach, where only some of the observed data are used to
estimate parameters, and a hold-out sample can then assess
the accuracy of forecasts. -e analysis here of UK epidemic
data in the first half of 2020 has shown that fit to training
data and the cross-validation fit are consistent in their choice
of preferred model option.

-e contribution of the present paper is to illustrate a
bivariate approach to two epidemic outcomes, and how
prior information (under a Bayesian approach) can be ap-
plied to interlink the parameters governing each outcome.
-e benefits of a bivariate (and potentially multivariate)
approach include the ability to forecast severity measures
such as the case fatality ratio, and the borrowing of strength
over outcomes in making forecasts [26]. A further contri-
bution is that a focus on incidence and new deaths rather
than cumulative outcomes has brought into sharper focus
the question of adequately representing Poisson over-
dispersion. -e latter is caused by often erratic fluctuations
in the observed series, apparent in UK COVID data on new
cases and deaths. -e analysis has provided new evidence on

the relative fit and forecasting performance of different ways
of representing Poisson overdispersion in epidemic count
data, and potential gains through using heavier tail alter-
natives to the negative binomial. We have also considered
Bayesian analysis of longer-term epidemic trends, where
multiple waves may exist, and illustrated monitoring of case
fatality and epidemic reproduction.

-e implications of the research (e.g., in planning
healthcare provision) are that effective medium-term fore-
casts of COVID-19 incidence and mortality can be provided
by the proposed methodology. Extension of the bivariate
approach (e.g., to include incidence, mortality, and hospi-
talisations) provides scope for forecasting other indicators
relevant to severity assessment. -e methodology also
presents a way to monitor longer-term infection numbers
leading to early detection of incipient upturns in infection
numbers, via continuous monitoring and forecasting of the
effective reproduction ratio. Assessing whether the latter is
confined to values below 1 is important for strategic epi-
demic containment.

-e present study has some possible limitations. Com-
parative analysis of alternative ways of representing over-
dispersion has been limited here to UK data, and to the first
wave COVID-19 epidemic, and will require validation with
other epidemic time series, both for COVID-19 and other
infectious diseases. A caveat, although not a limitation per
se, is that, with regard to Bayesian estimation, relatively
informative priors may be needed to guarantee stable esti-
mation and ensure convergence. For example, diffuse
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gamma priors on the eventual epidemic size parameter
caused convergence problems in the analysis reported here.

Regarding future research, as just pointed out, the
methodology for comparing overdispersion approaches
should be assessed with other epidemic datasets. Other
Poisson mixtures may be considered such as the Poisson log
skew-normal [74] or Poisson mixtures with other densities
[75, 76]. Other types of analysis regarding forecasting po-
tential can also be envisaged, such as forecast combinations,
for instance, forecasts based on combining the logistic,
Richards, and Gompertz curves [77, 78]. It would also be
useful, especially in planning hospital care capacity, to apply
a bivariate approach to COVID-19 incidence and hospi-
talisations, or a trivariate approach to incidence, mortality,
and hospitalisations. A trivariate approach will provide
model estimates and forecasts of indicators central to se-
verity assessment.

Data Availability

-e data used to support the findings of the study were
obtained from the European Centre for Disease Prevention
and Control (https://www.ecdc.europa.eu/en/publications-
data/download-todays-data-geographic-distribution-covid-
19-cases-worldwide).
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